51
|
Wilkinson DG. Eph receptors and ephrins: regulators of guidance and assembly. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 196:177-244. [PMID: 10730216 DOI: 10.1016/s0074-7696(00)96005-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances have started to elucidate the developmental functions and biochemistry of Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins. Interactions between these molecules are promiscuous, but they largely fall into two groups: EphA receptors bind to GPI-anchored ephrin-A ligands, while EphB receptors bind to ephrin-B proteins that have a transmembrane and cytoplasmic domain. Remarkably, ephrin-B proteins transduce signals, such that bidirectional signaling can occur upon interaction with Eph receptor. In many tissues, specific Eph receptors and ephrins have complementary domains, whereas other family members may overlap in their expression. An important role of Eph receptors and ephrins is to mediate cell-contact-dependent repulsion. Complementary and overlapping gradients of expression underlie establishment of a topographic map of neuronal projections in the retinotectal system. Eph receptors and ephrins also act at boundaries to channel neuronal growth cones along specific pathways, restrict the migration of neural crest cells, and via bidirectional signaling prevent intermingling between hindbrain segments. Intriguingly, Eph receptors and ephrins can also trigger an adhesive response of endothelial cells and are required for the remodeling of blood vessels. Biochemical studies suggest that the extent of multimerization of Eph receptors modulates the cellular response and that the actin cytoskeleton is one major target of the intracellular pathways activated by Eph receptors. Eph receptors and ephrins have thus emerged as key regulators of the repulsion and adhesion of cells that underlie the establishment, maintenance, and remodeling of patterns of cellular organization.
Collapse
Affiliation(s)
- D G Wilkinson
- Division of Developmental Neurobiology, National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
52
|
Wahl S, Barth H, Ciossek T, Aktories K, Mueller BK. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol 2000; 149:263-70. [PMID: 10769020 PMCID: PMC2175154 DOI: 10.1083/jcb.149.2.263] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ephrins, ligands of Eph receptor tyrosine kinases, have been shown to act as repulsive guidance molecules and to induce collapse of neuronal growth cones. For the first time, we show that the ephrin-A5 collapse is mediated by activation of the small GTPase Rho and its downstream effector Rho kinase. In ephrin-A5-treated retinal ganglion cell cultures, Rho was activated and Rac was downregulated. Pretreatment of ganglion cell axons with C3-transferase, a specific inhibitor of the Rho GTPase, or with Y-27632, a specific inhibitor of the Rho kinase, strongly reduced the collapse rate of retinal growth cones. These results suggest that activation of Rho and its downstream effector Rho kinase are important elements of the ephrin-A5 signal transduction pathway.
Collapse
Affiliation(s)
- Siegfried Wahl
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung I (Physikalische Biologie), D-72076 Tübingen, Germany
| | - Holger Barth
- Institut für Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | | - Klaus Aktories
- Institut für Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Bernhard K. Mueller
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung I (Physikalische Biologie), D-72076 Tübingen, Germany
| |
Collapse
|
53
|
Gerlai R. Targeting genes and proteins in the analysis of learning and memory: caveats and future directions. Rev Neurosci 2000; 11:15-26. [PMID: 10716651 DOI: 10.1515/revneuro.2000.11.1.15] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gene targeting using homologous recombination in embryonic stem (ES) cells and transgenic approaches in general allow one to precisely manipulate single genes and investigate their in vivo function in the mouse. Geneticists argue that these techniques are superior to pharmacological approaches as they obviate the lack of highly specific pharmacological agents in the study of brain function and behavior. However, by now it has become clear that transgenic approaches also have some limitations. One problem is spatial and temporal specificity of the genetic manipulation. The other is the possibility that the introduced genetic alteration gives rise to complex, secondary phenotypic changes. This may be a disadvantage in the functional analysis of genes associated with learning and memory especially if the gene of interest plays roles in embryonic development of the brain as well as in adult neural function. Examples of such genes include, but are not limited to, those encoding neurotrophins, cell adhesion molecules, and protein kinases. Second generation gene targeting with inducible and cell type restricted knock-out, or transgenic approaches with inducible gene expression systems, will solve some problems. However, at present these strategies also suffer from difficulties inherent to the traditional knock-out. Several strategies alternative to transgenic approaches are also available. Antisense oligonucleotides, antibodies, or pharmacological agents may be used to manipulate molecular events at the transcription, translation, or protein function levels. I review these strategies briefly and suggest yet another approach: protein targeting with the use of recombinant immunoadhesins. I suggest that this latter approach has the specificity of gene targeting but lacks some of its disadvantages.
Collapse
Affiliation(s)
- R Gerlai
- Neuroscience Department, Genentech, Inc., South San Francisco, CA 94080-4990, USA
| |
Collapse
|
54
|
Affiliation(s)
- P L Jensen
- R&D Systems, Inc., Minneapolis, Minnesota, USA.
| |
Collapse
|
55
|
Gerlai R, McNamara A. Anesthesia induced retrograde amnesia is ameliorated by ephrinA5-IgG in mice: EphA receptor tyrosine kinases are involved in mammalian memory. Behav Brain Res 2000; 108:133-43. [PMID: 10701657 DOI: 10.1016/s0166-4328(99)00139-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
EphA receptors and their ephrin-A ligands were previously thought to play a role only in embryonic development of the brain. Recently, however, these proteins were shown to be expressed in the adult mouse brain, primarily in the hippocampus, and were implicated in hippocampal synaptic plasticity and learning. What aspects of learning EphA receptors mediate have not been studied? Using the fear conditioning paradigm we demonstrate that EphA receptors play roles in memory. We show that post-training surgical anesthesia leads to robust context specific retrograde amnesia in mice, and post-anesthesia activation of EphA receptors induces a significant amelioration of this amnesia. As acquisition was left unaffected and performance factors were found unaltered, we suggest that the amelioration was due to changes in cognition leading to improved memory. Our data represent the first pieces of evidence for the involvement of EphA receptor tyrosine kinase receptors in mammalian memory, a finding that opens a new avenue into the functional analysis of the largest receptor tyrosine kinase subfamily in the brain.
Collapse
Affiliation(s)
- R Gerlai
- Neuroscience Department, Genentech, Inc., South San Francisco, CA 94080-4990, USA.
| | | |
Collapse
|
56
|
Miao H, Burnett E, Kinch M, Simon E, Wang B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol 2000; 2:62-9. [PMID: 10655584 DOI: 10.1038/35000008] [Citation(s) in RCA: 423] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interactions between receptor tyrosine kinases of the Eph family and their ligands, ephrins, are implicated in establishment of organ boundaries and repulsive guidance of cell migration during development, but the mechanisms by which this is achieved are unclear. Here we show that activation of endogenous EphA2 kinase induces an inactive conformation of integrins and inhibits cell spreading, migration and integrin-mediated adhesion. Moreover, EphA2 is constitutively associated with focal-adhesion kinase (FAK) in resting cells. Within one minute after stimulation of EphA2 with its ligand, ephrin-A1, the protein tyrosine phosphatase SHP2 is recruited to EphA2; this is followed by dephosphorylation of FAK and paxillin, and dissociation of the FAK-EphA2 complex. We conclude that Eph kinases mediate some of their functions by negatively regulating integrins and FAK.
Collapse
Affiliation(s)
- H Miao
- Rammelkamp Center for Research, MetroHealth Campus, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, Ohio 44109, USA
| | | | | | | | | |
Collapse
|
57
|
|
58
|
Zisch AH, Pazzagli C, Freeman AL, Schneller M, Hadman M, Smith JW, Ruoslahti E, Pasquale EB. Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene 2000; 19:177-87. [PMID: 10644995 DOI: 10.1038/sj.onc.1203304] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eph receptor tyrosine kinases play key roles in pattern formation during embryonic development, but little is known about the mechanisms by which they elicit specific biological responses in cells. Here, we investigate the role of tyrosines 605 and 611 in the juxtamembrane region of EphB2, because they are conserved Eph receptor autophosphorylation sites and demonstrated binding sites for the SH2 domains of multiple signaling proteins. Mutation of tyrosines 605 and 611 to phenylalanine impaired EphB2 kinase activity, complicating analysis of their function as SH2 domain binding sites and their contribution to EphB2-mediated signaling. In contrast, mutation to the negatively charged glutamic acid disrupted SH2 domain binding without reducing EphB2 kinase activity. By using a panel of EphB2 mutants, we found that kinase activity is required for the changes in cell-matrix and cell - cell adhesion, cytoskeletal organization, and activation of mitogen-activated protein (MAP) kinases elicited by EphB2 in transiently transfected cells. Instead, the two juxtamembrane SH2 domain binding sites were dispensable for these effects. These results suggest that phosphorylation of tyrosines 605 and 611 is critical for EphB2-mediated cellular responses because it regulates EphB2 kinase activity.
Collapse
Affiliation(s)
- A H Zisch
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, California, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Kuhn TB, Meberg PJ, Brown MD, Bernstein BW, Minamide LS, Jensen JR, Okada K, Soda EA, Bamburg JR. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and Rho family GTPases. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1097-4695(200008)44:2<126::aid-neu4>3.0.co;2-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
60
|
Davy A, Gale NW, Murray EW, Klinghoffer RA, Soriano P, Feuerstein C, Robbins SM. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev 1999; 13:3125-35. [PMID: 10601038 PMCID: PMC317175 DOI: 10.1101/gad.13.23.3125] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eph receptor tyrosine kinases and their corresponding surface-bound ligands, the ephrins, provide cues to the migration of cells and growth cones during embryonic development. Here we show that ephrin-A5, which is attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidylinositol-anchor, induces compartmentalized signaling within a caveolae-like membrane microdomain when bound to the extracellular domain of its cognate Eph receptor. The physiological response induced by this signaling event is concomitant with a change in the cellular architecture and adhesion of the ephrin-A5-expressing cells and requires the activity of the Fyn protein tyrosine kinase. This study stresses the relevance of bidirectional signaling involving the ephrins and Eph receptors during brain development.
Collapse
Affiliation(s)
- A Davy
- Departments of Oncology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N-4N1 Canada
| | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
EphA family receptor tyrosine kinases and their ephrin-A ligands are involved in patterning axonal connections during brain development, but until now a role for these molecules in the mature brain had not been elucidated. Here, we show that both the EphA5 receptor and its ephrin-A ligands (2 and 5) are expressed in the adult mouse hippocampus, and the EphA5 protein is present in a phosphorylated form. Because there are no pharmacological agents available for EphA receptors, we designed recombinant immunoadhesins that specifically bind to the receptor binding site of the ephrin-A ligand (antagonist) or the ligand binding site of the EphA receptor (agonist) and thus target EphA function. We demonstrate that intrahippocampal infusion of an EphA antagonist immunoadhesin leads to impaired performance in two behavioral paradigms, T-maze spontaneous alternation and context-dependent fear conditioning, sensitive to hippocampal function, whereas activation of EphA by infusion of an agonist immunoadhesin results in enhanced performance on these tasks. Because the two behavioral tasks have different motivational, perceptual, and motor requirements, we infer the changes were not caused by these performance factors but rather to cognitive alterations. We also find bidirectional changes in gene expression and in electrophysiological measures of synaptic efficacy that correlate with the behavioral results. Thus, EphA receptors and their ligands are implicated as mediators of plasticity in the adult mammalian brain.
Collapse
|
62
|
Nakayama T, Goshima Y, Misu Y, Kato T. Role of Cdk5 and Tau phosphorylation in heterotrimeric G protein-mediated retinal growth cone collapse. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(19991115)41:3<326::aid-neu2>3.0.co;2-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
63
|
Dodelet VC, Pazzagli C, Zisch AH, Hauser CA, Pasquale EB. A novel signaling intermediate, SHEP1, directly couples Eph receptors to R-Ras and Rap1A. J Biol Chem 1999; 274:31941-6. [PMID: 10542222 DOI: 10.1074/jbc.274.45.31941] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Eph family of receptor tyrosine kinases has been implicated in many developmental patterning processes, including cell segregation, cell migration, and axon guidance. The cellular components involved in the signaling pathways of the Eph receptors, however, are incompletely characterized. Using a yeast two-hybrid screen, we have identified a novel signaling intermediate, SHEP1 (SH2 domain-containing Eph receptor-binding protein 1), which is expressed in the embryonic and adult brain. SHEP1 contains an Src homology 2 domain that binds to a conserved tyrosine-phosphorylated motif in the juxtamembrane region of the EphB2 receptor and may itself be a target of EphB2 kinase activity, since it becomes heavily tyrosine-phosphorylated in cells expressing activated EphB2. SHEP1 also contains a domain similar to Ras guanine nucleotide exchange factor domains and binds to the GTPases R-Ras and Rap1A, but not Ha-Ras or RalA. Thus, SHEP1 directly links activated, tyrosine-phosphorylated Eph receptors to small Ras superfamily GTPases.
Collapse
Affiliation(s)
- V C Dodelet
- Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
64
|
Fritsche J, Reber BF, Schindelholz B, Bandtlow CE. Differential cytoskeletal changes during growth cone collapse in response to hSema III and thrombin. Mol Cell Neurosci 1999; 14:398-418. [PMID: 10588393 DOI: 10.1006/mcne.1999.0777] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Growth cones are known as the site of action of many factors that influence neurite growth behavior. To assess how different collapsing agents influence the growth cone cytoskeleton, we used recombinant human Semaphorin III (hSema III) and the serine protease thrombin. Embryonic chick dorsal root ganglion neurons showed a dramatic depolymerization of actin filaments within 5 min upon hSema III exposure and virtually no influence on microtubules (MT). Only at later time points (20-30 min) was the polymerization/depolymerization rate of MT significantly affected. Thrombin induced a morphologically and kinetically similar growth cone collapse. Moreover, thrombin induced an early and selective depolymerization of dynamic MT, accompanied by the formation of loops of stable MT bundles. Selective changes in the phosphorylation pattern of tau were associated with microtubule assembly in thrombin-induced responses. Our data provide evidence that different signal transduction pathways lead to distinct changes of the growth cone cytoskeleton.
Collapse
Affiliation(s)
- J Fritsche
- Brain Research Institute, University of Zurich, and Swiss Federal Institute of Technology
| | | | | | | |
Collapse
|
65
|
Choi S, Park S. Phosphorylation at Tyr-838 in the kinase domain of EphA8 modulates Fyn binding to the Tyr-615 site by enhancing tyrosine kinase activity. Oncogene 1999; 18:5413-22. [PMID: 10498895 DOI: 10.1038/sj.onc.1202917] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eph-related receptors and their ephrin ligands are highly conserved protein families which play important roles in targeting axons and migrating cells. In this study we have examined the functional roles of two major autophosphorylation sites, Tyr-615 and Tyr-838, in the EphA8 receptor. Two-dimensional phosphopeptide mapping analysis demonstrated that Tyr-615 and Tyr-838 constitute major autophosphorylation sites in EphA8. Tyr-615 was phosphorylated to the highest stoichiometry, suggesting that phosphorylation at this site may have a physiologically important role. Upon conservative mutation of Tyr-838 located in the tyrosine kinase domain, the catalytic activity of EphA8 was strikingly reduced both in vitro and in vivo, whereas a mutation at Tyr-615 in the juxtamembrane domain did not impair the tyrosine kinase activity. In vitro binding experiments revealed that phosphorylation at Tyr-615 in EphA8 mediates the preferential binding to Fyn-SH2 domain rather than Src and Ras GTPase-activating protein (Ras GAP)-SH2 domains. Additionally, a high level of EphA8 was detected in Fyn immunoprecipitates in intact cells, indicating that EphA8 and Fyn can physically associate in vivo. In contrast, the association of full-length Fyn to EphA8 containing mutation at either Tyr-615 or Tyr-838 was greatly reduced. These data indicate that phosphorylation of Tyr-615 is critical for determining the association with Fyn whereas the integrity of Tyr-838 phosphorylation is required for efficient phosphorylation at Tyr-615 as well as other major sites. Finally, it was observed that cell attachment responses are attenuated by overexpression of wild type EphA8 receptor but to much less extent by EphA8 mutants lacking phosphorylation at either Tyr-615 or Tyr-838. Furthermore, transient expression of kinase-inactive Fyn in EphA8-overexpressing cells blocked cell attachment responses attenuated by the EphA8 signaling. We therefore propose that Fyn kinase is one of the major downstream targets for the EphA8 signaling pathway leading to a modification of cell adhesion, and that autophosphorylation at Tyr-838 is critical for positively regulating the EphA8 signaling event.
Collapse
Affiliation(s)
- S Choi
- Institute of Environment and Life Science, Hallym University, 1 Okcheon-dong, Chuncheon, Kangwon-do, 200-702, Korea
| | | |
Collapse
|
66
|
Abstract
The striatum integrates limbic and neocortical inputs to regulate sensorimotor and psychomotor behaviors. This function is dependent on the segregation of striatal projection neurons into anatomical and functional components, such as the striosome and matrix compartments. In the present study the association of ephrin-A cell surface ligands and EphA receptor tyrosine kinases (RTKs) with the organization of these compartments was determined in postnatal rats. Ephrin-A1 and ephrin-A4 selectively bind to EphA receptors on neurons restricted to the matrix compartment. Binding is absent from the striosomes, which were identified by mu-opioid receptor immunostaining. In contrast, ephrin-A2, ephrin-A3, and ephrin-A5 exhibit a different mosaic binding pattern that appears to define a subset of matrix neurons. In situ hybridization for EphA RTKs reveals that the two different ligand binding patterns strictly match the mRNA expression patterns of EphA4 and EphA7. Ligand-receptor binding assays indicate that ephrin-A1 and ephrin-A4 selectively bind EphA4 but not EphA7 in the lysates of striatal tissue. Conversely, ephrin-A2, ephrin-A3, and ephrin-A5 bind EphA7 but not EphA4. These observations implicate selective interactions between ephrin-A molecules and EphA RTKs as potential mechanisms for regulating the compartmental organization of the striatum.
Collapse
|
67
|
Golding JP, Bird C, McMahon S, Cohen J. Behaviour of DRG sensory neurites at the intact and injured adult rat dorsal root entry zone: Postnatal neurites become paralysed, whilst injury improves the growth of embryonic neurites. Glia 1999. [DOI: 10.1002/(sici)1098-1136(199906)26:4<309::aid-glia5>3.0.co;2-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
68
|
Xu Q, Mellitzer G, Robinson V, Wilkinson DG. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 1999; 399:267-71. [PMID: 10353250 DOI: 10.1038/20452] [Citation(s) in RCA: 374] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The restriction of intermingling between specific cell populations is crucial for the maintenance of organized patterns during development. A striking example is the restriction of cell mixing between segments in the insect epidermis and the vertebrate hindbrain that may enable each segment to maintain a distinct identity. In the hindbrain, this is a result of different adhesive properties of odd- and even-numbered segments (rhombomeres), but an adhesion molecule with alternating segmental expression has not been found. However, blocking experiments suggest that Eph-receptor tyrosine kinases may be required for the segmental restriction of cells. Eph receptors and their membrane-bound ligands, ephrins, are expressed in complementary rhombomeres and, by analogy with their roles in axon pathfinding, could mediate cell repulsion at boundaries. Remarkably, transmembrane ephrins can themselves transduce signals, raising the possibility that bi-directional signalling occurs between adjacent ephrin- and Eph-receptor-expressing cells. We report here that mosaic activation of Eph receptors leads to sorting of cells to boundaries in odd-numbered rhombomeres, whereas mosaic activation of ephrins results in sorting to boundaries in even-numbered rhombomeres. These data implicate Eph receptors and ephrins in the segmental restriction of cell intermingling.
Collapse
Affiliation(s)
- Q Xu
- Division of Developmental Neurobiology, National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|
69
|
Abstract
Eph receptor tyrosine kinases and their ligands, the ephrins, appear to lie functionally at the interface between pattern formation and morphogenesis. We review the role of Eph and ephrin signalling in the formation of segmented structures, in the control of axon guidance and cell migration and in the development of the vasculature. We address the question of how the specificity of response is achieved and discuss the specificity of ephrin-Eph interactions and the significance of structural domains in Eph receptors.
Collapse
Affiliation(s)
- N Holder
- Department of Anatomy and Developmental Biology, University College, Gower Street, London, WC1 6BT, UK.
| | | |
Collapse
|
70
|
Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of rac1. J Neurosci 1999. [PMID: 10066250 DOI: 10.1523/jneurosci.19-06-01965.1999] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Precise growth cone guidance is the consequence of a continuous reorganization of actin filament structures within filopodia and lamellipodia in response to inhibitory and promoting cues. The small GTPases rac1, cdc42, and rhoA are critical for regulating distinct actin structures in non-neuronal cells and presumably in growth cones. Collapse, a retraction of filopodia and lamellipodia, is a typical growth cone behavior on contact with inhibitory cues and is associated with depolymerization and redistribution of actin filaments. We examined whether small GTPases mediate the inhibitory properties of CNS myelin or collapsin-1, a soluble semaphorin, in chick embryonic motor neuron cultures. As demonstrated for collapsin-1, CNS myelin-evoked growth cone collapse was accompanied by a reduction of rhodamine-phalloidin staining most prominent in the growth cone periphery, suggesting actin filament disassembly. Specific mutants of small GTPases were capable of desensitizing growth cones to CNS myelin or collapsin-1. Adenoviral-mediated expression of constitutively active rac1 or rhoA abolished CNS myelin-induced collapse and allowed remarkable neurite extension on a CNS myelin substrate. In contrast, expression of dominant negative rac1 or cdc42 negated collapsin-1-induced growth cone collapse and promoted neurite outgrowth on a collapsin-1 substrate. These findings suggest that small GTPases can modulate the signaling pathways of inhibitory stimuli and, consequently, allow the manipulation of growth cone behavior. However, the fact that opposite mutants of rac1 were effective against different inhibitory stimuli speaks against a universal signaling pathway underlying growth cone collapse.
Collapse
|
71
|
Gao PP, Yue Y, Cerretti DP, Dreyfus C, Zhou R. Ephrin-dependent growth and pruning of hippocampal axons. Proc Natl Acad Sci U S A 1999; 96:4073-7. [PMID: 10097165 PMCID: PMC22422 DOI: 10.1073/pnas.96.7.4073] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Neuronal connections are arranged topographically such that the spatial organization of neurons is preserved by their termini in the targets. During the development of topographic projections, axons initially explore areas much wider than the final targets, and mistargeted axons are pruned later. The molecules regulating these processes are not known. We report here that the ligands of the Eph family tyrosine kinase receptors may regulate both the initial outgrowth and the subsequent pruning of axons. In the presence of ephrins, the outgrowth and branching of the receptor-positive hippocampal axons are enhanced. However, these axons are induced later to degenerate. These observations suggest that the ephrins and their receptors may regulate topographic map formation by stimulating axonal arborization and by pruning mistargeted axons.
Collapse
Affiliation(s)
- P P Gao
- Laboratory for Cancer Research, Department of Chemical Biology, College of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
72
|
Bruce V, Olivieri G, Eickelberg O, Miescher GC. Functional activation of EphA5 receptor does not promote cell proliferation in the aberrant EphA5 expressing human glioblastoma U-118 MG cell line. Brain Res 1999; 821:169-76. [PMID: 10064801 DOI: 10.1016/s0006-8993(99)01112-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eph receptors are a subfamily of receptor tyrosine kinases (RTKs), that are activated by ephrin ligands and appear to play important roles in axon guidance and cell migration during development of the nervous system. Over-expression or constitutive activation of Eph receptors has been linked with increased proliferation in various tumours. We have recently described lineage aberrant expression of EphA5 in primary human astrocytomas, glioblastomas and in the human glioblastoma U-118 MG cell line. A role for EphA5 expression in these tumours is not apparent, and we have investigated the cellular effects of EphA5 activation using the human glioblastoma U-118 MG cell line as a model. Immunofluorescent staining demonstrated cell surface expression of EphA5. Activation of the EphA5 receptor using an ephrin-A1 recombinant fusion protein resulted in tyrosine phosphorylation of EphA5 in a time-dependent manner. Exposure of U-118 MG glioblastoma cells to ephrin-A1 did not result in significant spontaneous or FCS-stimulated cell proliferation, though a marginal decrease was observed. This is in converse to the effects of Eph activation in other tumour cell lines, and is the first study to investigate EphA5 in glioblastoma cell lines.
Collapse
Affiliation(s)
- V Bruce
- Neurobiology Laboratory, Department of Research, University Hospital Basel, CH-4031, Basel, Switzerland
| | | | | | | |
Collapse
|
73
|
Miranda JD, White LA, Marcillo AE, Willson CA, Jagid J, Whittemore SR. Induction of Eph B3 after spinal cord injury. Exp Neurol 1999; 156:218-22. [PMID: 10192794 DOI: 10.1006/exnr.1998.7012] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spinal cord injury (SCI) in adult rats initiates a cascade of events producing a nonpermissive environment for axonal regeneration. This nonfavorable environment could be due to the expression of repulsive factors. The Eph receptor protein tyrosine kinases and their respective ligands (ephrins) are families of molecules that play a major role in axonal pathfinding and target recognition during central nervous system (CNS) development. Their mechanism of action is mediated by repellent forces between receptor and ligand. The possible role that these molecules play after CNS trauma is unknown. We hypothesized that an increase in the expression of Eph proteins and/or ephrins may be one of the molecular cues that restrict axonal regeneration after SCI. Rats received a contusive SCI at T10 and in situ hybridization studies 7 days posttrauma demonstrated: (i) a marked up-regulation of Eph B3 mRNA in cells located in the white matter at the lesion epicenter, but not rostral or caudal to the injury site, and (ii) an increase in Eph B3 mRNA in neurons in the ventral horn and intermediate zone of the gray matter, rostral and caudal to the lesion. Immunohistochemical analyses localizing Eph B3 protein were consistent with the mRNA results. Colocalization studies performed in injured animals demonstrated increased Eph B3 expression in white matter astrocytes and motor neurons of the gray matter. These results suggest that Eph B3 may contribute to the unfavorable environment for axonal regeneration after SCI.
Collapse
Affiliation(s)
- J D Miranda
- Department of Neurological Surgery, University of Miami School of Medicine, 1600 Northwest 10th Avenue, R-48, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
74
|
Abstract
Ephrins, ligands for the Eph family of receptor tyrosine kinases, are pivotal players in many developmental phenomena in both the central and peripheral nervous systems. Ephrins appear to act typically, but not exclusively, as repellents throughout development to influence axon pathfinding and topographic mapping, as well as restricting cell migration and intermingling. Recent findings are beginning to characterize the function and signaling of ephrins, as well as major roles for them in other tissues.
Collapse
Affiliation(s)
- D D O'Leary
- Molecular Neurobiology Laboratory The Salk Institute 10010 North Torrey Pines Road La Jolla California 92037 USA.
| | | |
Collapse
|
75
|
Abstract
Members of the recently discovered Eph family appear to play important roles in a variety of developmental processes including tissue segmentation, cell migration and axonal guidance. To begin to understand the functions of the EphA subclass of receptors and their corresponding GPI-linked (ephrin-A) ligands in the inner ear, a developmental immunohistochemical analysis was completed. The results indicated that the ligands ephrin-A1 and ephrin-A2 were localized mainly at cellular boundaries in the inner ear. Ephrin-A1 was detected mainly in the epithelial cells lining the fluid filled ducts of the inner ear, whereas ephrin-A2 was prominently expressed in connective tissue regions. The receptor EphA4 was detected in vestibular hair cells. EphA5 and EphA7 were detected mainly in cochlear and vestibular supporting cells. These results suggest that these Eph molecules play a role in establishing the formation and cellular organization of the complex inner ear labyrinth. Additionally, all of the ligands and receptors evaluated were expressed in vestibular and cochlear neurons at various developmental stages, suggesting they may play a role in establishing or maintaining innervation to the inner ear.
Collapse
Affiliation(s)
- L M Bianchi
- Department of Otolaryngology and Communicative Sciences, Medical University of South Carolina, Charleston 29425, USA.
| | | |
Collapse
|
76
|
Durbin L, Brennan C, Shiomi K, Cooke J, Barrios A, Shanmugalingam S, Guthrie B, Lindberg R, Holder N. Eph signaling is required for segmentation and differentiation of the somites. Genes Dev 1998; 12:3096-109. [PMID: 9765210 PMCID: PMC317186 DOI: 10.1101/gad.12.19.3096] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/1998] [Accepted: 07/10/1998] [Indexed: 11/25/2022]
Abstract
Somitogenesis involves the segmentation of the paraxial mesoderm into units along the anteroposterior axis. Here we show a role for Eph and ephrin signaling in the patterning of presomitic mesoderm and formation of the somites. Ephrin-A-L1 and ephrin-B2 are expressed in an iterative manner in the developing somites and presomitic mesoderm, as is the Eph receptor EphA4. We have examined the role of these proteins by injection of RNA, encoding dominant negative forms of Eph receptors and ephrins. Interruption of Eph signaling leads to abnormal somite boundary formation and reduced or disturbed myoD expression in the myotome. Disruption of Eph family signaling delays the normal down-regulation of her1 and Delta D expression in the anterior presomitic mesoderm and disrupts myogenic differentiation. We suggest that Eph signaling has a key role in the translation of the patterning of presomitic mesoderm into somites.
Collapse
Affiliation(s)
- L Durbin
- Department of Anatomy and Developmental Biology, University College, London, WC1E 6BT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Gao WQ, Shinsky N, Armanini MP, Moran P, Zheng JL, Mendoza-Ramirez JL, Phillips HS, Winslow JW, Caras IW. Regulation of hippocampal synaptic plasticity by the tyrosine kinase receptor, REK7/EphA5, and its ligand, AL-1/Ephrin-A5. Mol Cell Neurosci 1998; 11:247-59. [PMID: 9698392 DOI: 10.1006/mcne.1998.0696] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Eph-related tyrosine kinase receptor, REK7/EphA5, mediates the effects of AL-1/Ephrin-A5 and related ligands and is involved in the guidance of retinal, cortical, and hippocampal axons during development. The continued expression of REK7/EphA5 in the adult brain, in particular in areas associated with a high degree of synaptic plasticity such as the hippocampus, raises the question of its function in the mature nervous system. In this report we examined the role of REK7/EphA5 in synaptic remodeling by asking if agents that either block or activate REK7/EphA5 affect synaptic strength in hippocampal slices from adult mouse brain. We show that a REK7/EphA5 antagonist, soluble REK7/EphA5-IgG, impairs the induction of long-term potentiation (LTP) without affecting other synaptic parameters such as normal synaptic transmission or paired-pulse facilitation. In contrast, perfusion with AL-1/Ephrin-A5-IgG, an activator of REK7/EphA5, induces a sustained increase in normal synaptic transmission that partially mimics LTP. The sustained elevation of normal synaptic transmission could be attributable to a long-lasting binding of the AL-1/Ephrin-A5-IgG to the endogenous REK7/EphA5 receptor, as revealed by immunohistochemistry. Furthermore, maximal electrical induction of LTP occludes the potentiating effects of subsequent treatment with AL-1/Ephrin-A5-IgG. Taken together these results implicate REK7/EphA5 in the regulation of synaptic plasticity in the mature hippocampus and suggest that REK7/EphA5 activation is recruited in the LTP induced by tetanization.
Collapse
Affiliation(s)
- W Q Gao
- Department of Neuroscience, Genentech, Inc., MS 72, 1 DNA Way, South San Francisco, California, 94080, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Dual action of a ligand for Eph receptor tyrosine kinases on specific populations of axons during the development of cortical circuits. J Neurosci 1998. [PMID: 9614241 DOI: 10.1523/jneurosci.18-12-04663.1998] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structural basis of cortical columns are radially oriented axon collaterals that form precise connections between distinct cortical layers. During development, these connections are highly specified from the initial outgrowth of collateral branches. Our previous work provided evidence for positional cues confined to individual layers that induce and/or prevent the formation of axon collaterals in specific populations of cortical neurons. Here we demonstrated with in situ hybridization techniques that mRNA of the Eph receptor tyrosine kinase EphA5 and one of its ligands, ephrin-A5, are present in distinct cortical layers, at a time when intrinsic connections are being formed in the cortex. Axonal guidance assays indicate that ephrin-A5 is a repellent signal for a populations of axons that in vivo avoid the cortical layer expressing ephrin-A5. In contrast to its established role as a repulsive axonal guidance signal, ephrin-A5 specifically mediates sprouting of those cortical axons that target the ephrin-A5-expressing layer in vivo. These results identify a novel function of ephrin-A5 on axonal arbor formation. The laminar distribution and the dual action on specific populations of axons suggest that ephrin-A5 plays a role in the assembly of local cortical circuits.
Collapse
|
79
|
Abstract
What are the mechanisms by which Eph receptor tyrosine kinases guide axons and migrating cells? Recent results show that Eph receptors bind some of the well-known effector molecules that are implicated in the organization of the actin cytoskeleton; moreover, biochemical and genetic evidence suggests a signaling role for transmembrane ephrin ligands in axon pathfinding.
Collapse
Affiliation(s)
- K Brückner
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | |
Collapse
|
80
|
Abstract
The Eph receptors are the largest known family of receptor tyrosine kinases. Initially all of them were identified as orphan receptors without known ligands, and their specific functions were not well understood. During the past few years, a corresponding family of ligands has been identified, called the ephrins, and specific functions have now been identified in neural development. The ephrins and Eph receptors are implicated as positional labels that may guide the development of neural topographic maps. They have also been implicated in pathway selection by axons, the guidance of cell migration, and the establishment of regional pattern in the nervous system. The ligands are anchored to cell surfaces, and most of the functions so far identified can be interpreted as precise guidance of cell or axon movement. This large family of ligands and receptors may make a major contribution to the accurate spatial patterning of connections and cell position in the nervous system.
Collapse
Affiliation(s)
- J G Flanagan
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
81
|
Abstract
The Eph family is the largest of all known tyrosine kinase receptor-ligand systems. They are expressed in distinct, but overlapping, spatial and temporal patterns during embryonic development and postnatal life, and function in a variety of morphogenic events. The best known function is their role in the guidance of migration of axons and cells in the nervous system through repulsive interactions. They may also play a role in angiogenesis, tissue patterning, and tumor formation.
Collapse
Affiliation(s)
- R Zhou
- Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, NJ 08855, USA
| |
Collapse
|
82
|
Holland SJ, Peles E, Pawson T, Schlessinger J. Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase beta. Curr Opin Neurobiol 1998; 8:117-27. [PMID: 9568399 DOI: 10.1016/s0959-4388(98)80015-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The growth and guidance of axons involves the recognition of complex environmental cues by receptor proteins on the surface of the growth cone and their interpretation by cellular machinery, leading to changes in cellular behaviour. Recent advances have demonstrated that the ligands for Eph receptor tyrosine kinases, the ephrins, act as repulsive axon guidance cues, and that Eph receptors are required for correct axonal navigation in vivo. Members of the receptor protein tyrosine phosphatase (RPTP) family also play important roles in axon guidance and growth. RPTP beta and Eph receptors interact with cell-surface-bound ligands, and there is increasing evidence that both transmembrane ephrins and contactin, a ligand for RPTP beta, may possess an intrinsic signalling function. Thus, the cell-contact-dependent interactions between these receptors and ligands may lead to initiation of bidirectional signals that regulate axonal growth and migration.
Collapse
Affiliation(s)
- S J Holland
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
83
|
Frisén J, Yates PA, McLaughlin T, Friedman GC, O'Leary DD, Barbacid M. Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 1998; 20:235-43. [PMID: 9491985 DOI: 10.1016/s0896-6273(00)80452-3] [Citation(s) in RCA: 339] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ephrin-A5 (AL-1/RAGS), a ligand for Eph receptor tyrosine kinases, repels retinal axons in vitro and has a graded expression in the superior colliculus (SC), the major midbrain target of retinal ganglion cells. These properties implicate ephrin-A5 in the formation of topographic maps, a fundamental organizational feature of the nervous system. To test this hypothesis, we generated mice lacking ephrin-A5. The majority of ephrin-A5-/- mice develop to adulthood, are morphologically intact, and have normal anterior-posterior patterning of the midbrain. However, within the SC, retinal axons establish and maintain dense arborizations at topographically incorrect sites that correlate with locations of low expression of the related ligand ephrin-A2. In addition, retinal axons transiently overshoot the SC and extend aberrantly into the inferior colliculus (IC). This defect is consistent with the high level of ephrin-A5 expression in the IC and the finding that retinal axon growth on membranes from wild-type IC is inhibited relative to that on membranes from ephrin-A5-/- IC. These findings show that ephrin-A5 is required for the proper guidance and mapping of retinal axons in the mammalian midbrain.
Collapse
Affiliation(s)
- J Frisén
- Department of Molecular Oncology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543, USA
| | | | | | | | | | | |
Collapse
|
84
|
Connor RJ, Menzel P, Pasquale EB. Expression and tyrosine phosphorylation of Eph receptors suggest multiple mechanisms in patterning of the visual system. Dev Biol 1998; 193:21-35. [PMID: 9466885 DOI: 10.1006/dbio.1997.8786] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The EphA3 receptor tyrosine kinase has been implicated in guiding the axons of retinal ganglion cells as they extend in the optic tectum. A repulsive mechanism involving opposing gradients of the EphA3 receptor on retinal axons and its ligands, ephrin-A2 and ephrin-A5, in the tectum influences topographic mapping of the retinotectal projection. To investigate the overall role of the Eph family in patterning of the visual system, we have used in situ hybridization to localize nine Eph receptors in the chicken retina and optic tectum at Embryonic Day 8. Three of the receptors examined correspond to the novel chicken homologs of EphA2, EphA6, and EphA7. Unexpectedly, we found that many Eph receptors are expressed not only in retinal ganglion cells, but also in tectal cells, In particular, EphA3 mRNA is prominently expressed in the anterior tectum, with a pattern reciprocal to that of ephrin-A2 and ephrin-A5. Similarly, ephrin-A5 is expressed not only in tectal cells but also in the nasal retina, with a pattern reciprocal to that of its receptor EphA3 and partially overlapping with that of its other receptor EphA4. Consistent with the even distribution of EphA4 and the polarized distribution of EphA4 ligands in the retina, probing EphA4 immunoprecipitates from different sectors of the retina with anti-phosphotyrosine antibodies revealed spatial differences in receptor phosphorylation. These complex patterns of expression and tyrosine phosphorylation suggest that Eph receptors and ephrins contribute to establishing topography of retinal axons through multiple mechanisms, in addition to playing a role in intraretinal and intratectal organization.
Collapse
Affiliation(s)
- R J Connor
- Burnham Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
85
|
Abstract
The Eph family represents the largest subfamily of receptor tyrosine kinases. Its members are predominantly expressed in the developing and adult nervous system. Besides playing an important role in the contact-mediated repulsion of axons, they have recently also been implicated in the control of cell migration. Characteristics of the Eph family are extended promiscuity in the interaction between receptors and ligands, the necessity of membrane attachment of the ligands to exert their function, the lack of induction of mitogenic responses, and the bi-directional signalling of receptors and ligands.
Collapse
Affiliation(s)
- U Drescher
- Max-Planck-Institute for Developmental Biology, Spemannstrasse 35/I, 72076 Tübingen, Germany.
| |
Collapse
|
86
|
Abstract
Eph receptor tyrosine kinases have recently been identified as instructive molecules that guide the topographic movement of cells and growth cones. The activation of Eph receptors by their ligands, which are membrane-anchored molecules, involves a cell-cell recognition event that often causes cell repulsion. Therefore, Eph receptors mediate signals that can override cell adhesion. Transmembrane ligands for Eph receptors also exhibit properties of signal transducing molecules, suggesting that bidirectional signaling occurs when receptor-expressing cells contact ligand-expressing cells.
Collapse
|
87
|
Meima L, Moran P, Matthews W, Caras IW. Lerk2 (ephrin-B1) is a collapsing factor for a subset of cortical growth cones and acts by a mechanism different from AL-1 (ephrin-A5). Mol Cell Neurosci 1997; 9:314-28. [PMID: 9268508 DOI: 10.1006/mcne.1997.0621] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transmembrane (TM) subfamily of Eph ligands and their receptors have been implicated in axon pathfinding and in pattern formation during embryogenesis. These functions are thought to involve repulsive interactions but this has not been demonstrated directly. In this study we used a growth cone collapse assay to determine if the TM ligands Lerk2 and HtkL have repellant guidance activity. We show that Lerk2, but not HtkL, is a collapsing factor for a subset of embryonic cortical neurons. Analysis of the effects of Lerk2 on both the morphology and the cytoskeleton of cortical neurons suggests a mechanism of action different from that of AL-1, a GPI-linked Eph ligand having similar repellant activity. Treatment with Lerk2 disrupts the organization of both the actin cytoskeleton and the microtubules and induces the formation of swellings in the center of the growth cone and along the axon. Measurement of the relative F-actin concentrations in the neurites and soma indicated that F-actin levels in the neurites decrease while those in the soma increase, with the net F-actin content of the neuron remaining unchanged. In contrast, we show that prolonged treatment with AL-1 leads to a net loss of F-actin, consistent with the hypothesis that AL-1 acts by perturbing actin polymerization. These results provide evidence that the ectodomain of Lerk2 functions as a repellant guidance cue and show that, despite overlapping specificities in vitro, the biological activities of related ligands are not necessarily overlapping. Further, TM and GPI-linked Eph ligands appear to exert repellant activity by different mechanisms, opening up the possibility that they may have different effects on growth cones in vivo.
Collapse
Affiliation(s)
- L Meima
- Department of Neuroscience, Genentech, Inc., San Francisco, California 94080, USA
| | | | | | | |
Collapse
|