51
|
Moniruzzaman M, Gann ER, LeCleir GR, Kang Y, Gobler CJ, Wilhelm SW. Diversity and dynamics of algal Megaviridae members during a harmful brown tide caused by the pelagophyte, Aureococcus anophagefferens. FEMS Microbiol Ecol 2016; 92:fiw058. [PMID: 26985013 DOI: 10.1093/femsec/fiw058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 11/13/2022] Open
Abstract
Many giant dsDNA algal viruses share a common ancestor with Mimivirus--one of the largest viruses, in terms of genetic content. Together, these viruses form the proposed 'Megaviridae' clade of nucleocytoplasmic large DNA viruses. To gauge Megaviridae diversity, we designed degenerate primers targeting the major capsid protein genes of algae-infecting viruses within this group and probed the clade's diversity during the course of a brown tide bloom caused by the harmful pelagophyte,Aureococcus anophagefferens We amplified target sequences in water samples from two distinct locations (Weesuck Creek and Quantuck Bay, NY) covering 12 weeks concurrent with the proliferation and demise of a bloom. In total, 475 amplicons clustered into 145 operational taxonomic units (OTUs) at 97% identity. One OTU contained 19 sequences with ≥97% identity to AaV, a member of the Megaviridae clade that infects A. anophagefferens, suggesting AaV was present during the bloom. Unifrac analysis showed clear temporal patterns in algal Megaviridae dynamics, with a shift in the virus community structure that corresponded to the Aureococcus bloom decline in both locations. Our data provide insights regarding the environmental relevance of algal Megaviridae members and raise important questions regarding their phylodynamics across different environmental gradients.
Collapse
Affiliation(s)
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, TN 37996, USA Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Gary R LeCleir
- Department of Microbiology, The University of Tennessee, TN 37996, USA
| | - Yoonja Kang
- School of Marine and Atmospheric Sciences, Stony Brook, NY 11794, USA
| | | | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, TN 37996, USA
| |
Collapse
|
52
|
Long AM, Short SM. Seasonal determinations of algal virus decay rates reveal overwintering in a temperate freshwater pond. ISME JOURNAL 2016; 10:1602-12. [PMID: 26943625 DOI: 10.1038/ismej.2015.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/30/2015] [Accepted: 11/18/2015] [Indexed: 11/09/2022]
Abstract
To address questions about algal virus persistence (i.e., continued existence) in the environment, rates of decay of infectivity for two viruses that infect Chlorella-like algae, ATCV-1 and CVM-1, and a virus that infects the prymnesiophyte Chrysochromulina parva, CpV-BQ1, were estimated from in situ incubations in a temperate, seasonally frozen pond. A series of experiments were conducted to estimate rates of decay of infectivity in all four seasons with incubations lasting 21 days in spring, summer and autumn, and 126 days in winter. Decay rates observed across this study were relatively low compared with previous estimates obtained for other algal viruses, and ranged from 0.012 to 11% h(-1). Overall, the virus CpV-BQ1 decayed most rapidly whereas ATCV-1 decayed most slowly, but for all viruses the highest decay rates were observed during the summer and the lowest were observed during the winter. Furthermore, the winter incubations revealed the ability of each virus to overwinter under ice as ATCV-1, CVM-1 and CpV-BQ1 retained up to 48%, 19% and 9% of their infectivity after 126 days, respectively. The observed resilience of algal viruses in a seasonally frozen freshwater pond provides a mechanism that can support the maintenance of viral seed banks in nature. However, the high rates of decay observed in the summer demonstrate that virus survival and therefore environmental persistence can be subject to seasonal bottlenecks.
Collapse
Affiliation(s)
- Andrew M Long
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Steven M Short
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
53
|
Marine Viruses that infect Eukaryotic Microalgae. Uirusu 2016; 65:37-46. [PMID: 26923956 DOI: 10.2222/jsv.65.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Marine microalgae, in general, explain large amount of the primary productions on the planet. Their huge biomass through photosynthetic activities is significant to understand the global geochemical cycles. Many researchers are, therefore, focused on studies of marine microalgae, i.e. phytoplankton. Since the first report of high abundance of viruses in the sea at late 1980's, the marine viruses have recognized as an important decreasing factor of its host populations. They seem to be composed of diverse viruses infectious to different organism groups; most of them are considered to be phages infectious to prokaryotes, and viruses infecting microalgae might be ranked in second level. Over the last quarter of a century, the knowledge on marine microalgal viruses has been accumulated in many aspects. Until today, ca. 40 species of marine microalgal viruses have been discovered, including dsDNA, ssDNA, dsRNA and ssRNA viruses. Their features are unique and comprise new ideas and discoveries, indicating that the marine microalgal virus research is still an intriguing unexplored field. In this review, we summarize their basic biology and ecology, and discuss how and what we should research in this area for further progress.
Collapse
|
54
|
Frickel J, Sieber M, Becks L. Eco-evolutionary dynamics in a coevolving host-virus system. Ecol Lett 2016; 19:450-9. [DOI: 10.1111/ele.12580] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/31/2015] [Accepted: 01/12/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Jens Frickel
- Community Dynamics Group; Department Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; 24306 Plön Germany
| | - Michael Sieber
- Institute of Biochemistry and Biology; Universität Potsdam; D-14469 Potsdam Germany
| | - Lutz Becks
- Community Dynamics Group; Department Evolutionary Ecology; Max Planck Institute for Evolutionary Biology; 24306 Plön Germany
| |
Collapse
|
55
|
Mirza S, Staniewski M, Short C, Long A, Chaban Y, Short S. Isolation and characterization of a virus infecting the freshwater algae Chrysochromulina parva. Virology 2015; 486:105-15. [DOI: 10.1016/j.virol.2015.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 11/26/2022]
|
56
|
Montanié H, De Crignis MG, Lavaud J. Viral Impact on Prokaryotic and Microalgal Activities in the Microphytobenthic Biofilm of an Intertidal Mudflat (French Atlantic Coast). Front Microbiol 2015; 6:1214. [PMID: 26617575 PMCID: PMC4639598 DOI: 10.3389/fmicb.2015.01214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/19/2015] [Indexed: 01/20/2023] Open
Abstract
This is the first report on viriobenthos activity within the microbial biofilm located at the top-surface of the intertidal mudflat during emersion in Marennes-Oléron Bay (France). By combining in situ and ex situ approaches, the viral production (VP) was linked to the dynamics of prokaryotes and microphytobenthos (MPB). VP averaged 2–4 × 108 viruses ml−1 h−1. VP correlated positively with the Virus to Prokaryote Ratio, and both were correlated negatively with the water content. The virus-induced mortality of prokaryotes was lower in winter than in summer (6.8 vs. 39.7% of the production) and the C-shunting may supply 2–12% of their Carbon Demand, respectively. VP accounted for 79% of loss in Prokaryotes but the response was delayed compared to the increase in VP suggesting a simultaneous release of viruses of MPB origin. This hypothesis is supported by capsid-sizing of virions by transmission electronic microscopy and bioassays. Harvesting and ex situ maintenance of top-surface sediments was carried out to monitor the dynamics of viruses, prokaryotes and MPB after inoculation with benthic or planktonic viruses. Benthic viruses modified the prokaryotic and MPB dynamics and decreased the photosynthesis efficiency in contrast to planktonic viruses that impacted MPB but not the prokaryotes.
Collapse
Affiliation(s)
- Hélène Montanié
- UMRi 7266 ULR- Centre National de la Recherche Scientifique, LIENSs, Institut du Littoral et de l'Environnement, Université de La Rochelle La Rochelle, France
| | - Margot G De Crignis
- UMRi 7266 ULR- Centre National de la Recherche Scientifique, LIENSs, Institut du Littoral et de l'Environnement, Université de La Rochelle La Rochelle, France
| | - Johann Lavaud
- UMRi 7266 ULR- Centre National de la Recherche Scientifique, LIENSs, Institut du Littoral et de l'Environnement, Université de La Rochelle La Rochelle, France
| |
Collapse
|
57
|
Abstract
Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.
Collapse
Affiliation(s)
- Rimantas Kodzius
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Saudi Arabia.
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences and Engineering Division (BESE), Saudi Arabia.
| |
Collapse
|
58
|
Abstract
Viral ecology is a rapidly progressing area of research, as molecular methods have improved significantly for targeted research on specific populations and whole communities. To interpret and synthesize global viral diversity and distribution, it is feasible to assess whether macroecology concepts can apply to marine viruses. We review how viral and host life history and physical properties can influence viral distribution in light of biogeography and metacommunity ecology paradigms. We highlight analytical approaches that can be applied to emerging global data sets and meta-analyses to identify individual taxa with global influence and drivers of emergent properties that influence microbial community structure by drawing on examples across the spectrum of viral taxa, from RNA to ssDNA and dsDNA viruses.
Collapse
Affiliation(s)
| | - Curtis A Suttle
- Department of Earth, Ocean, and Atmospheric Sciences.,Department of Botany, and.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; .,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
59
|
Tsv-N1: A Novel DNA Algal Virus that Infects Tetraselmis striata. Viruses 2015; 7:3937-53. [PMID: 26193304 PMCID: PMC4517135 DOI: 10.3390/v7072806] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022] Open
Abstract
Numbering in excess of 10 million per milliliter of water, it is now undisputed that aquatic viruses are one of the major factors shaping the ecology and evolution of Earth’s microbial world. Nonetheless, environmental viral diversity and roles remain poorly understood. Here we report the first thorough characterization of a virus (designated TsV) that infects the coastal marine microalga Tetraselmis striata. Unlike previously known microalgae-infecting viruses, TsV is a small (60 nm) DNA virus, with a 31 kb genome. From a range of eight different strains belonging to the Chlamydomonadaceae family, TsV was only able to infect T. striata. Gene expression dynamics revealed an up-regulation of viral transcripts already 1 h post-infection (p.i.). First clear signs of infection were observed 24 h p.i., with the appearance of viral factories inside the nucleus. TsV assembly was exclusively nuclear. TsV-N1 genome revealed very different from previously known algae viruses (Phycodnaviridae). Putative function and/or homology could be resolved for only 9 of the 33 ORFs encoded. Among those was a surprising DNA polymerase type Delta (only found in Eukaryotes), and two genes with closest homology to genes from human parasites of the urogenital tract. These results support the idea that the diversity of microalgae viruses goes far beyond the Phycodnaviridae family and leave the door open for future studies on implications of microalgae viruses for human health.
Collapse
|
60
|
Bioaerosol emissions from open microalgal processes and their potential environmental impacts: what can be learned from natural and anthropogenic aquatic environments? Curr Opin Biotechnol 2015; 33:279-86. [DOI: 10.1016/j.copbio.2015.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
|
61
|
Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 2015; 347:1257594. [DOI: 10.1126/science.1257594] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
62
|
Johannessen TV, Bratbak G, Larsen A, Ogata H, Egge ES, Edvardsen B, Eikrem W, Sandaa RA. Characterisation of three novel giant viruses reveals huge diversity among viruses infecting Prymnesiales (Haptophyta). Virology 2015; 476:180-188. [DOI: 10.1016/j.virol.2014.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/13/2014] [Accepted: 12/08/2014] [Indexed: 01/05/2023]
|
63
|
Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME JOURNAL 2014; 9:1488-95. [PMID: 25526370 DOI: 10.1038/ismej.2014.251] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/20/2014] [Accepted: 11/16/2014] [Indexed: 01/16/2023]
Abstract
Diversity begets higher-order properties such as functional stability and robustness in microbial communities, but principles that inform conceptual (and eventually predictive) models of community dynamics are lacking. Recent work has shown that selection as well as dispersal and drift shape communities, but the mechanistic bases for assembly of communities and the forces that maintain their function in the face of environmental perturbation are not well understood. Conceptually, some interactions among community members could generate endogenous dynamics in composition, even in the absence of environmental changes. These endogenous dynamics are further perturbed by exogenous forcing factors to produce a richer network of community interactions and it is this 'system' that is the basis for higher-order community properties. Elucidation of principles that follow from this conceptual model requires identifying the mechanisms that (a) optimize diversity within a community and (b) impart community stability. The network of interactions between organisms can be an important element by providing a buffer against disturbance beyond the effect of functional redundancy, as alternative pathways with different combinations of microbes can be recruited to fulfill specific functions.
Collapse
|
64
|
Gustavsen JA, Winget DM, Tian X, Suttle CA. High temporal and spatial diversity in marine RNA viruses implies that they have an important role in mortality and structuring plankton communities. Front Microbiol 2014; 5:703. [PMID: 25566218 PMCID: PMC4266044 DOI: 10.3389/fmicb.2014.00703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/26/2014] [Indexed: 01/26/2023] Open
Abstract
Viruses in the order Picornavirales infect eukaryotes, and are widely distributed in coastal waters. Amplicon deep-sequencing of the RNA dependent RNA polymerase (RdRp) revealed diverse and highly uneven communities of picorna-like viruses in the coastal waters of British Columbia (BC), Canada. Almost 300 000 pyrosequence reads revealed 145 operational taxonomic units (OTUs) based on 95% sequence similarity at the amino-acid level. Each sample had between 24 and 71 OTUs and there was little overlap among samples. Phylogenetic analysis revealed that some clades of OTUs were only found at one site; whereas, other clades included OTUs from all sites. Since most of these OTUs are likely from viruses that infect eukaryotic phytoplankton, and viral isolates infecting phytoplankton are strain-specific; each OTU probably arose from the lysis of a specific phytoplankton taxon. Moreover, the patchiness in OTU distribution, and the high turnover of viruses in the mixed layer, implies continuous infection and lysis by RNA viruses of a diverse array of eukaryotic phytoplankton taxa. Hence, these viruses are likely important elements structuring the phytoplankton community, and play a significant role in nutrient cycling and energy transfer.
Collapse
Affiliation(s)
- Julia A Gustavsen
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Danielle M Winget
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Xi Tian
- Bioinformatics Graduate Program, Faculty of Science, University of British Columbia Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada ; Departments of Botany, and Microbiology & Immunology, University of British Columbia Vancouver, BC, Canada ; Canadian Institute for Advanced Research Toronto, ON, Canada
| |
Collapse
|
65
|
Moniruzzaman M, LeCleir GR, Brown CM, Gobler CJ, Bidle KD, Wilson WH, Wilhelm SW. Genome of brown tide virus (AaV), the little giant of the Megaviridae, elucidates NCLDV genome expansion and host-virus coevolution. Virology 2014; 466-467:60-70. [PMID: 25035289 DOI: 10.1016/j.virol.2014.06.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/19/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
Abstract
Aureococcus anophagefferens causes economically and ecologically destructive "brown tides" in the United States, China and South Africa. Here we report the 370,920bp genomic sequence of AaV, a virus capable of infecting and lysing A. anophagefferens. AaV is a member of the nucleocytoplasmic large DNA virus (NCLDV) group, harboring 377 putative coding sequences and 8 tRNAs. Despite being an algal virus, AaV shows no phylogenetic affinity to the Phycodnaviridae family, to which most algae-infecting viruses belong. Core gene phylogenies, shared gene content and genome-wide similarities suggest AaV is the smallest member of the emerging clade "Megaviridae". The genomic architecture of AaV demonstrates that the ancestral virus had an even smaller genome, which expanded through gene duplication and assimilation of genes from diverse sources including the host itself - some of which probably modulate important host processes. AaV also harbors a number of genes exclusive to phycodnaviruses - reinforcing the hypothesis that Phycodna- and Mimiviridae share a common ancestor.
Collapse
Affiliation(s)
| | - Gary R LeCleir
- Department of Microbiology, The University of Tennessee, TN 37996, United States
| | | | | | - Kay D Bidle
- Institute of Marine and Coastal Sciences, Rutgers, NJ 08901, United States
| | - William H Wilson
- Bigelow Lab for Ocean Sciences, Boothbay, ME 04544, United States
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, TN 37996, United States.
| |
Collapse
|
66
|
Lin H, Qin S. Tipping points in seaweed genetic engineering: scaling up opportunities in the next decade. Mar Drugs 2014; 12:3025-45. [PMID: 24857961 PMCID: PMC4052329 DOI: 10.3390/md12053025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/04/2014] [Accepted: 04/25/2014] [Indexed: 12/30/2022] Open
Abstract
Seaweed genetic engineering is a transgenic expression system with unique features compared with those of heterotrophic prokaryotes and higher plants. This study discusses several newly sequenced seaweed nuclear genomes and the necessity that research on vector design should consider endogenous promoters, codon optimization, and gene copy number. Seaweed viruses and artificial transposons can be applied as transformation methods after acquiring a comprehensive understanding of the mechanism of viral infections in seaweeds and transposon patterns in seaweed genomes. After cultivating transgenic algal cells and tissues in a photobioreactor, a biosafety assessment of genetically modified (GM) seaweeds must be conducted before open-sea application. We propose a set of programs for the evaluation of gene flow from GM seaweeds to local/geographical environments. The effective implementation of such programs requires fundamentally systematic and interdisciplinary studies on algal physiology and genetics, marine hydrology, reproductive biology, and ecology.
Collapse
Affiliation(s)
- Hanzhi Lin
- Environmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Song Qin
- Key Lab of Coastal Biology and Bio-resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai 264003, China.
| |
Collapse
|
67
|
|
68
|
Bellec L, Clerissi C, Edern R, Foulon E, Simon N, Grimsley N, Desdevises Y. Cophylogenetic interactions between marine viruses and eukaryotic picophytoplankton. BMC Evol Biol 2014; 14:59. [PMID: 24669847 PMCID: PMC3983898 DOI: 10.1186/1471-2148-14-59] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/20/2014] [Indexed: 01/10/2023] Open
Abstract
Background Numerous studies have investigated cospeciation (or cophylogeny) in various host-symbiont systems, and different patterns were inferred, from strict cospeciation where symbiont phylogeny mirrors host phylogeny, to complete absence of correspondence between trees. The degree of cospeciation is generally linked to the level of host specificity in the symbiont species and the opportunity they have to switch hosts. In this study, we investigated cophylogeny for the first time in a microalgae-virus association in the open sea, where symbionts are believed to be highly host-specific but have wide opportunities to switch hosts. We studied prasinovirus-Mamiellales associations using 51 different viral strains infecting 22 host strains, selected from the characterisation and experimental testing of the specificities of 313 virus strains on 26 host strains. Results All virus strains were restricted to their host genus, and most were species-specific, but some of them were able to infect different host species within a genus. Phylogenetic trees were reconstructed for viruses and their hosts, and their congruence was assessed based on these trees and the specificity data using different cophylogenetic methods, a topology-based approach, Jane, and a global congruence method, ParaFit. We found significant congruence between virus and host trees, but with a putatively complex evolutionary history. Conclusions Mechanisms other than true cospeciation, such as host-switching, might explain a part of the data. It has been observed in a previous study on the same taxa that the genomic divergence between host pairs is larger than between their viruses. It implies that if cospeciation predominates in this algae-virus system, this would support the hypothesis that prasinoviruses evolve more slowly than their microalgal hosts, whereas host switching would imply that these viruses speciated more recently than the divergence of their host genera.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yves Desdevises
- Integrative Biology of Marine Organisms, Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, UMR 7232, F-66650 Banyuls-sur-Mer, France.
| |
Collapse
|
69
|
Seasonal variations in PCR-DGGE fingerprinted viruses infecting phytoplankton in large and deep peri-alpine lakes. Ecol Res 2014. [DOI: 10.1007/s11284-013-1121-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
70
|
Zhong X, Ram ASP, Colombet J, Jacquet S. Variations in abundance, genome size, morphology, and functional role of the virioplankton in Lakes Annecy and Bourget over a 1-year period. MICROBIAL ECOLOGY 2014; 67:66-82. [PMID: 24253662 DOI: 10.1007/s00248-013-0320-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
We sampled the surface waters (2-50 m) of two deep peri-alpine lakes over a 1-year period in order to examine (1) the abundance, vertical distribution, genome size, and morphology structures of the virioplankton; (2) the virus-mediated bacterial mortality; and (3) the specific genome size range of double-stranded DNA (dsDNA) phytoplankton viruses. Virus-like particle (VLP) concentrations varied between 4.16 × 10(7) (January) and 2.08 × 10(8) part mL(-1) (May) in Lake Bourget and between 2.7 × 10(7) (June) and 8.39 × 10(7) part mL(-1) (November) in Lake Annecy. Our flow cytometry analysis revealed at least three viral groups (referred to as virus-like particles 1, 2, and 3) that exhibited distinctive dynamics suggestive of different host types. Phage-induced bacterial mortality varied between 6.1% (June) and 33.2% (October) in Lake Bourget and between 7.4% (June) and 52.6% (November) in Lake Annecy, suggesting that viral lysis may be a key cause of mortality of the bacterioplankton. Virioplankton genome size ranged from 27 to 486 kb in Lake Bourget, while it reached 620 kb in Lake Annecy for which larger genome sizes were recorded. Our analysis of pulsed field gel electrophoresis bands using different PCR primers targeting both cyanophages and algal viruses showed that (1) dsDNA viruses infecting phytoplankton may range from 65 to 486 kb, and (2) both cyanophage and algal "diversity" were higher in Lake Annecy. Lakes Annecy and Bourget also differed regarding the proportions of both viral families (with the dominance of myoviruses vs. podoviruses) and infected bacterial morphotypes (short rods vs. elongated rods), in each of these lakes, respectively. Overall, our results reveal that (1) viruses displayed distinct temporal and vertical distribution, dynamics, community structure in terms of genome size and morphology, and viral activity in the two lakes; (2) the Myoviridae seemed to be the main cause of bacterial mortality in both lakes and this group seemed to be related to VLP2; and (3) phytoplankton viruses may have a broader range of genome size than previously thought. This study adds to growing evidence that viruses are diverse and play a significant role in freshwater microbial dynamics and more globally lake functioning. It highlights the importance of further considering this biological compartment for a better understanding of plankton ecology in peri-alpine lakes.
Collapse
Affiliation(s)
- Xu Zhong
- INRA, UMR 042 CARRTEL, 75 Avenue de Corzent, 74203, Thonon-les-Bains cx, France
| | | | | | | |
Collapse
|
71
|
Zhong X, Jacquet S. Contrasting diversity of phycodnavirus signature genes in two large and deep western European lakes. Environ Microbiol 2013; 16:759-73. [DOI: 10.1111/1462-2920.12201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/14/2013] [Accepted: 06/22/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Xu Zhong
- INRA; UMR CARRTEL; 75 Avenue de Corzent 74203 Thonon-les-Bains cx France
| | - Stéphan Jacquet
- INRA; UMR CARRTEL; 75 Avenue de Corzent 74203 Thonon-les-Bains cx France
| |
Collapse
|
72
|
Hyman P, Abedon ST. Smaller fleas: viruses of microorganisms. SCIENTIFICA 2012; 2012:734023. [PMID: 24278736 PMCID: PMC3820453 DOI: 10.6064/2012/734023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 06/20/2012] [Indexed: 05/31/2023]
Abstract
Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world's most abundant somewhat autonomous genetic entities and include the viruses of domain Bacteria (bacteriophages), the viruses of domain Archaea (archaeal viruses), the viruses of protists, the viruses of microscopic fungi such as yeasts (mycoviruses), and even the viruses of other viruses (satellite viruses). In this paper we provide an introduction to the concept of viruses of microorganisms, a.k.a., viruses of microbes. We provide broad discussion particularly of VoM diversity. VoM diversity currently spans, in total, at least three-dozen virus families. This is roughly ten families per category-bacterial, archaeal, fungal, and protist-with some virus families infecting more than one of these microorganism major taxa. Such estimations, however, will vary with further discovery and taxon assignment and also are dependent upon what forms of life one includes among microorganisms.
Collapse
Affiliation(s)
- Paul Hyman
- Department of Biology, Ashland University, 401 College Avenue, Ashland, OH 44805, USA
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, 1680 University Dr., Mansfield, OH 44906, USA
| |
Collapse
|