51
|
Colasante C, Alibu VP, Kirchberger S, Tjaden J, Clayton C, Voncken F. Characterization and developmentally regulated localization of the mitochondrial carrier protein homologue MCP6 from Trypanosoma brucei. EUKARYOTIC CELL 2007; 5:1194-205. [PMID: 16896205 PMCID: PMC1539146 DOI: 10.1128/ec.00096-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins of the mitochondrial carrier family (MCF) are located mainly in the inner mitochondrial membrane and mediate the transport of a large range of metabolic intermediates. The genome of Trypanosoma brucei harbors 29 genes encoding different MCF proteins. We describe here the characterization of MCP6, a novel T. brucei MCF protein. Sequence comparison and phylogenetic reconstruction revealed that MCP6 is closely related to different mitochondrial ADP/ATP and calcium-dependent solute carriers, including the ATP-Mg/Pi carrier of Homo sapiens. However, MCP6 lacks essential amino acids and sequence motifs conserved in these metabolite transporters, and functional reconstitution and transport assays with E. coli suggested that this protein indeed does not function as an ADP/ATP or ATP-Mg/Pi carrier. The subcellular localization of MCP6 is developmentally regulated: in bloodstream-form trypanosomes, the protein is predominantly glycosomal, whereas in the procyclic form, it is found mainly in the mitochondria. Depletion of MCP6 in procyclic trypanosomes resulted in growth inhibition, an increased cell size, aberrant numbers of nuclei and kinetoplasts, and abnormal kinetoplast morphology, suggesting that depletion of MCP6 inhibits division of the kinetoplast.
Collapse
Affiliation(s)
- Claudia Colasante
- Zentrum für Molekulare Biologie (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
52
|
Beckett CS, Kell PJ, Creer MH, McHowat J. Phospholipase A2-catalyzed hydrolysis of plasmalogen phospholipids in thrombin-stimulated human platelets. Thromb Res 2006; 120:259-68. [PMID: 17055038 PMCID: PMC2204082 DOI: 10.1016/j.thromres.2006.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 07/31/2006] [Accepted: 09/12/2006] [Indexed: 11/25/2022]
Abstract
In the present study, phospholipase A(2) (PLA(2))-catalyzed hydrolysis of platelet membrane phospholipids was investigated by measuring PLA(2) activity, phospholipid hydrolysis, arachidonic acid release and choline lysophospholipid production in thrombin-stimulated human platelets. Thrombin-stimulated platelets demonstrated selective hydrolysis of arachidonylated plasmenylcholine and plasmenylethanolamine, with little change in diacyl phospholipids. Accelerated plasmalogen hydrolysis was accompanied by increased arachidonic acid and thromboxane B(2) release and increased lysoplasmenylcholine production. Thrombin stimulation caused an increase in PLA(2) activity measured in the cytosolic fraction with plasmenylcholine only; no increase in activity was measured with phosphatidylcholine. No change in membrane-associated PLA(2) activity was observed with either substrate tested. Pretreatment with the Ca(2+)-independent PLA(2)-selective inhibitor, bromoenol lactone, inhibited completely any thrombin-stimulated phospholipid hydrolysis. Thus, thrombin stimulation of human platelets activates a cytosolic PLA(2) that selectively hydrolyzes arachidonylated plasmalogen phospholipids.
Collapse
Affiliation(s)
- Caroline S Beckett
- Saint Louis University School of Medicine, Department of Pathology, 1402 S. Grand Blvd. St. Louis, MO 63104, United States
| | | | | | | |
Collapse
|
53
|
Kinsey GR, McHowat J, Beckett CS, Schnellmann RG. Identification of calcium-independent phospholipase A2gamma in mitochondria and its role in mitochondrial oxidative stress. Am J Physiol Renal Physiol 2006; 292:F853-60. [PMID: 17047165 DOI: 10.1152/ajprenal.00318.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidant-induced lipid peroxidation and cell death mediate pathologies associated with ischemia-reperfusion and inflammation. Our previous work in rabbit renal proximal tubular cells (RPTC) demonstrated that inhibition of Ca(2+)-independent phospholipase A(2) (iPLA(2)) potentiates oxidant-induced lipid peroxidation and necrosis, implicating iPLA(2) in phospholipid repair. This study was conducted to identify a RPTC mitochondrial PLA(2) and determine the role of PLA(2) in oxidant-induced mitochondrial dysfunction. iPLA(2) activity was detected in Percoll-purified rabbit renal cortex mitochondria (RCM) and in isolated mitochondrial inner membrane fractions from rabbit and human RCM. Immunoblot analysis and inhibitor sensitivity profiles revealed that iPLA(2)gamma is the RCM iPLA(2) activity. RCM iPLA(2) activity was enhanced in the presence of ATP and was blocked by the PKCepsilon V1-2 inhibitor. Oxidant-induced mitochondrial lipid peroxidation and swelling were accelerated by pretreatment with R-BEL, but not S-BEL. Furthermore, oxidant treatment of isolated RCM resulted in decreased iPLA(2)gamma activity. These results reveal that RCM iPLA(2) is iPLA(2)gamma, RCM iPLA(2)gamma is regulated by phosphorylation by PKCepsilon, iPLA(2)gamma protects RCM from oxidant-induced lipid peroxidation and dysfunction, and that a strategy to preserve or enhance iPLA(2)gamma activity may be of therapeutic benefit.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Dept. of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
54
|
Song H, Bao S, Ramanadham S, Turk J. Effects of biological oxidants on the catalytic activity and structure of group VIA phospholipase A2. Biochemistry 2006; 45:6392-406. [PMID: 16700550 PMCID: PMC2044503 DOI: 10.1021/bi060502a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Group VIA phospholipase A(2) (iPLA(2)beta) is expressed in phagocytes, vascular cells, pancreatic islet beta-cells, neurons, and other cells and plays roles in transcriptional regulation, cell proliferation, apoptosis, secretion, and other events. A bromoenol lactone (BEL) suicide substrate used to study iPLA(2)beta functions inactivates iPLA(2)beta by alkylating Cys thiols. Because thiol redox reactions are important in signaling and some cells that express iPLA(2)beta produce biological oxidants, iPLA(2)beta might be subject to redox regulation. We report that biological concentrations of H(2)O(2), NO, and HOCl inactivate iPLA(2)beta, and this can be partially reversed by dithiothreitol (DTT). Oxidant-treated iPLA(2)beta modifications were studied by LC-MS/MS analyses of tryptic digests and included DTT-reversible events, e.g., formation of disulfide bonds and sulfenic acids, and others not so reversed, e.g., formation of sulfonic acids, Trp oxides, and Met sulfoxides. W(460) oxidation could cause irreversible inactivation because it is near the lipase consensus sequence ((463)GTSTG(467)), and site-directed mutagenesis of W(460) yields active mutant enzymes that exhibit no DTT-irreversible oxidative inactivation. Cys651-sulfenic acid formation could be one DTT-reversible inactivation event because Cys651 modification correlates closely with activity loss and its mutagenesis reduces sensitivity to inhibition. Intermolecular disulfide bond formation might also cause reversible inactivation because oxidant-treated iPLA(2)beta contains DTT-reducible oligomers, and oligomerization occurs with time- and temperature-dependent iPLA(2)beta inactivation that is attenuated by DTT or ATP. Subjecting insulinoma cells to oxidative stress induces iPLA(2)beta oligomerization, loss of activity, and subcellular redistribution and reduces the rate of release of arachidonate from phospholipids. These findings raise the possibility that redox reactions affect iPLA(2)beta functions.
Collapse
Affiliation(s)
- Haowei Song
- Medicine Department Mass Spectrometry Facility, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
55
|
Wilson PA, Gardner SD, Lambie NM, Commans SA, Crowther DJ. Characterization of the human patatin-like phospholipase family. J Lipid Res 2006; 47:1940-9. [PMID: 16799181 DOI: 10.1194/jlr.m600185-jlr200] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several publications have described biological roles for human patatin-like phospholipases (PNPLAs) in the regulation of adipocyte differentiation. Here, we report on the characterization and expression profiling of 10 human PNPLAs. A variety of bioinformatics approaches were used to identify and characterize all PNPLAs encoded by the human genome. The genes described represent a divergent family, most with a highly conserved ortholog in several mammalian species. In silico characterization predicts that two of the genes function as integral membrane proteins and are regulated by cAMP/cGMP. A structurally guided protein alignment of the patatin-like domain identifies a number of conserved residues in all family members. Quantitative PCR was used to determine the expression profile of each family member. Affymetrix-based profiling of a human preadipocyte cell line identified several members that are differentially regulated during cell differentiation. Cumulative data suggest that patatin-like genes normally expressed at very low levels are induced in response to environmental signals. Given the observed conservation of the patatin fold and lipase motif in all human PNPLAs, a single nomenclature to describe the PNPLA family is proposed.
Collapse
Affiliation(s)
- Paul A Wilson
- Bioinformatics Discovery and Analysis, GlaxoSmithKline Research and Development, Stevenage, England SG1 2NY, UK.
| | | | | | | | | |
Collapse
|
56
|
Saavedra G, Zhang W, Peterson B, Cummings BS. Differential Roles for Cytosolic and Microsomal Ca2+-Independent Phospholipase A2in Cell Growth and Maintenance of Phospholipids. J Pharmacol Exp Ther 2006; 318:1211-9. [PMID: 16763094 DOI: 10.1124/jpet.106.105650] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Physiological roles of microsomal (iPLA(2)gamma) and cytosolic (iPLA(2)beta)Ca(2+)-independent phospholipase A(2) were determined in two different epithelial cell models. R- and S-enantiomers of the iPLA(2) inhibitor bromoenol lactone (BEL) were isolated and shown to selectively inhibit iPLA(2gamma) and iPLA(2beta), respectively. The effect of these enantiomers on cell growth was assessed in human embryonic kidney 293 and Caki-1 cells using 3-(4-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT). S-BEL (0-5.0 microM) decreased MTT staining 35% after 24 h compared with control cells, whereas treatment with either R-BEL or R/S-BEL induced 15% decreases. Neither R-BEL nor S-BEL induced cell death as determined by annexin V and propidium iodide staining. Transfection of cells with iPLA(2)beta siRNA reduced MTT staining approximately 35%, whereas transfection of cells with iPLA(2)gamma siRNA only decreased MTT staining 10 to 15% compared with control cells. The effect of iPLA(2)beta and iPLA(2)gamma siRNA on cell number and protein was also determined, and iPLA(2)beta siRNA decreased cell number and protein 25% compared with control cells. In contrast, iPLA(2)gamma siRNA decreased cell number, but not cellular protein, compared with control cells. Selective inhibition of iPLA(2)beta, but not iPLA(2)gamma, decreased several arachidonic acid-containing phospholipids, including 16:1-20:4, 16:0-20:4, 18:1-20:4, and 18:0-20:4 phosphatidylcholine, showing that the ability of iPLA(2)beta inhibitors to decrease cell growth correlates with their ability to decrease arachidonic acid-containing phospholipids. These data show that iPLA(2)beta inhibition results in greater decreases in cell growth and proliferation than iPLA(2)gamma, identifies specific phospholipids whose expressions are differentially regulated by iPLA(2)beta and iPLA(2)gamma, and suggests novel roles for iPLA(2)beta in cell growth.
Collapse
Affiliation(s)
- Geraldine Saavedra
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
57
|
Song H, Ramanadham S, Bao S, Hsu FF, Turk J. A bromoenol lactone suicide substrate inactivates group VIA phospholipase A2 by generating a diffusible bromomethyl keto acid that alkylates cysteine thiols. Biochemistry 2006; 45:1061-73. [PMID: 16411783 PMCID: PMC2065752 DOI: 10.1021/bi052065q] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phospholipases A2 (PLA2) comprise a superfamily of enzymes that hydrolyze phospholipids to a free fatty acid, e.g., arachidonate, and a 2-lysophospholipid. Dissecting their individual functions has relied in large part on pharmacological inhibitors that discriminate among PLA2. Group VIA PLA2 (iPLA2beta) has a GTSTG serine lipase consensus sequence, and studies with a bromoenol lactone (BEL) suicide substrate inhibitor have been taken to suggest that iPLA2beta participates in a wide variety of biological processes. Such conclusions presume inhibitor specificity. Inhibition by BEL requires its hydrolysis by and results in uncharacterized covalent modification(s) of iPLA2beta. We performed mass spectrometric analyses of proteolytic digests of BEL-treated iPLA2beta to identify modifications associated with loss of activity. The GTSTG active site and large flanking regions of sequence are not modified by BEL treatment, but most iPLA2beta Cys residues are alkylated at various BEL concentrations to form a thioether linkage to a BEL keto acid hydrolysis product. Synthetic Cys-containing peptides are alkylated when incubated with iPLA2beta and BEL, which reflects iPLA2beta-catalyzed BEL hydrolysis to a diffusible bromomethyl keto acid product that reacts with distant thiols. The BEL concentration dependence of Cys651 alkylation closely parallels that of loss of iPLA2beta activity. No amino acid residues other than Cys were found to be modified, suggesting that Cys alkylation is the covalent modification of iPLA2beta responsible for loss of activity, and the alkylating species appears to be a diffusible hydrolysis product of BEL rather than a tethered acyl-enzyme intermediate.
Collapse
Affiliation(s)
| | | | | | | | - John Turk
- To whom correspondence should be addressed: telephone, 314-362-8190; fax, 314-362-8188; e-mail,
| |
Collapse
|
58
|
Zhang L, Peterson BL, Cummings BS. The effect of inhibition of Ca2+-independent phospholipase A2 on chemotherapeutic-induced death and phospholipid profiles in renal cells. Biochem Pharmacol 2005; 70:1697-706. [PMID: 16226224 DOI: 10.1016/j.bcp.2005.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/14/2005] [Accepted: 09/14/2005] [Indexed: 11/22/2022]
Abstract
We demonstrate that cells derived from primary cultures of rabbit proximal tubules (RPTC), human embryonic kidney (HEK293) and human kidney carcinomas (Caki-1) express microsomal Ca(2+)-independent phospholipase A(2) (iPLA(2)gamma) and cytosolic Ca(2+)-independent phospholipase A(2) (iPLA(2)beta). Inhibition of iPLA(2) activity in these cells using the iPLA(2) inhibitor bromoenol lactone (BEL) (0-5.0microM) for 24h did not induce cell death as determined by annexin V and propidium iodide (PI) staining. However, BEL treatment prior to cisplatin (50muM) or vincristine (2microM) exposure reduced apoptosis 30-50% in all cells tested (RPTC, HEK293 and Caki-1 cells). To identify the phospholipids altered during cell death electrospray ionization-mass spectrometry and lipidomic analysis of HEK293 and Caki-1 cells was performed. Cisplatin treatment reduced 14:0-16:0 and 16:0-16:0 phosphatidylcholine (PtdCho) 50% and 35%, respectively, in both cell lines, 16:0-18:2 PtdCho in Caki-1 cells and increased 16:1-22:6 plasmenylcholine (PlsCho). BEL treatment prior to cisplatin exposure further decreased 14:0-16:0 PtdCho, 16:0-16:1 PlsCho and 16:0-18:1 PlsCho in HEK293 cells, and inhibited cisplatin-induced increases in 16:1-22:6 PlsCho in Caki-1 cells. Treatment of cells with BEL prior to cisplatin exposure also increased the levels of several arachidonic containing phospholipids including 16:0-20:4, 18:1-20:4, and 18:0-20:4 PtdCho, compared to cisplatin only treated cells. These data demonstrate that inhibition of iPLA(2) protects against chemotherapeutic-induced cell death in multiple human renal cell models, identifies specific phospholipids whose levels are altered during cell death, and demonstrates that alterations in these phospholipids correlate to the protection against cell death in the presence of iPLA(2) inhibitors.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
59
|
Yan W, Jenkins CM, Han X, Mancuso DJ, Sims HF, Yang K, Gross RW. The Highly Selective Production of 2-Arachidonoyl Lysophosphatidylcholine Catalyzed by Purified Calcium-independent Phospholipase A2γ. J Biol Chem 2005; 280:26669-79. [PMID: 15908428 DOI: 10.1074/jbc.m502358200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Herein, we report the heterologous expression of the human peroxisomal 63-kDa calcium-independent phospholipase A2gamma (iPLA2gamma) isoform in Sf9 cells, purification of the N-terminal His-tagged enzyme by affinity chromatography, and the identification of its remarkable substrate selectivity that results in the highly selective generation of 2-arachidonoyl lysophosphatidylcholine. Mass spectrometric analyses demonstrated that purified iPLA2gamma hydrolyzed saturated or monounsaturated aliphatic groups readily from either the sn-1 or sn-2 positions of phospholipids. In addition, purified iPLA2gamma effectively liberated arachidonic acid from the sn-2 position of plasmenylcholine substrates. In contrast, incubation of iPLA2gamma with 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine resulted in the rapid release of palmitic acid and the selective accumulation of 2-arachidonoyl lysophosphatidylcholine (LPC), which was not metabolized further by iPLA2gamma. The putative regiospecificity of the 2-arachidonoyl LPC product was authenticated by its diagnostic fragmentation pattern during tandem mass spectrometric analysis. To identify the physiological relevance of iPLA2gamma-mediated 2-arachidonoyl LPC production utilizing naturally occurring membranes, we incubated purified rat hepatic peroxisomes with iPLA2gamma and similarly identified the selective accumulation of 2-arachidonoyl LPC. Furthermore, tandem mass spectrometric analysis demonstrated that 2-arachidonoyl LPC is a natural product in human myocardium, a tissue in which iPLA2gamma expression is robust. Because 2-arachidonoyl LPC represents a key branch point intermediate that can potentially lead to a variety of bioactive molecules in eicosanoid signaling (e.g. arachidonic acid, 2-arachidonoylglycerol), these results have uncovered a novel eicosanoid selective pathway through iPLA2gamma-mediated 2-arachidonoyl LPC production to amplify and diversify the repertoire of biologic lipid second messengers in response to cellular stimulation.
Collapse
Affiliation(s)
- Wei Yan
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
|