51
|
Kim H, Chen L, Lim G, Sung B, Wang S, McCabe MF, Rusanescu G, Yang L, Tian Y, Mao J. Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression. J Clin Invest 2012; 122:2940-54. [PMID: 22751107 DOI: 10.1172/jci61884] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 05/16/2012] [Indexed: 01/10/2023] Open
Abstract
Pain and depression are frequently comorbid disorders, but the mechanism underlying this association is unknown. Here, we report that brain indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting enzyme in tryptophan metabolism, plays a key role in this comorbidity. We found that chronic pain in rats induced depressive behavior and IDO1 upregulation in the bilateral hippocampus. Upregulation of IDO1 resulted in the increased kynurenine/tryptophan ratio and decreased serotonin/tryptophan ratio in the bilateral hippocampus. We observed elevated plasma IDO activity in patients with both pain and depression, as well as in rats with anhedonia induced by chronic social stress. Intra-hippocampal administration of IL-6 in rats, in addition to in vitro experiments, demonstrated that IL-6 induces IDO1 expression through the JAK/STAT pathway. Further, either Ido1 gene knockout or pharmacological inhibition of hippocampal IDO1 activity attenuated both nociceptive and depressive behavior. These results reveal an IDO1-mediated regulatory mechanism underlying the comorbidity of pain and depression and suggest a new strategy for the concurrent treatment of both conditions via modulation of brain IDO1 activity.
Collapse
Affiliation(s)
- Hyangin Kim
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Maleki N, Becerra L, Brawn J, Bigal M, Burstein R, Borsook D. Concurrent functional and structural cortical alterations in migraine. Cephalalgia 2012; 32:607-20. [PMID: 22623760 DOI: 10.1177/0333102412445622] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM Various animal and human studies have contributed to the idea of cortical structural-functional alterations in migraine. Defining concurrent cortical alterations may provide specific insights into the unfolding adaptive or maladaptive changes taking place in cortex in migraine. METHODS From a group of 60 episodic migraineurs, 20 were recruited to the study. Using high-resolution magnetic resonance imaging, structural and functional cortical measures were compared in migraineurs who experienced increased frequency of attacks (HF; 8-14 days/month; n = 10), to those who experienced less frequent migraine attacks (LF; < 2 days/month; n = 10), and to healthy controls (HC; n = 20). RESULTS Parallel structural and functional differences were found as follows: (i) HF patients showed higher thickness in the area representing the face in the post-central gyrus, which correlated with the observed stronger functional activation, suggesting adaptation to repeated sensory drive; (ii) smaller cortical volume was observed in the cingulate cortex that correlated with lower activation in the HF group; and (iii) similarly significant structural and functional differences (HF > LF) were observed in the insula that may reflect potential alteration in affective processing. CONCLUSION These results suggest differential response patterns in the sensory vs. affective processing regions in the brain that may be an adaptive response to repeated migraine attacks.
Collapse
Affiliation(s)
- Nasim Maleki
- Department of Radiology, Children's Hospital Boston, Harvard Medical School, USA
| | | | | | | | | | | |
Collapse
|
53
|
Reidler JS, Mendonca ME, Santana MB, Wang X, Lenkinski R, Motta AF, Marchand S, Latif L, Fregni F. Effects of Motor Cortex Modulation and Descending Inhibitory Systems on Pain Thresholds in Healthy Subjects. THE JOURNAL OF PAIN 2012; 13:450-8. [DOI: 10.1016/j.jpain.2012.01.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/14/2011] [Accepted: 01/21/2012] [Indexed: 11/15/2022]
|
54
|
Foell J, Bekrater-Bodmann R, Flor H, Cole J. Phantom Limb Pain After Lower Limb Trauma. INT J LOW EXTR WOUND 2011; 10:224-35. [DOI: 10.1177/1534734611428730] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phantom sensations, that is, sensations perceived in a body part that has been lost, are a common consequence of accidental or clinical extremity amputations. Most amputation patients report a continuing presence of the limb, with some describing additional sensations such as numbness, tickling, or cramping of the phantom limb. The type, frequency, and stability of these phantom sensations can vary immensely. The phenomenon of painful phantom sensations, that is, phantom limb pain, presents a challenge for practitioners and researchers and is often detrimental to the patient’s quality of life. In addition to the use of conventional therapies for chronic pain disorders, recent years have seen the development of novel treatments for phantom limb pain, based on an increasing body of research on neurophysiological changes after amputation. This article describes the current state of research in regard to the demographics, causal factors, and treatments of phantom limb pain.
Collapse
Affiliation(s)
- Jens Foell
- University of Heidelberg, Mannheim, Germany
| | | | - Herta Flor
- University of Heidelberg, Mannheim, Germany
| | - Jonathan Cole
- Poole Hospital, Poole, UK
- University of Bournemouth, Bournemouth, UK
| |
Collapse
|
55
|
Feraco P, Bacci A, Pedrabissi F, Passamonti L, Zampogna G, Pedrabissi F, Malavolta N, Leonardi M. Metabolic abnormalities in pain-processing regions of patients with fibromyalgia: a 3T MR spectroscopy study. AJNR Am J Neuroradiol 2011; 32:1585-90. [PMID: 21799042 DOI: 10.3174/ajnr.a2550] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE A growing body of evidence suggests the involvement of the brain in FM. The purpose of this proton MRS study was to test the hypothesis that there are metabolic alterations in some brain regions processing pain (VLPFC and thalamus) in patients with FM compared with HC. MATERIALS AND METHODS Twelve patients with FM (30-54 years of age; mean age, 43.2 years), and 12 HC, matched for age and sex, underwent 1 session of single-voxel MRS performed on a 3T MR imaging scanner. MRS spectra were acquired with a PRESS for localization. The raw data from each spectrum was evaluated with an LCModel. T tests were used to evaluate differences of brain metabolites between groups. The Pearson correlation tested the relationship of metabolite ratios and clinical symptoms. RESULTS Glx/Cr and Glu/Cr ratios within the VLPFC of both sides were significantly higher in patients than in HC (P < .01). No significant differences of metabolites between groups were found in the thalami. Positive correlations were found between Glu/Cr in the left thalamus and the VAS for pain (r = 0.730, P = .007) and between mIns/Cr in the right VLPFC and the VAS for pain (r = 0.607, P = .037) and the FIQ (r = 0.719, P = .008). CONCLUSIONS The presence of elevated Glu/Cr levels in VLPFC strengthens the opinion that a complex neurophysiologic imbalance of different brain areas involved in pain processing underlies FM. These data may be useful in the diagnosis and development of more effective pharmacologic treatments.
Collapse
Affiliation(s)
- P Feraco
- Department of Neuroradiology, Bellaria Hospital, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Quintero GC, Herrera J, Bethancourt J. Cortical NR2B NMDA subunit antagonism reduces inflammatory pain in male and female rats. J Pain Res 2011; 4:301-8. [PMID: 22003303 PMCID: PMC3191929 DOI: 10.2147/jpr.s24703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Studies have shown that N-methyl-D-aspartate (NMDA) receptors play a critical role in pain processing at different levels of the central nervous system. Methods In this study, we used adult Wistar rats to examine gender differences in the effects of NR2B NMDA antagonism at the level of the anterior cingulate cortex in phasic pain, and in the first and second phases of a formalin test. Rats underwent stereotactic surgery for cannula implantation in the anterior cingulate cortex. After recovery, paw withdrawal latency to a noxious thermal stimulus was assessed. Rats were also subjected to a formalin pain test whereby 60 μL of 5% formalin was injected into the right hind paw. Results Female and male rats that received Ro 25-6981, an NR2B antagonist, before formalin injection showed significantly reduced pain responses to the formalin test compared with saline-injected control rats (P < 0.05). No gender differences in phasic pain responses were found in rats treated with Ro 25-6981. Conclusion These results suggest that cortical antagonism of the NR2B subunit reduces inflammatory pain levels in both genders of rat.
Collapse
Affiliation(s)
- Gabriel C Quintero
- Institute of Scientific Research and High Technology Services (INDICASAT-AIP), Center for Neurosciences, Panama
| | | | | |
Collapse
|
57
|
Activation of anterior cingulate cortex produces inhibitory effects on noxious mechanical and electrical stimuli-evoked responses in rat spinal WDR neurons. Eur J Pain 2011; 15:895-9. [PMID: 21600816 DOI: 10.1016/j.ejpain.2011.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/25/2011] [Accepted: 04/05/2011] [Indexed: 11/22/2022]
Abstract
In present study, in vivo electrophysiological techniques were applied to examine the effects of anterior cingulate cortex (ACC) activation on mechanical and electrical stimuli-evoked responses in rat spinal cord wide-dynamic-range (WDR) neurons. We found that bilateral ACC electrical stimulation (100Hz, 20V, 20s) had different effects on neuronal responses to brush, pressure and pinch stimuli (10s). The brush-evoked neuronal responses at baseline, post 1min and post 5min were 60.8±15.0, 59.2±15.4 and 60.0±19.3 spikes/10s, respectively (n=10, P>0.05 vs. baseline). The pressure-evoked neuronal responses at baseline, post 1min and post 5min were 77.8±11.9, 38.0±7.8 and 45.8±7.6 spikes/10s, respectively (n=10, P<0.05 vs. baseline). The pinch-evoked neuronal responses at baseline, post 1min and post 5min were 137.6±16.7, 62.6±17.5 and 68.8±15.0 spikes/10s, respectively (n=10, P<0.05 vs. baseline). Furthermore, ACC stimulation generated distinct effects on the different components of wind-up response. The total numbers of late response (LR) and after-discharge (AD), but not early response (ER), significantly decreased. Collectively, the present study demonstrated that short-term ACC activation could generate long-term inhibitory effects on the responses of WDR neurons to noxious mechanical (pressure and pinch) and electrical stimuli. The results indicated that ACC activation could negatively regulate noxious information ascending from spinal cord with long-term effect, providing potential neuronal substrate for the modulation of ACC activation on nociception.
Collapse
|
58
|
Plasticity changes of neuronal activities in central lateral nucleus by stimulation of the anterior cingulate cortex in rat. Brain Res Bull 2009; 81:574-8. [PMID: 20038445 DOI: 10.1016/j.brainresbull.2009.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/23/2022]
Abstract
The medial thalamus (MT) and anterior cingulate cortex (ACC) are essential components in mediating the affective emotional-aspect of pain. Whether ACC modulates the neuron activity in MT has not been elucidated and clarifying this point will further reveal the neurobiological mechanism underlying pain related emotions. In the present study, we used in vivo single unit recording and retrograde tracing technique to demonstrate that the majority of examined neurons in the central lateral nucleus (CL), an important nucleus of MT, responded to noxious stimulation. Tetanic stimulation in the ACC increased spike activities of nociceptive-responding neurons in the CL; retrograde tracing by fluorogold in the CL showed the positive neurons are distributed bilaterally in the ACC. Taken together, we demonstrated descending modulation to nociceptive responses of CL neurons by direct projections from the ACC, which may underlie the neuronal mechanism of negative pain emotions.
Collapse
|
59
|
Abstract
Emotions have powerful effects on pain perception. However, the brain mechanisms underlying these effects remain largely unknown. In this study, we combined functional cerebral imaging with psychophysiological methods to explore the neural mechanisms involved in the emotional modulation of spinal nociceptive responses (RIII-reflex) and pain perception in healthy participants. Emotions induced by pleasant or unpleasant pictures modulated the responses to painful electrical stimulations in the right insula, paracentral lobule, parahippocampal gyrus, thalamus, and amygdala. Right insula activation covaried with the modulation of pain perception, consistent with a key role of this structure in the integration of pain signals with the ongoing emotion. In contrast, activity in the thalamus, amygdala, and several prefrontal areas was associated with the modulation of spinal reflex responses. Last, connectivity analyses suggested an involvement of prefrontal, parahippocampal, and brainstem structures in the cerebral and cerebrospinal modulation of pain by emotions. This multiplicity of mechanisms underlying the emotional modulation of pain is reflective of the strong interrelations between pain and emotions, and emphasizes the powerful effects that emotions can have on pain.
Collapse
|
60
|
Seminowicz DA, Laferriere AL, Millecamps M, Yu JSC, Coderre TJ, Bushnell MC. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage 2009; 47:1007-14. [PMID: 19497372 PMCID: PMC4486383 DOI: 10.1016/j.neuroimage.2009.05.068] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/18/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022] Open
Abstract
In human conditions, chronic pain is associated with widespread anatomical changes in the brain. Nevertheless, little is known about the time course of these changes or the relationship of anatomical changes to perception and behaviour. In the present study, we use a rat model of neuropathic pain (spared nerve injury, SNI) and 7 T MRI to determine the longitudinal supraspinal changes associated with pain-like and anxiety-like behaviours. SNI rats and sham controls were scanned at seven time points, 1 week before surgery, 2 weeks after, and then once a month for 5 months. At each time point we performed behavioural tests, including thermal and mechanical sensitivity, and tests of locomotion and exploratory behaviour (open field and elevated plus maze). We found that SNI rats had early and sustained thermal and mechanical hyperalgesia, and developed anxiety-like behaviours several months after injury. Compared to sham controls, SNI rats had decreased frontal cortex volumes several months after surgery, coincident with the onset of anxiety-like behaviours. There was also decreased volume in retrosplenial and entorhinal cortices. We also explored areas that correlated with mechanical hyperalgesia and found that increased hyperalgesia was associated with decreased volumes in bilateral S1 hindlimb area, anterior cingulate cortex (ACC, areas 32 and 24), and insula. Overall, our results suggest that long-term neuropathic pain has widespread effects on brain anatomy related to the duration and magnitude of the pain.
Collapse
Affiliation(s)
- David A Seminowicz
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | | | | | |
Collapse
|
61
|
Pinto-Ribeiro F, Moreira V, Pêgo JM, Leão P, Almeida A, Sousa N. Antinociception induced by chronic glucocorticoid treatment is correlated to local modulation of spinal neurotransmitter content. Mol Pain 2009; 5:41. [PMID: 19630968 PMCID: PMC2727498 DOI: 10.1186/1744-8069-5-41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/24/2009] [Indexed: 12/26/2022] Open
Abstract
Background While acute effects of stress on pain are well described, those produced by chronic stress are still a matter of dispute. Previously we demonstrated that chronic unpredictable stress results in antinociception in the tail-flick test, an effect that is mediated by increased levels of corticosteroids. In the present study, we evaluated nociception in rats after chronic treatment with corticosterone (CORT) and dexamethasone (DEX) in order to discriminate the role of each type of corticosteroid receptors in antinociception. Results Both experimental groups exhibited a pronounced antinociceptive effect after three weeks of treatment when compared to controls (CONT); however, at four weeks the pain threshold in CORT-treated animals returned to basal levels whereas in DEX-treated rats antinociception was maintained. In order to assess if these differences are associated with altered expression of neuropeptides involved in nociceptive transmission we evaluated the density of substance P (SP), calcitonin gene-related peptide (CGRP), somatostatin (SS) and B2-γ-aminobutiric acid receptors (GABAB2) expression in the spinal dorsal horn using light density measurements and stereological techniques. After three weeks of treatment the expression of CGRP in the superficial dorsal horn was significantly decreased in both CORT and DEX groups, while GABAB2 was significantly increased; the levels of SP for both experimental groups remained unchanged at this point. At 4 weeks, CGRP and SP are reduced in DEX-treated animals and GABAB2 unchanged, but all changes were restored to CONT levels in CORT-treated animals. The expression of SS remained unaltered throughout the experimental period. Conclusion These data indicate that corticosteroids modulate nociception since chronic corticosteroid treatment alters the expression of neuropeptides involved in nociceptive transmission at the spinal cord level. As previously observed in some supraspinal areas, the exclusive GR activation resulted in more profound and sustained behavioural and neurochemical changes, than the one observed with a mixed ligand of corticosteroid receptors. These results might be of relevance for the pharmacological management of certain types of chronic pain, in which corticosteroids are used as adjuvant analgesics.
Collapse
Affiliation(s)
- Filipa Pinto-Ribeiro
- Life and Health Science Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
62
|
Wang S, Zhang L, Lim G, Sung B, Tian Y, Chou CW, Hernstadt H, Rusanescu G, Ma Y, Mao J. A combined effect of dextromethorphan and melatonin on neuropathic pain behavior in rats. Brain Res 2009; 1288:42-9. [PMID: 19595681 DOI: 10.1016/j.brainres.2009.06.094] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/01/2009] [Accepted: 06/30/2009] [Indexed: 02/01/2023]
Abstract
Previous study has shown that administration of melatonin into the anterior cingulate cortex contralateral to peripheral nerve injury prevented exacerbation of mechanical allodynia with a concurrent improvement of depression-like behavior in Wistar-Kyoto (WKY) rats, a genetic variation of Wistar rats. In the present study, we examined the effect of the individual versus combined treatment of melatonin and/or dextromethorphan (DM), a clinically available N-methyl-d-aspartate (NMDA) receptor antagonist, on pain behaviors in WKY rats with chronic constriction sciatic nerve injury (CCI). Pain behaviors (thermal hyperalgesia and mechanical allodynia) were established at one week after CCI. WKY rats were then treated intraperitoneally with various doses of melatonin, DM or their combination once daily for the following week. At the end of this one-week treatment, behavioral tests were repeated in these same rats. While DM alone was effective in reducing thermal hyperalgesia at three tested doses (15, 30 or 60 mg/kg), it reduced mechanical allodynia only at high doses (30 or 60 mg/kg). By comparison, administration of melatonin alone was effective in reducing thermal hyperalgesia only at the highest dose (120 mg/kg, but not 30 or 60 mg/kg) tested in this experiment. Melatonin alone failed to reverse allodynia at all three tested doses (30, 60 and 120 mg/kg). However, the combined intraperitoneal administration of melatonin (30 mg/kg) and DM (15 mg/kg) effectively reversed both thermal hyperalgesia and mechanical allodynia although each individual dose alone did not reduce pain behaviors. These results suggest that a combination of melatonin with a clinically available NMDA receptor antagonist might be more effective than either drug alone for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Shuxing Wang
- MGH Center for Translational Pain Research, Department of Anesthesia and Critical Care, WACC 324, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
The impact of age on emotional and cognitive behaviours triggered by experimental neuropathy in rats. Pain 2009; 144:57-65. [DOI: 10.1016/j.pain.2009.02.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/13/2009] [Accepted: 02/23/2009] [Indexed: 01/06/2023]
|
64
|
Abstract
In this review, we integrate recent human and animal studies from the viewpoint of chronic pain. First, we briefly review the impact of chronic pain on society and address current pitfalls of its definition and clinical management. Second, we examine pain mechanisms via nociceptive information transmission cephalad and its impact and interaction with the cortex. Third, we present recent discoveries on the active role of the cortex in chronic pain, with findings indicating that the human cortex continuously reorganizes as it lives in chronic pain. We also introduce data emphasizing that distinct chronic pain conditions impact on the cortex in unique patterns. Fourth, animal studies regarding nociceptive transmission, recent evidence for supraspinal reorganization during pain, the necessity of descending modulation for maintenance of neuropathic behavior, and the impact of cortical manipulations on neuropathic pain is also reviewed. We further expound on the notion that chronic pain can be reformulated within the context of learning and memory, and demonstrate the relevance of the idea in the design of novel pharmacotherapies. Lastly, we integrate the human and animal data into a unified working model outlining the mechanism by which acute pain transitions into a chronic state. It incorporates knowledge of underlying brain structures and their reorganization, and also includes specific variations as a function of pain persistence and injury type, thereby providing mechanistic descriptions of several unique chronic pain conditions within a single model.
Collapse
Affiliation(s)
- A Vania Apkarian
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
65
|
Abstract
Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional components mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SI) and secondary somatosensory (SII) cortices, the ventrolateral orbital cortex and the motor cortex. These cortical structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaqueductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be involved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.
Collapse
|
66
|
Chen TC, Cheng YY, Sun WZ, Shyu BC. Differential regulation of morphine antinociceptive effects by endogenous enkephalinergic system in the forebrain of mice. Mol Pain 2008; 4:41. [PMID: 18826595 PMCID: PMC2569012 DOI: 10.1186/1744-8069-4-41] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Accepted: 09/30/2008] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mice lacking the preproenkephalin (ppENK) gene are hyperalgesic and show more anxiety and aggression than wild-type (WT) mice. The marked behavioral changes in ppENK knock-out (KO) mice appeared to occur in supraspinal response to painful stimuli. However the functional role of enkephalins in the supraspinal nociceptive processing and their underlying mechanism is not clear. The aim of present study was to compare supraspinal nociceptive and morphine antinociceptive responses between WT and ppENK KO mice. RESULTS The genotypes of bred KO mice were confirmed by PCR. Met-enkephalin immunoreactive neurons were labeled in the caudate-putamen, intermediated part of lateral septum, lateral globus pallidus, intermediated part of lateral septum, hypothalamus, and amygdala of WT mice. Met-enkephalin immunoreactive neurons were not found in the same brain areas in KO mice. Tail withdrawal and von Frey test results did not differ between WT and KO mice. KO mice had shorter latency to start paw licking than WT mice in the hot plate test. The maximal percent effect of morphine treatments (5 mg/kg and 10 mg/kg, i.p.) differed between WT and KO mice in hot plate test. The current source density (CSD) profiles evoked by peripheral noxious stimuli in the primary somatosenstory cortex (S1) and anterior cingulate cortex (ACC) were similar in WT and KO mice. After morphine injection, the amplitude of the laser-evoked sink currents was decreased in S1 while the amplitude of electrical-evoked sink currents was increased in the ACC. These differential morphine effects in S1 and ACC were enhanced in KO mice. Facilitation of synaptic currents in the ACC is mediated by GABA inhibitory interneurons in the local circuitry. Percent increases in opioid receptor binding in S1 and ACC were 5.1% and 5.8%, respectively. CONCLUSION The present results indicate that the endogenous enkephalin system is not involved in acute nociceptive transmission in the spinal cord, S1, and ACC. However, morphine preferentially suppressed supraspinal related nociceptive behavior in KO mice. This effect was reflected in the potentiated differential effects of morphine in the S1 and ACC in KO mice. This potentiation may be due to an up-regulation of opioid receptors. Thus these findings strongly suggest an antagonistic interaction between the endogenous enkephalinergic system and exogenous opioid analgesic actions in the supraspinal brain structures.
Collapse
Affiliation(s)
- Tsung-Chieh Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, ROC.
| | | | | | | |
Collapse
|
67
|
Hirano T, Zeredo JL, Kimoto M, Moritaka K, Nasution FH, Toda K. Disinhibitory involvement of the anterior cingulate cortex in the descending antinociceptive effect induced by electroacupuncture stimulation in rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2008; 36:569-77. [PMID: 18543389 DOI: 10.1142/s0192415x08005989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study was conducted to clarify the role of the anterior cingulate cortex (ACCX) in acupuncture analgesia. Experiments were performed on 35 female Wistar albino rats weighing about 300 g. Single unit recordings were made from ACCX neurons with a tungsten microelectrode. Descending ACCX neurons were identified by antidromic activation from electrical shocks applied to the ventral part of the ipsilateral PAG through a concentric needle electrode. Cathodal electroacupuncture stimulation of Ho-Ku (0.1 ms in duration, 45 Hz) for 15 min was done by inserting stainless steel needles bilaterally. An anodal silver-plate electrode (30 mm x 30 mm) was placed on the center of the abdomen. Naloxone (1.0 mg/kg, i.v.) was used to test whether changes of ACCX activities were induced by the endogenous opioid system. Data were collected from a total of 73 ACCX neurons. Forty-seven neurons had descending projection to the PAG, and the other 26 had no projections to the PAG. A majority of descending ACCX neurons were inhibited by electroacupuncture stimulation. By contrast, non-projection ACCX neurons were mainly unaffected by electroacupuncture. Naloxone did not reverse acupuncture effects on the changes of ACCX neuronal activities. Acupuncture stimulation had predominantly inhibitory effects on the activities of descending ACCX neurons. Since the functional connection between ACCX and PAG is inhibitory, electroacupuncture caused disinhibition of PAG neurons, whose activity is closely related to descending antinociception to the spinal cord. This disinhibitory effect elicited by acupuncture stimulation is thought to play a significant role in acupuncture analgesia.
Collapse
Affiliation(s)
- Takafumi Hirano
- Integrative Sensory Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | | | | | | | | | | |
Collapse
|
68
|
Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol 2008; 86:22-47. [PMID: 18602968 DOI: 10.1016/j.pneurobio.2008.06.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/08/2008] [Accepted: 06/11/2008] [Indexed: 02/01/2023]
Abstract
Since the initial description by Wall [Wall, P.D., 1967. The laminar organization of dorsal horn and effects of descending impulses. J. Neurophysiol. 188, 403-423] of tonic descending inhibitory control of dorsal horn neurons, several studies have aimed to characterize the role of various brain centers in the control of nociceptive input to the spinal cord. The role of brainstem centers in pain inhibition has been well documented over the past four decades. Lesion to peripheral nerves results in hypersensitivity to mild tactile or cold stimuli (allodynia) and exaggerated response to nociceptive stimuli (hyperalgesia), both considered as cardinal signs of neuropathic pain. The increased interest in animal models for peripheral neuropathy has raised several questions concerning the rostral conduction of the neuropathic manifestations and the role of supraspinal centers, especially brainstem, in the inhibitory control or in the abnormal contribution to the maintenance and facilitation of neuropathic-like behavior. This review aims to summarize the data on the ascending and descending modulation of neuropathic manifestations and discusses the recent experimental data on the role of supraspinal centers in the control of neuropathic pain. In particular, the review emphasizes the importance of the reciprocal interconnections between the analgesic areas of the brainstem and the pain-related areas of the forebrain. The latter includes the cerebral limbic areas, the prefrontal cortex, the intralaminar thalamus and the hypothalamus and play a critical role in the control of pain considered as part of an integrated behavior related to emotions and various homeostatic regulations. We finally speculate that neuropathic pain, like extrapyramidal motor syndromes, reflects a disorder in the processing of somatosensory information.
Collapse
|
69
|
Zhao ZQ. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol 2008; 85:355-75. [PMID: 18582529 DOI: 10.1016/j.pneurobio.2008.05.004] [Citation(s) in RCA: 706] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/19/2008] [Accepted: 05/30/2008] [Indexed: 12/16/2022]
Abstract
Acupuncture has been accepted to effectively treat chronic pain by inserting needles into the specific "acupuncture points" (acupoints) on the patient's body. During the last decades, our understanding of how the brain processes acupuncture analgesia has undergone considerable development. Acupuncture analgesia is manifested only when the intricate feeling (soreness, numbness, heaviness and distension) of acupuncture in patients occurs following acupuncture manipulation. Manual acupuncture (MA) is the insertion of an acupuncture needle into acupoint followed by the twisting of the needle up and down by hand. In MA, all types of afferent fibers (Abeta, Adelta and C) are activated. In electrical acupuncture (EA), a stimulating current via the inserted needle is delivered to acupoints. Electrical current intense enough to excite Abeta- and part of Adelta-fibers can induce an analgesic effect. Acupuncture signals ascend mainly through the spinal ventrolateral funiculus to the brain. Many brain nuclei composing a complicated network are involved in processing acupuncture analgesia, including the nucleus raphe magnus (NRM), periaqueductal grey (PAG), locus coeruleus, arcuate nucleus (Arc), preoptic area, nucleus submedius, habenular nucleus, accumbens nucleus, caudate nucleus, septal area, amygdale, etc. Acupuncture analgesia is essentially a manifestation of integrative processes at different levels in the CNS between afferent impulses from pain regions and impulses from acupoints. In the last decade, profound studies on neural mechanisms underlying acupuncture analgesia predominately focus on cellular and molecular substrate and functional brain imaging and have developed rapidly. Diverse signal molecules contribute to mediating acupuncture analgesia, such as opioid peptides (mu-, delta- and kappa-receptors), glutamate (NMDA and AMPA/KA receptors), 5-hydroxytryptamine, and cholecystokinin octapeptide. Among these, the opioid peptides and their receptors in Arc-PAG-NRM-spinal dorsal horn pathway play a pivotal role in mediating acupuncture analgesia. The release of opioid peptides evoked by electroacupuncture is frequency-dependent. EA at 2 and 100Hz produces release of enkephalin and dynorphin in the spinal cord, respectively. CCK-8 antagonizes acupuncture analgesia. The individual differences of acupuncture analgesia are associated with inherited genetic factors and the density of CCK receptors. The brain regions associated with acupuncture analgesia identified in animal experiments were confirmed and further explored in the human brain by means of functional imaging. EA analgesia is likely associated with its counter-regulation to spinal glial activation. PTX-sesntive Gi/o protein- and MAP kinase-mediated signal pathways as well as the downstream events NF-kappaB, c-fos and c-jun play important roles in EA analgesia.
Collapse
Affiliation(s)
- Zhi-Qi Zhao
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
70
|
Cao Z, Wu X, Chen S, Fan J, Zhang R, Owyang C, Li Y. Anterior cingulate cortex modulates visceral pain as measured by visceromotor responses in viscerally hypersensitive rats. Gastroenterology 2008; 134:535-43. [PMID: 18242219 DOI: 10.1053/j.gastro.2007.11.057] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 11/15/2007] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS We have identified that the anterior cingulate cortex (ACC) neurons are responsive to colorectal distention (CRD) and shown that sensitization of ACC neurons occurs in viscerally hypersensitive rats. However, the role of the ACC in pain response has not been clearly defined. We aimed to determine if ACC neuron activation enhances visceral pain in viscerally hypersensitive rats and to identify the receptor involved in facilitation of visceral pain. METHODS The nociceptive response (visceromotor response [VMR]) to CRD was recorded in normal and viscerally hypersensitive rats induced by colonic anaphylaxis. The ACC was stimulated electrically, and ACC lesions were generated with ibotenic acid. l-glutamate, alpha-amino-3-hydroxy-5-methyl-isoxozole propionic acid receptor antagonist cyanonitroquinoxaline dione, and N-methyl-d-aspartate receptor antagonist aminophosphonopentanoic acid were microinjected into the rostral ACC. RESULTS Electrical stimulation of the rostral ACC enhanced the VMR to CRD in normal rats. ACC lesions caused a decrease in the VMR in viscerally hypersensitive rats but had no effect in normal rats. ACC microinjection of 2 mmol/L glutamate increased the VMR to CRD (10 mm Hg) in viscerally hypersensitive rats, and 20 mmol/L glutamate induced a more potent VMR in viscerally hypersensitive than in normal rats. Cyanonitroquinoxaline dione did not affect the VMR in either group. Aminophosphonopentanoic acid significantly suppressed the VMR in viscerally hypersensitive rats but not in normal rats. CONCLUSIONS The ACC plays a critical role in the modulation of visceral pain responses in viscerally hypersensitive rats. This process appears to be mediated by enhanced activities of glutamate N-methyl-d-aspartate receptors.
Collapse
Affiliation(s)
- Zhijun Cao
- Gastroenterology Research Unit, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Exacerbated mechanical allodynia in rats with depression-like behavior. Brain Res 2008; 1200:27-38. [PMID: 18289511 DOI: 10.1016/j.brainres.2008.01.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 12/05/2007] [Accepted: 01/08/2008] [Indexed: 11/21/2022]
Abstract
Although a clinical connection between pain and depression has long been recognized, how these two conditions interact remains unclear. Here we report that both mechanical allodynia and depression-like behavior were significantly exacerbated after peripheral nerve injury in Wistar-Kyoto (WKY) rats, a genetic variation of Wistar rats with demonstrable depression-like behavior. Administration of melatonin into the anterior cingular cortex contralateral to peripheral nerve injury prevented the exacerbation of mechanical allodynia with a concurrent improvement of depression-like behavior in WKY rats. Moreover, there was a lower plasma melatonin concentration and a lower melatonin receptor expression in the anterior cingular cortex in WKY rats than in Wistar rats. These results suggest that there exists a reciprocal relationship between mechanical allodynia and depression-like behavior and the melatoninergic system in the anterior cingular cortex might play an important role in the interaction between pain and depression.
Collapse
|
72
|
Wise TN, Fishbain DA, Holder-Perkins V. Painful physical symptoms in depression: a clinical challenge. PAIN MEDICINE 2007; 8 Suppl 2:S75-82. [PMID: 17714118 DOI: 10.1111/j.1526-4637.2007.00352.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Painful physical symptoms are common elements within mood disorders and provide a therapeutic challenge when such patients attribute their pain to causes other than the mood disorder. These somatic presentations may lead to under-diagnosis and inappropriate treatment of patients with mood disorders. Antidepressant agents that inhibit both serotonin and norepinephrine reuptake effectively remit mood disorders, thereby providing relief of painful physical symptoms often associated with these disorders. They may also provide analgesia for neuropathic pain, such as that caused by diabetic neuropathy, which are associated with mood disorders. Newer generation dual acting antidepressants such as duloxetine and venlafaxine offer a well-tolerated and safe alternative to tricyclics. Concurrent with medication and management, the physician must educate the patient about the nature of both depressed mood and painful physical states that are augmented by and inherent in the depressive disorders. This mini review addresses the problems inherent to the treatment of painful physical symptoms in depression.
Collapse
Affiliation(s)
- Thomas N Wise
- The Department of Psychiatry and Behavioral Science, The George Washington University School of Medicine, Washington, DC, USA.
| | | | | |
Collapse
|
73
|
Widerström-Noga E, Cardenas D. The Role of Brain Imaging in SCI-Related Pain. Top Spinal Cord Inj Rehabil 2007. [DOI: 10.1310/sci1302-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
74
|
Follow-up of pain processing recovery after ketamine in hyperalgesic fibromyalgia patients using brain perfusion ECD-SPECT. Eur J Nucl Med Mol Imaging 2007; 34:2115-9. [DOI: 10.1007/s00259-007-0589-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 08/26/2007] [Indexed: 11/24/2022]
|
75
|
Chung EKY, Zhang X, Li Z, Zhang H, Xu H, Bian Z. Neonatal maternal separation enhances central sensitivity to noxious colorectal distention in rat. Brain Res 2007; 1153:68-77. [PMID: 17434464 DOI: 10.1016/j.brainres.2007.03.047] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/09/2007] [Accepted: 03/18/2007] [Indexed: 12/28/2022]
Abstract
Psychological stress experienced in early life plays an important role in the development of visceral hyperalgesia in irritable bowel syndrome (IBS). Neonatal maternal separation has been shown to trigger a long-term alternation in stress-induced responses to visceral nociceptive stimuli in rats. The aim of the present study was to show a direct evidence of stress-induced alteration in central neuronal responses to colorectal distention (CRD) in rats by a quantitative study of c-fos expression in relevant brain structures. Male Wistar rat pups were subjected to 180-min daily neonatal maternal separation (NMS) for 13 consecutive days (from PND 2 to PND 14). The expression of c-fos was examined by using immunohistochemistry. Increased c-fos expression was observed, for the first time, in the cingulate cortex (3-fold) in NMS rats in comparison with the control group at basal condition. At noxious CRD (80 mm Hg), c-fos expression was induced in the supraspinal centers and in both the superficial (laminae I-II) and the deeper laminae (laminae V-VI and X) of the spinal cord in rats. Significantly more Fos-IR nuclei were found in the laminae I and II, and laminae V-VI of the lumbarsacral spinal cord, the paraventricular thalamic nucleus, the cingulate cortex, the amygdaloid central nucleus in NMS rats, but not in the solitary tract, the central medial thalamic nucleus, the ventromedial hypothalamic nucleus, and the periaquaductal gray. The present results indicate that NMS has sensitized the cingulate cortex and upregulated the activity of the ascending pathway at spinal level as well as the thalamo-cortico-amydala pathway to CRD. The upregulation and sensitization of these pathways may be responsible for the development of visceral hypersensitivity in IBS.
Collapse
Affiliation(s)
- Elaine K Y Chung
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
76
|
Medullary control of nociceptive transmission: Reciprocal dual communication with the spinal cord. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddmec.2006.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
77
|
Galeotti N, Stefano GB, Guarna M, Bianchi E, Ghelardini C. Signaling pathway of morphine induced acute thermal hyperalgesia in mice. Pain 2006; 123:294-305. [PMID: 16650582 DOI: 10.1016/j.pain.2006.03.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 02/20/2006] [Accepted: 03/13/2006] [Indexed: 11/24/2022]
Abstract
Systemic administration of morphine induced a hyperalgesic response in the hot plate test, at an extremely low dose (1-10 microg/kg). We have examined in vivo whether morphine, at an extremely low dose, induces acute central hypernociception following activation of the opioid receptor-mediated PLC/PKC inositol-lipid signaling pathway. The PLC inhibitor U73122 and the PKC blocker, calphostin C, dose dependently prevented the thermal hypernociception induced by morphine. This effect was also prevented by pretreatment with aODN against PLCbeta3 at 2 nmol/mouse and PKCgamma at 2-3 nmol/mouse. Low dose morphine hyperalgesia was dose dependently reversed by selective NMDA antagonist MK801 and ketamine. This study demonstrates the presence of a nociceptive PLCbeta3/PKCgamma/NMDA pathway stimulated by low concentrations of morphine, through muOR1 receptor, in mouse brain. This signaling pathway appears to play an opposing role in morphine analgesia. When mice were treated with a morphine analgesic dose (7 mg/kg), the downregulation of PLCbeta3 or PKCgamma at the same aODN doses used for the prevention of the hyperalgesic effect induced, respectively, a 46% and 67% potentiation in analgesic response. Experimental and clinical studies suggest that opioid may activate pronociceptive systems, leading to pain hypersensitivity and short-term tolerance, a phenomenon encountered in postoperative pain management by acute opioid administration. The clinical management of pain by morphine may be revisited in light of the identification of the signaling molecules of the hyperalgesic pathway.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Clinical and Preclinical Pharmacology, University of Florence, Florence, Italy Neuroscience Research Institute, State University of New York, NY, USA Department of Biomedical Sciences, University of Siena, Siena, Italy Department of Neuroscience, University of Siena, Siena, Italy
| | | | | | | | | |
Collapse
|