51
|
Cusick MF, Libbey JE, Fujinami RS. Picornavirus infection leading to immunosuppression. Future Virol 2014; 9:475-482. [PMID: 25214881 DOI: 10.2217/fvl.14.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viruses, such as HIV, hepatitis A, poliovirus, coxsackievirus B3 and foot-and-mouth disease virus, use a variety of mechanisms to suppress the human immune system in order to evade clearance by the host. Therefore, investigating how a few changes in the viral genome of a nonlethal virus can lead to an alteration in disease, from survivable to immunosuppression and death, would provide valuable information into viral pathogenesis. In addition, we propose that gaining a better insight into how these viruses suppress an antiviral immune response could lead to viral-based therapeutics to combat specifc autoimmune diseases such as multiple sclerosis and Type 1 diabetes.
Collapse
Affiliation(s)
- Matthew F Cusick
- Department of Pathology, University of Utah, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Jane E Libbey
- Department of Pathology, University of Utah, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| |
Collapse
|
52
|
Cathcart AL, Semler BL. Differential restriction patterns of mRNA decay factor AUF1 during picornavirus infections. J Gen Virol 2014; 95:1488-1492. [PMID: 24722678 DOI: 10.1099/vir.0.064501-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During infection by picornaviruses, the cellular environment is modified to favour virus replication. This includes the modification of specific host proteins, including the recently discovered viral proteinase cleavage of mRNA decay factor AU-rich binding factor 1 (AUF1). This cellular RNA-binding protein was shown previously to act as a restriction factor during poliovirus, rhinovirus and coxsackievirus infection. During infection by these viruses, AUF1 relocalizes to the cytoplasm and is cleaved by the viral 3C/3CD proteinase. In this study, we demonstrated that replication of encephalomyocarditis virus (EMCV), a picornavirus belonging to the genus Cardiovirus, is AUF1 independent. During EMCV infection, AUF1 relocalized to the cytoplasm; however, unlike what is seen during enterovirus infections, AUF1 was not cleaved to detectable levels, even at late times after infection. This suggests that AUF1 does not act broadly as an inhibitor of picornavirus infections but may instead act as a selective restriction factor targeting members of the genus Enterovirus.
Collapse
Affiliation(s)
- Andrea L Cathcart
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
53
|
Deddouche S, Goubau D, Rehwinkel J, Chakravarty P, Begum S, Maillard PV, Borg A, Matthews N, Feng Q, van Kuppeveld FJM, Reis e Sousa C. Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells. eLife 2014; 3:e01535. [PMID: 24550253 PMCID: PMC3967861 DOI: 10.7554/elife.01535] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/07/2014] [Indexed: 12/24/2022] Open
Abstract
The RIG-I-like receptors RIG-I, LGP2, and MDA5 initiate an antiviral response that includes production of type I interferons (IFNs). The nature of the RNAs that trigger MDA5 activation in infected cells remains unclear. Here, we purify and characterise LGP2/RNA complexes from cells infected with encephalomyocarditis virus (EMCV), a picornavirus detected by MDA5 and LGP2 but not RIG-I. We show that those complexes contain RNA that is highly enriched for MDA5-stimulatory activity and for a specific sequence corresponding to the L region of the EMCV antisense RNA. Synthesis of this sequence by in vitro transcription is sufficient to generate an MDA5 stimulatory RNA. Conversely, genomic deletion of the L region in EMCV generates viruses that are less potent at stimulating MDA5-dependent IFN production. Thus, the L region antisense RNA of EMCV is a key determinant of innate immunity to the virus and represents an RNA that activates MDA5 in virally-infected cells. DOI: http://dx.doi.org/10.7554/eLife.01535.001.
Collapse
MESH Headings
- Animals
- Antiviral Agents/pharmacology
- Chlorocebus aethiops
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Encephalomyocarditis virus/drug effects
- Encephalomyocarditis virus/genetics
- Encephalomyocarditis virus/immunology
- Encephalomyocarditis virus/metabolism
- Gene Expression Regulation, Viral
- HEK293 Cells
- HeLa Cells
- Host-Pathogen Interactions
- Humans
- Immunity, Innate
- Influenza A virus/genetics
- Influenza A virus/metabolism
- Interferon-Induced Helicase, IFIH1
- Interferons/genetics
- Interferons/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptor, Interferon alpha-beta/deficiency
- Receptor, Interferon alpha-beta/genetics
- Signal Transduction
- Transfection
- Vero Cells
- Virus Replication
Collapse
Affiliation(s)
- Safia Deddouche
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Delphine Goubau
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Jan Rehwinkel
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Probir Chakravarty
- Bioinformatics Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Sharmin Begum
- Clonal Sequencing Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Pierre V Maillard
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Annabel Borg
- Protein Purification Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Nik Matthews
- Clonal Sequencing Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Qian Feng
- Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| |
Collapse
|
54
|
Abstract
UNLABELLED RIG-I-like receptors (RLRs) MDA5 and RIG-I are key players in the innate antiviral response. Upon recognition of viral RNA, they interact with MAVS, eventually inducing type I interferon production. The interferon induction pathway is commonly targeted by viruses. How enteroviruses suppress interferon production is incompletely understood. MDA5 has been suggested to undergo caspase- and proteasome-mediated degradation during poliovirus infection. Additionally, MAVS is reported to be cleaved during infection with coxsackievirus B3 (CVB3) by the CVB3 proteinase 3C(pro), whereas MAVS cleavage by enterovirus 71 has been attributed to 2A(pro). As yet, a detailed examination of the RLR pathway as a whole during any enterovirus infection is lacking. We performed a comprehensive analysis of crucial factors of the RLR pathway, including MDA5, RIG-I, LGP2, MAVS, TBK1, and IRF3, during infection of CVB3, a human enterovirus B (HEV-B) species member. We show that CVB3 inhibits the RLR pathway upstream of TBK1 activation, as demonstrated by limited phosphorylation of TBK1 and a lack of IRF3 phosphorylation. Furthermore, we show that MDA5, MAVS, and RIG-I all undergo proteolytic degradation in CVB3-infected cells through a caspase- and proteasome-independent manner. We convincingly show that MDA5 and MAVS cleavages are both mediated by CVB3 2A(pro), while RIG-I is cleaved by 3C(pro). Moreover, we show that proteinases 2A(pro) and 3C(pro) of poliovirus (HEV-C) and enterovirus 71 (HEV-A) exert the same functions. This study identifies a critical role of 2A(pro) by cleaving MDA5 and MAVS and shows that enteroviruses use a common strategy to counteract the interferon response in infected cells. IMPORTANCE Human enteroviruses (HEVs) are important pathogens that cause a variety of diseases in humans, including poliomyelitis, hand, foot, and mouth disease, viral meningitis, cardiomyopathy, and more. Like many other viruses, enteroviruses target the host immune pathways to gain replication advantage. The MDA5/MAVS pathway is responsible for recognizing enterovirus infections in the host cell and leads to expression of type I interferons (IFN-I), crucial antiviral signaling molecules. Here we show that three species of HEVs all employ the viral proteinase 2A (2A(pro)) to proteolytically target MDA5 and MAVS, leading to an efficient blockade upstream of IFN-I transcription. These observations suggest that MDA5/MAVS antagonization is an evolutionarily conserved and beneficial mechanism of enteroviruses. Understanding the molecular mechanisms of enterovirus immune evasion strategies will help to develop countermeasures to control infections with these viruses in the future.
Collapse
|
55
|
Encephalomyocarditis virus leader is phosphorylated by CK2 and syk as a requirement for subsequent phosphorylation of cellular nucleoporins. J Virol 2013; 88:2219-26. [PMID: 24335301 DOI: 10.1128/jvi.03150-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Encephalomyocarditis virus and Theilovirus are species in the Cardiovirus genus of the Picornaviridae family. For all cardioviruses, the viral polyprotein is initiated with a short Leader (L) protein unique to this genus. The nuclear magnetic resonance (NMR) structure of LE from encephalomyocarditis virus (EMCV) has been determined. The protein has an NH2-proximal CHCC zinc finger, a central linker, and a contiguous, highly acidic motif. The theiloviruses encode the same domains, with one or two additional, COOH-proximal domains, characteristic of the human Saffold viruses (SafV) and Theiler's murine encephalomyelitis viruses (TMEV), respectively. The expression of a cardiovirus L, in recombinant form, or during infection/transfection, triggers an extensive, cell-dependent, antihost phosphorylation cascade, targeting nucleoporins (Nups) that form the hydrophobic core of nuclear pore complexes (NPC). The consequent inhibition of active nucleocytoplasmic trafficking is potent and prevents the host from mounting an effective antiviral response. For this inhibition, the L proteins themselves must be phosphorylated. In cells (extracts or recombinant form), LE was shown to be phosphorylated at Thr47 and Tyr41. The first reaction (Thr47), catalyzed by casein kinase 2 (CK2), is an obligatory precedent to the second event (Tyr41), catalyzed by spleen tyrosine kinase (Syk). Site mutations in LE, or kinase-specific inhibitors, prevented LE phosphorylation and subsequent Nup phosphorylation. Parallel experiments with LS (SafV-2) and LT (TMEV BeAn) proteins confirmed the general cardiovirus requirement for L phosphorylation, but CK2 was not the culpable kinase. It is likely that LS and LT are both activated by alternative kinases in different cell types, probably reactive within the Theilo-specific domains. IMPORTANCE An understanding of the diverse methods used by viruses to interfere with cellular processes is important because they can teach us how to control virus infections. This report shows how viruses in the same genus use different cellular enzymes to phosphorylate their proteins. If these processes are interfered with, the viruses are severely disabled.
Collapse
|
56
|
Gottipati K, Ruggli N, Gerber M, Tratschin JD, Benning M, Bellamy H, Choi KH. The structure of classical swine fever virus N(pro): a novel cysteine Autoprotease and zinc-binding protein involved in subversion of type I interferon induction. PLoS Pathog 2013; 9:e1003704. [PMID: 24146623 PMCID: PMC3798407 DOI: 10.1371/journal.ppat.1003704] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/24/2013] [Indexed: 12/17/2022] Open
Abstract
Pestiviruses express their genome as a single polypeptide that is subsequently cleaved into individual proteins by host- and virus-encoded proteases. The pestivirus N-terminal protease (Npro) is a cysteine autoprotease that cleaves between its own C-terminus and the N-terminus of the core protein. Due to its unique sequence and catalytic site, it forms its own cysteine protease family C53. After self-cleavage, Npro is no longer active as a protease. The released Npro suppresses the induction of the host's type-I interferon-α/β (IFN-α/β) response. Npro binds interferon regulatory factor-3 (IRF3), the key transcriptional activator of IFN-α/β genes, and promotes degradation of IRF3 by the proteasome, thus preventing induction of the IFN-α/β response to pestivirus infection. Here we report the crystal structures of pestivirus Npro. Npro is structurally distinct from other known cysteine proteases and has a novel “clam shell” fold consisting of a protease domain and a zinc-binding domain. The unique fold of Npro allows auto-catalysis at its C-terminus and subsequently conceals the cleavage site in the active site of the protease. Although many viruses interfere with type I IFN induction by targeting the IRF3 pathway, little information is available regarding structure or mechanism of action of viral proteins that interact with IRF3. The distribution of amino acids on the surface of Npro involved in targeting IRF3 for proteasomal degradation provides insight into the nature of Npro's interaction with IRF3. The structures thus establish the mechanism of auto-catalysis and subsequent auto-inhibition of trans-activity of Npro, and its role in subversion of host immune response. Mammalian cells respond to viral infection by inducing an innate immune response involving interferon-α/β that mediates cellular antiviral defenses. Viruses, in turn, have evolved mechanisms to counter the host's innate immune response by inhibiting the interferon response. Pestiviruses use the virally encoded N-terminal protease (Npro) to suppress interferon-α/β induction. Npro first cleaves itself off from the viral polyprotein using its own cysteine protease activity. Released Npro then interacts with interferon regulatory factor-3 (IRF3), a transcriptional activator of interferon-β, and induces proteasome-mediated degradation of IRF3. We have determined the crystal structure of Npro from classical swine fever virus. Npro has a unique protease fold consisting of two domains. The N-terminal domain carries the protease active site and has the C-terminus, the auto-cleavage site, bound in the active site. Thus, following auto-cleavage at the C-terminus, Npro obstructs the catalytic site preventing further activity, making the protease active only once in its lifetime. The C-terminal domain carries a zinc-binding site that is required for interaction with IRF3. Surface mapping of the Npro residues essential for subversion of interferon induction provides insight into the interaction with IRF3 and its subsequent degradation. To our knowledge, this is the first structure of a direct IRF3 antagonist.
Collapse
Affiliation(s)
- Keerthi Gottipati
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Nicolas Ruggli
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Markus Gerber
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | | | | | - Henry Bellamy
- Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kyung H. Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
57
|
Mutation of the Theiler's virus leader protein zinc-finger domain impairs apoptotic activity in murine macrophages. Virus Res 2013; 177:222-5. [PMID: 24036175 DOI: 10.1016/j.virusres.2013.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 01/01/2023]
Abstract
The Theiler's murine encephalomyelitis virus (TMEV) leader (L) protein zinc-finger domain was mutated to study its role in cell death in infection of the murine macrophage cell line M1-D, revealing that an intact zinc-finger domain is required for full apoptotic activity. A functional L zinc-finger domain was also required for activation of p38 MAPK that results in phosphorylation and activation of p53, and in turn, alteration of the conformation of the anti-apoptotic proteins Puma and Mcl-1, leading to the release of pro-apoptotic Bax and apoptosis through the intrinsic pathway. TMEV infection also inhibits host protein synthesis, a stress shown by others to induce apoptosis. Since inhibition of host protein synthesis follows rather than precedes activation of MKK3/6 and p38, it seems less likely that it triggers apoptosis in infected cells. Finally, we showed that the levels of reactive oxygen species following infection were consistent with apoptotic rather than necrotic cell death. Thus, these experiments support an important role for the TMEV L protein zinc-finger domain in apoptosis in an infected murine macrophage line.
Collapse
|
58
|
Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses. J Virol 2013; 87:9511-22. [PMID: 23785203 DOI: 10.1128/jvi.03248-12] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In response to stress, cells induce ribonucleoprotein aggregates, termed stress granules (SGs). SGs are transient loci containing translation-stalled mRNA, which is eventually degraded or recycled for translation. Infection of some viruses, including influenza A virus with a deletion of nonstructural protein 1 (IAVΔNS1), induces SG-like protein aggregates. Previously, we showed that IAVΔNS1-induced SGs are required for efficient induction of type I interferon (IFN). Here, we investigated SG formation by different viruses using green fluorescent protein (GFP)-tagged Ras-Gap SH3 domain binding protein 1 (GFP-G3BP1) as an SG probe. HeLa cells stably expressing GFP-G3BP1 were infected with different viruses, and GFP fluorescence was monitored live with time-lapse microscopy. SG formations by different viruses was classified into 4 different patterns: no SG formation, stable SG formation, transient SG formation, and alternate SG formation. We focused on encephalomyocarditis virus (EMCV) infection, which exhibited transient SG formation. We found that EMCV disrupts SGs by cleavage of G3BP1 at late stages of infection (>8 h) through a mechanism similar to that used by poliovirus. Expression of a G3BP1 mutant that is resistant to the cleavage conferred persistent formation of SGs as well as an enhanced induction of IFN and other cytokines at late stages of infection. Additionally, knockdown of endogenous G3BP1 blocked SG formation with an attenuated induction of IFN and potentiated viral replication. Taken together, our findings suggest a critical role of SGs as an antiviral platform and shed light on one of the mechanisms by which a virus interferes with host stress and subsequent antiviral responses.
Collapse
|
59
|
Nisole S, Maroui MA, Mascle XH, Aubry M, Chelbi-Alix MK. Differential Roles of PML Isoforms. Front Oncol 2013; 3:125. [PMID: 23734343 PMCID: PMC3660695 DOI: 10.3389/fonc.2013.00125] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/05/2013] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressor promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha in patients suffering from acute promyelocytic leukemia (APL). Treatment of APL patients with arsenic trioxide (As2O3) reverses the disease phenotype by a process involving the degradation of the fusion protein via its PML moiety. Several PML isoforms are generated from a single PML gene by alternative splicing. They share the same N-terminal region containing the RBCC/tripartite motif but differ in their C-terminal sequences. Recent studies of all the PML isoforms reveal the specific functions of each. Here, we review the nomenclature and structural organization of the PML isoforms in order to clarify the various designations and classifications found in different databases. The functions of the PML isoforms and their differential roles in antiviral defense also are reviewed. Finally, the key players involved in the degradation of the PML isoforms in response to As2O3 or other inducers are discussed.
Collapse
Affiliation(s)
- Sébastien Nisole
- INSERM UMR-S 747 Paris, France ; Université Paris Descartes Paris, France
| | | | | | | | | |
Collapse
|
60
|
Wang JT, Chang LS, Chen CJ, Doong SL, Chang CW, Chen MR. Glycogen synthase kinase 3 negatively regulates IFN regulatory factor 3 transactivation through phosphorylation at its linker region. Innate Immun 2013; 20:78-87. [PMID: 23685991 DOI: 10.1177/1753425913485307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Upon virus infection, the host innate immune response is initiated through the activation of IFN regulatory factor 3 (IRF3) and NF-κB signaling pathways to induce IFN production. Previously, we demonstrated EBV BGLF4 kinase suppresses IRF3 function in a kinase activity-dependent manner. The replacement of Ser123, Ser173 and Thr180 into alanines at the proline-rich linker region of IRF3 abolishes BGLF4-mediated suppression. In this study, we show that BGLF4 phosphorylates glutathione-S-transferase (GST)-IRF3(110-202), but not GST-IRF3(110-202)3A mutant (S123/S173/T180A) in vitro. Compared with activation mimicking mutant IRF3(5D), the phosphorylation-defective IRF3(5D)3A shows a higher transactivation activity in reporter assays, whereas the phosphorylation-mimicking IRF3(5D)2D1E, with Ser123 and Ser173 mutated to aspartate and Thr180 to glutamate, has a much lower activity. To explore whether similar cellular regulation also exists in the absence of virus infection, candidate cellular kinases were predicted and the transactivation activity of IRF3 was examined with various kinase inhibitors. Glycogen synthase kinase 3 (GSK3) inhibitor LiCl specifically enhanced both IRF3(5D) and wild type IRF3 activity, even without stimulation. Expression of constitutive active GSK3β(S9A) represses LiCl-mediated enhancement of IRF3 transactivation activity. In vitro, both GSK3α and GSK3β phosphorylate IRF3 at the linker region. Collectively, data here suggest GSK3 phosphorylates IRF3 linker region in a way similar to viral kinase BGLF4.
Collapse
Affiliation(s)
- Jiin-Tarng Wang
- 1Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
61
|
MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon. J Virol 2013; 87:6314-25. [PMID: 23536668 DOI: 10.1128/jvi.03213-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Virus infection can initiate a type I interferon (IFN-α/β) response via activation of the cytosolic RNA sensors retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). Furthermore, it can activate kinases that phosphorylate eukaryotic translation initiation factor 2α (eIF2α), which leads to inhibition of (viral) protein translation and formation of stress granules (SG). Most viruses have evolved mechanisms to suppress these cellular responses. Here, we show that a mutant mengovirus expressing an inactive leader (L) protein, which we have previously shown to be unable to suppress IFN-α/β, triggered SG formation in a protein kinase R (PKR)-dependent manner. Furthermore, we show that infection of cells that are defective in SG formation yielded higher viral RNA levels, suggesting that SG formation acts as an antiviral defense mechanism. Since the induction of both IFN-α/β and SG is suppressed by mengovirus L, we set out to investigate a potential link between these pathways. We observed that MDA5, the intracellular RNA sensor that recognizes picornaviruses, localized to SG. However, activation of the MDA5 signaling pathway did not trigger and was not required for SG formation. Moreover, cells that were unable to form SG-by protein kinase R (PKR) depletion, using cells expressing a nonphosphorylatable eIF2α protein, or by drug treatment that inhibits SG formation-displayed a normal IFN-α/β response. Thus, although MDA5 localizes to SG, this localization seems to be dispensable for induction of the IFN-α/β pathway.
Collapse
|
62
|
Guanine-nucleotide exchange factor RCC1 facilitates a tight binding between the encephalomyocarditis virus leader and cellular Ran GTPase. J Virol 2013; 87:6517-20. [PMID: 23536659 DOI: 10.1128/jvi.02493-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The leader (L) protein of encephalomyocarditis virus (EMCV) shuts off host cell nucleocytoplasmic trafficking (NCT) by inducing hyperphosphorylation of nuclear pore proteins. This dramatic effect by a nonenzymatic protein of 6 kDa is not well understood but clearly involves L binding to cellular Ran GTPase, a critical factor of active NCT. Exogenous GDP and GTP are inhibitory to L-Ran binding, but the guanine-nucleotide exchange factor RCC1 can relieve this inhibition. In the presence of RCC1, L binds Ran with a KD (equilibrium dissociation constant) of ≈ 3 nM and reaches saturation within 20 min. The results of fluorescently tagged nucleotide experiments suggest that L-Ran interactions affect the nucleotide-binding pocket of Ran.
Collapse
|
63
|
Sorgeloos F, Kreit M, Hermant P, Lardinois C, Michiels T. Antiviral type I and type III interferon responses in the central nervous system. Viruses 2013; 5:834-57. [PMID: 23503326 PMCID: PMC3705299 DOI: 10.3390/v5030834] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/23/2022] Open
Abstract
The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway.
Collapse
Affiliation(s)
- Frédéric Sorgeloos
- Université catholique de Louvain, de Duve Institute, VIRO B1.74.07, 74 avenue Hippocrate, B-1200, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
64
|
Feng Q, Hato SV, Langereis MA, Zoll J, Virgen-Slane R, Peisley A, Hur S, Semler BL, van Rij RP, van Kuppeveld FJM. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep 2012; 2:1187-96. [PMID: 23142662 PMCID: PMC7103987 DOI: 10.1016/j.celrep.2012.10.005] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/26/2012] [Accepted: 10/08/2012] [Indexed: 12/24/2022] Open
Abstract
RIG-I and MDA5 are cytosolic RNA sensors that play a critical role in innate antiviral responses. Major advances have been made in identifying RIG-I ligands, but our knowledge of the ligands for MDA5 remains restricted to data from transfection experiments mostly using poly(I:C), a synthetic dsRNA mimic. Here, we dissected the IFN-α/β-stimulatory activity of different viral RNA species produced during picornavirus infection, both by RNA transfection and in infected cells in which specific steps of viral RNA replication were inhibited. Our results show that the incoming genomic plus-strand RNA does not activate MDA5, but minus-strand RNA synthesis and production of the 7.5 kbp replicative form trigger a strong IFN-α/β response. IFN-α/β production does not rely on plus-strand RNA synthesis and thus generation of the partially double-stranded replicative intermediate. This study reports MDA5 activation by a natural RNA ligand under physiological conditions.
Collapse
Affiliation(s)
- Qian Feng
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, PO Box 9101, 6500 HB, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Agol VI. Cytopathic effects: virus-modulated manifestations of innate immunity? Trends Microbiol 2012; 20:570-6. [PMID: 23072900 PMCID: PMC7126625 DOI: 10.1016/j.tim.2012.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 11/21/2022]
Abstract
The capacity to injure infected cells is a widespread property of viruses. Usually, this cytopathic effect (CPE) is ascribed to viral hijacking of cellular resources to fulfill viral needs. However, evidence is accumulating that CPE is not necessarily directly coupled to viral reproduction but may largely be due to host defensive and viral antidefensive activities. A major part in this virus–cell interaction appears to be played by a putative host-encoded program with multiple competing branches, leading to necrotic, apoptotic, and, possibly, other types of cell suicide. Manifestations of this program are controlled and modulated by host, viral, and environmental factors.
Collapse
Affiliation(s)
- Vadim I Agol
- MP Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow 142782, Russia.
| |
Collapse
|
66
|
Abstract
The encephalomyocarditis virus (EMCV) is a small non-enveloped single-strand RNA virus, the causative agent of not only myocarditis and encephalitis, but also neurological diseases, reproductive disorders and diabetes in many mammalian species. EMCV pathogenesis appears to be viral strain- and host-specific, and a better understanding of EMCV virulence factors is increasingly required. Indeed, EMCV is often used as a model for diabetes and viral myocarditis, and is also widely used in immunology as a double-stranded RNA stimulus in the study of Toll-like as well as cytosolic receptors. However, EMCV virulence and properties have often been neglected. Moreover, EMCV is able to infect humans albeit with a low morbidity. Progress on xenografts, such as pig heart transplantation in humans, has raised safety concerns that need to be explored. In this review we will highlight the biology of EMCV and all known and potential virulence factors.
Collapse
Affiliation(s)
- Margot Carocci
- Microbiology Immunology Department, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
67
|
Suppression of injuries caused by a lytic RNA virus (mengovirus) and their uncoupling from viral reproduction by mutual cell/virus disarmament. J Virol 2012; 86:5574-83. [PMID: 22438537 DOI: 10.1128/jvi.07214-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Viruses often elicit cell injury (cytopathic effect [CPE]), a major cause of viral diseases. CPE is usually considered to be a prerequisite for and/or consequence of efficient viral growth. Recently, we proposed that viral CPE may largely be due to host defensive and viral antidefensive activities. This study aimed to check the validity of this proposal by using as a model HeLa cells infected with mengovirus (MV). As we showed previously, infection of these cells with wild-type MV resulted in necrosis, whereas a mutant with incapacitated antidefensive ("security") viral leader (L) protein induced apoptosis. Here, we showed that several major morphological and biochemical signs of CPE (e.g., alterations in cellular and nuclear shape, plasma membrane, cytoskeleton, chromatin, and metabolic activity) in cells infected with L(-) mutants in the presence of an apoptosis inhibitor were strongly suppressed or delayed for long after completion of viral reproduction. These facts demonstrate that the efficient reproduction of a lytic virus may not directly require development of at least some pathological alterations normally accompanying infection. They also imply that L protein is involved in the control of many apparently unrelated functions. The results also suggest that the virus-activated program with competing necrotic and apoptotic branches is host encoded, with the choice between apoptosis and necrosis depending on a variety of intrinsic and extrinsic conditions. Implementation of this defensive suicidal program could be uncoupled from the viral reproduction. The possibility of such uncoupling has significant implications for the pathogenesis and treatment of viral diseases.
Collapse
|
68
|
Abstract
Although cardioviruses have been thought to mainly infect rodents, a novel human cardiovirus, designated Saffold virus (SAFV), was identified in 2007. SAFV is grouped with Theiler-like rat virus and Theiler's murine encephalomyelitis virus (TMEV) in the species Theilovirus of the genus Cardiovirus of the family Picornaviridae. Eight genotypes of SAFV have now been identified. SAFV has been isolated from nasal and stool specimens from infants presenting with respiratory and gastrointestinal symptoms as well as from children with nonpolio acute flaccid paralysis; however, the relationship of SAFV to this symptomatology remains unclear. Of note, the virus has also been isolated from the cerebrospinal fluid specimens of patients with aseptic meningitis. This finding is of interest since TMEV is known to cause a multiple sclerosis-like syndrome in mice. The involvement of SAFV in various diseases (e.g., respiratory illness, gastrointestinal illness, neurological diseases, and type I diabetes) is presently under investigation. In order to clarify the pathogenicity of SAFV, additional epidemiological studies are required. Furthermore, identification of the SAFV cellular receptor will help establish an animal model for SAFV infection and help clarify the pathogenesis of SAFV-related diseases. In addition, investigation of the tissue-specific expression of the receptor may facilitate development of a novel picornavirus vector, which could be a useful tool in gene therapy for humans. The study of viral factors involved in viral pathogenicity using a reverse genetics technique will also be important.
Collapse
|
69
|
Arterivirus and nairovirus ovarian tumor domain-containing Deubiquitinases target activated RIG-I to control innate immune signaling. J Virol 2011; 86:773-85. [PMID: 22072774 DOI: 10.1128/jvi.06277-11] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The innate immune response constitutes the first line of defense against viral infection and is extensively regulated through ubiquitination. The removal of ubiquitin from innate immunity signaling factors by deubiquitinating enzymes (DUBs) therefore provides a potential opportunity for viruses to evade this host defense system. It was previously found that specific proteases encoded by the unrelated arteri- and nairoviruses resemble the ovarian tumor domain-containing (OTU) family of DUBs. In arteriviruses, this domain has been characterized before as a papain-like protease (PLP2) that is also involved in replicase polyprotein processing. In nairoviruses, the DUB resides in the polymerase protein but is not essential for RNA replication. Using both in vitro and cell-based assays, we now show that PLP2 DUB activity is conserved in all members of the arterivirus family and that both arteri- and nairovirus DUBs inhibit RIG-I-mediated innate immune signaling when overexpressed. The potential relevance of RIG-I-like receptor (RLR) signaling for the innate immune response against arterivirus infection is supported by our finding that in mouse embryonic fibroblasts, the production of beta interferon primarily depends on the recognition of arterivirus RNA by the pattern-recognition receptor MDA5. Interestingly, we also found that both arteri- and nairovirus DUBs inhibit RIG-I ubiquitination upon overexpression, suggesting that both MDA5 and RIG-I have a role in countering infection by arteriviruses. Taken together, our results support the hypothesis that arteri- and nairoviruses employ their deubiquitinating potential to inactivate cellular proteins involved in RLR-mediated innate immune signaling, as exemplified by the deubiquitination of RIG-I.
Collapse
|
70
|
The L-coding region of the DA strain of Theiler's murine encephalomyelitis virus causes dysfunction and death of myelin-synthesizing cells. J Virol 2011; 85:9377-84. [PMID: 21752920 DOI: 10.1128/jvi.00178-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DA strain and other members of the TO subgroup of Theiler's murine encephalomyelitis virus (TMEV) induce an early transient subclinical neuronal disease followed by a chronic progressive inflammatory demyelination, with persistence of the virus in the central nervous system (CNS) for the life of the mouse. Although TMEV-induced demyelinating disease (TMEV-IDD) is thought to be immune mediated, there is also evidence that supports a role for the virus in directly inducing demyelination. In order to clarify the function of DA virus genes, we generated a transgenic mouse that had tamoxifen-inducible expression of the DA L-coding region in oligodendrocytes (and Schwann cells), a cell type in which the virus is known to persist. Tamoxifen-treated young transgenic mice usually developed an acute progressive fatal paralysis, with abnormalities of the oligodendrocytes and Schwann cells and demyelination, but without significant lymphocytic infiltration; later treatment led to transient weakness with demyelination and persistent expression of the recombined transgene. These findings demonstrate that a high level of expression of DA L can cause the death of myelin-synthesizing cells and death of the mouse, while a lower level of L expression (which can persist) can lead to cellular dysfunction with survival. The results suggest that expression of DA L plays an important role in the pathogenesis of TMEV-IDD. Virus-induced infection and death of oligodendrocytes may play a part in the demyelination of other diseases in which an immune-mediated mechanism has been stressed, including multiple sclerosis.
Collapse
|
71
|
Apoptotic and antiapoptotic activity of L protein of Theiler's murine encephalomyelitis virus. J Virol 2011; 85:7177-85. [PMID: 21561911 DOI: 10.1128/jvi.00009-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cellular apoptosis induced by viral genes can play a critical role in determining virulence as well as viral persistence. This form of cell death has been of interest with respect to Theiler's murine encephalomyelitis virus (TMEV) because the GDVII strain and members of the GDVII subgroup are highly neurovirulent, while the DA strain and members of the TO subgroup induce a chronic progressive inflammatory demyelination with persistence of the virus in the central nervous system. The TMEV L protein has been identified as important in the pathogenesis of Theiler's virus-induced demyelinating disease (TMEV-IDD). We now show that DA L is apoptotic following transfection of L expression constructs or following DA virus infection of HeLa cells; the apoptotic activity depends on the presence of the serine/threonine domain of L, especially a serine at amino acid 57. In contrast, GDVII L has little apoptotic activity following transfection of L expression constructs in HeLa cells and is antiapoptotic following GDVII infection of HeLa cells. Of note, both DA and GDVII L cleave caspase-3 in BHK-21 cells, although neither implements the full apoptotic machinery in this cell type as manifested by the induction of terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. The differences in apoptotic activities of DA and GDVII L in varied cell types may play an important role in TMEV subgroup-specific disease phenotypes.
Collapse
|
72
|
Abstract
Viral reproduction involves not only replication but also interactions with host defences. Although various viral proteins can take part in counteracting innate and adaptive immunity, many viruses possess a subset of proteins that are specifically dedicated to counter-defensive activities. These proteins are sometimes referred to as 'virulence factors', but here we argue that the term 'security proteins' is preferable, for several reasons. The concept of security proteins of RNA-containing viruses can be considered using the leader (L and L*) and 2A proteins of picornaviruses as examples. The picornaviruses are a large group of human and animal viruses that include important pathogens such as poliovirus, hepatitis A virus and foot-and-mouth disease virus. The genomes of different picornaviruses have a similar organization, in which the genes for L and 2A occupy fixed positions upstream and downstream of the capsid genes, respectively. Both L and 2A are extremely heterogeneous with respect to size, sequence and biochemical properties. The similarly named proteins can be completely unrelated to each other in different viral genera, and the variation can be striking even among members of the same genus. A subset of picornaviruses lacks L altogether. The properties and functions of L and 2A of many picornaviruses are unknown, but in those viruses that have been investigated sufficiently it has been found that these proteins can switch off various aspects of host macromolecular synthesis and specifically suppress mechanisms involved in innate immunity. Thus, notwithstanding their unrelatedness, the security proteins carry out similar biological functions. It is proposed that other picornavirus L and 2A proteins that have not yet been investigated should also be primarily involved in security activities. The L, L* and 2A proteins are dispensable for viral reproduction, but their elimination or inactivation usually renders the viruses less pathogenic. The phenotypic changes associated with inactivation of security proteins are much less pronounced in cells or organisms that have innate immunity deficiencies. In several examples, the decreased fitness of a virus in which a security protein has been inactivated could be rescued by the experimental introduction of an unrelated security protein. It can be argued that L and 2A were acquired by different picornaviruses independently, and possibly by exploiting different mechanisms, late in the evolution of this viral family. It is proposed that the concept of security proteins is of general relevance and can be applied to viruses other than picornaviruses. The hallmarks of security proteins are: structural and biochemical unrelatedness in related viruses or even absence in some of them; dispensability of the entire protein or its functional domains for viral viability; and, for mutated versions of the proteins, fewer detrimental effects on viral reproduction in immune-compromised hosts than in immune-competent hosts.
Viral security proteins are structurally and biochemically unrelated proteins that function to counteract host defences. Here, Agol and Gmyl consider the impact of the picornavirus security proteins on viral reproduction, pathogenicity and evolution. Interactions with host defences are key aspects of viral infection. Various viral proteins perform counter-defensive functions, but a distinct class, called security proteins, is dedicated specifically to counteracting host defences. Here, the properties of the picornavirus security proteins L and 2A are discussed. These proteins have well-defined positions in the viral polyprotein, flanking the capsid precursor, but they are structurally and biochemically unrelated. Here, we consider the impact of these two proteins, as well as that of a third security protein, L*, on viral reproduction, pathogenicity and evolution. The concept of security proteins could serve as a paradigm for the dedicated counter-defensive proteins of other viruses.
Collapse
Affiliation(s)
- Vadim I Agol
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow 142782, Russia.
| | | |
Collapse
|
73
|
Himeda T, Okuwa T, Muraki Y, Ohara Y. Cytokine/chemokine profile in J774 macrophage cells persistently infected with DA strain of Theiler's murine encephalomyelitis virus (TMEV). J Neurovirol 2010; 16:219-29. [PMID: 20515433 DOI: 10.3109/13550284.2010.484040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus and persists in the spinal cords of mice, followed by inflammatory demyelinating disease. Viral persistence is a key determinant for the TMEV-induced demyelination. Macrophages are thought to serve as the site of TMEV persistence during the chronic demyelinating phase. We previously demonstrated that two nonstructural proteins of TMEV, L and L(*), were important for virus growth in J774.1 macrophage cells. However, the key factors of macrophage cells related to virus persistence and demyelination remain poorly understood. The inflammatory response is heavily dependent on cytokine and chemokine production by cell of both the immune system and the central nervous system (CNS). In this study, we established the macrophage cells persistently infected with DA strain, and then analyzed the cytokine expression pattern in those cells. The present results are the first to demonstrate the up-regulation of B-lymphocyte chemoattractant (BLC) and granulocyte colony-stimulating factor (G-CSF) in the macrophage cells persistently infected with DA strain. Furthermore, up-regulation of interleukin (IL)-10 and down-regulation of interferon (IFN)-alpha 4, IFN-beta, and IFN-gamma were shown in those cells. The data suggest that these cytokines/chemokines may contribute to the virus persistence and the acceleration of TMEV-induced demyelination.
Collapse
Affiliation(s)
- Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
| | | | | | | |
Collapse
|
74
|
SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol 2010. [PMID: 20826694 DOI: 10.1128/jvi.01321-10.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is expressed in the diffuse nuclear fraction of the nucleoplasm and in matrix-associated structures, known as nuclear bodies (NBs). PML NB formation requires the covalent modification of PML to SUMO. The noncovalent interactions of SUMO with PML based on the identification of a SUMO-interacting motif within PML seem to be required for further recruitment within PML NBs of SUMOylated proteins. RNA viruses whose replication takes place in the cytoplasm and is inhibited by PML have developed various strategies to counteract the antiviral defense mediated by PML NBs. We show here that primary fibroblasts derived from PML knockout mice are more sensitive to infection with encephalomyocarditis virus (EMCV), suggesting that the absence of PML results in an increase in EMCV replication. Also, we found that EMCV induces a decrease in PML protein levels both in interferon-treated cells and in PMLIII-expressing cells. Reduction of PML was carried out by the EMCV 3C protease. Indeed, at early times postinfection, EMCV induced PML transfer from the nucleoplasm to the nuclear matrix and PML conjugation to SUMO-1, SUMO-2, and SUMO-3, leading to an increase in PML body size where the viral protease 3C and the proteasome component were found colocalizing with PML within the NBs. This process was followed by PML degradation occurring in a proteasome- and SUMO-dependent manner and did not involve the SUMO-interacting motif of PML. Together, these findings reveal a new mechanism evolved by EMCV to antagonize the PML pathway in the interferon-induced antiviral defense.
Collapse
|
75
|
SUMOylation promotes PML degradation during encephalomyocarditis virus infection. J Virol 2010; 84:11634-45. [PMID: 20826694 DOI: 10.1128/jvi.01321-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is expressed in the diffuse nuclear fraction of the nucleoplasm and in matrix-associated structures, known as nuclear bodies (NBs). PML NB formation requires the covalent modification of PML to SUMO. The noncovalent interactions of SUMO with PML based on the identification of a SUMO-interacting motif within PML seem to be required for further recruitment within PML NBs of SUMOylated proteins. RNA viruses whose replication takes place in the cytoplasm and is inhibited by PML have developed various strategies to counteract the antiviral defense mediated by PML NBs. We show here that primary fibroblasts derived from PML knockout mice are more sensitive to infection with encephalomyocarditis virus (EMCV), suggesting that the absence of PML results in an increase in EMCV replication. Also, we found that EMCV induces a decrease in PML protein levels both in interferon-treated cells and in PMLIII-expressing cells. Reduction of PML was carried out by the EMCV 3C protease. Indeed, at early times postinfection, EMCV induced PML transfer from the nucleoplasm to the nuclear matrix and PML conjugation to SUMO-1, SUMO-2, and SUMO-3, leading to an increase in PML body size where the viral protease 3C and the proteasome component were found colocalizing with PML within the NBs. This process was followed by PML degradation occurring in a proteasome- and SUMO-dependent manner and did not involve the SUMO-interacting motif of PML. Together, these findings reveal a new mechanism evolved by EMCV to antagonize the PML pathway in the interferon-induced antiviral defense.
Collapse
|
76
|
Loss-of-function mutations E6 27X and I923V of IFIH1 are associated with lower poly(I:C)-induced interferon-β production in peripheral blood mononuclear cells of type 1 diabetes patients. Hum Immunol 2010; 71:1128-34. [PMID: 20736039 DOI: 10.1016/j.humimm.2010.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/17/2010] [Accepted: 08/16/2010] [Indexed: 12/20/2022]
Abstract
Melanoma differentiation-associated 5 (MDA5), a product of the IFIH1 gene, is responsible for sensing double-stranded viral double-stranded RNA (RNA). In this study, we showed a significant association of two rare IFIH1 variants, rs35744605 (E627X) and rs35667974 (I923V), with decreased risk of type 1 diabetes (T1D) in a Russian population (for the allele X627, odds ratio [OR] = 0.39, 95% confidence interval [95% CI] = 0.22-0.69, p = 0.0015; for the allele V923, OR = 0.45, 95% CI, 0.30-0.66, p = 5.4 × 10(-5)). We detected a 3.5-fold greater frequency of enteroviral RNA in T1D subjects compared with controls (p <1.0 × 10(-8)), and 2.1-fold more frequent presence of viral RNA in T1D patients with a recent-onset diabetes (duration ≤1 year) compared with those with a longer disease (p <1.0 × 10(-8)). The carriage of the predisposing IFIH1 EI/EI haplogenotype was significantly associated with a 1.5- to 1.7-fold increase in the poly(I:C)-stimulated secretion of IFN-β in PMBCs compared with the other IFIH1 variants. The upregulated MDA5-dependent production of inflammatory cytokines could enhance the autoimmune destruction of β-cells mediated by self-reactive T-cells.
Collapse
|
77
|
Wang D, Fang L, Luo R, Ye R, Fang Y, Xie L, Chen H, Xiao S. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels. Biochem Biophys Res Commun 2010; 399:72-8. [PMID: 20638368 DOI: 10.1016/j.bbrc.2010.07.044] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 12/24/2022]
Abstract
The leader proteinase (L(pro)) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-beta (IFN-beta) antagonist that disrupts the integrity of transcription factor nuclear factor kappaB (NF-kappaB). In this study, we showed that the reduction of double stranded RNA (dsRNA)-induced IFN-alpha1/beta expression caused by L(pro) was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-alpha/beta. Furthermore, overexpression of L(pro) significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L(pro) mutants indicated that the ability to process eIF-4G of L(pro) is not required for suppressing dsRNA-induced activation of the IFN-alpha1/beta promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-kappaB, L(pro) also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.
Collapse
Affiliation(s)
- Dang Wang
- Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Different strains of Theiler's murine encephalomyelitis virus antagonize different sites in the type I interferon pathway. J Virol 2010; 84:9181-9. [PMID: 20610716 DOI: 10.1128/jvi.00603-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The DA strain of Theiler's murine encephalomyelitis virus (TMEV), a member of the Cardiovirus genus of the family Picornaviridae, causes persistent infection in susceptible mice, associated with restricted expression of viral proteins, and induces a demyelinating disease of the central nervous system. DA-induced demyelinating disease serves as a model of human multiple sclerosis because of similarities in pathology and because host immune responses contribute to pathogenesis in both disorders. In contrast, the GDVII strain of TMEV causes acute lethal encephalitis with no virus persistence. Cardiovirus L is a multifunctional protein that blocks beta interferon (IFN-beta) gene transcription. We show that both DA L and GDVII L disrupt IFN-beta gene transcription induction by IFN regulatory factor 3 (IRF-3) but do so at different points in the signaling pathway. DA L blocks IFN-beta gene transcription downstream of mitochondrial antiviral signaling protein (MAVS) but upstream of IRF-3 activation, while GDVII L acts downstream of IRF-3 activation. Both DA L and GDVII L block IFN-beta gene transcription in infected mice; however, IFN-beta mRNA is expressed at low levels in the central nervous systems of mice persistently infected with DA. The particular level of IFN-beta mRNA expression set by DA L as well as other factors in the IRF-3 pathway may play a role in virus persistence, inflammation, and the restricted expression of viral proteins during the late stage of demyelinating disease.
Collapse
|
79
|
Versteeg GA, García-Sastre A. Viral tricks to grid-lock the type I interferon system. Curr Opin Microbiol 2010; 13:508-16. [PMID: 20538505 PMCID: PMC2920345 DOI: 10.1016/j.mib.2010.05.009] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/18/2010] [Indexed: 12/24/2022]
Abstract
Type I interferons (IFNs) play a crucial role in the innate immune avant-garde against viral infections. Virtually all viruses have developed means to counteract the induction, signaling, or antiviral actions of the IFN circuit. Over 170 different virus-encoded IFN antagonists from 93 distinct viruses have been described up to now, indicating that most viruses interfere with multiple stages of the IFN response. Although every viral IFN antagonist is unique in its own right, four main mechanisms are employed to circumvent innate immune responses: (i) general inhibition of cellular gene expression, (ii) sequestration of molecules in the IFN circuit, (iii) proteolytic cleavage, and (iv) proteasomal degradation of key components of the IFN system. The increasing understanding of how different viral IFN antagonists function has been translated to the generation of viruses with mutant IFN antagonists as potential live vaccine candidates. Moreover, IFN antagonists are attractive targets for inhibition by small-molecule compounds.
Collapse
Affiliation(s)
- Gijs A Versteeg
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
80
|
Chen W, Royer WE. Structural insights into interferon regulatory factor activation. Cell Signal 2010; 22:883-7. [PMID: 20043992 PMCID: PMC2846214 DOI: 10.1016/j.cellsig.2009.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/18/2009] [Indexed: 02/07/2023]
Abstract
The interferon regulatory factors (IRFs) play important roles in development of the immune system and host defense. Recent crystallographic and biochemical studies have provided insights into the mechanism of activation of IRFs by phosphorylation. The activation of a latent closed conformation of IRF in the cytoplasm is triggered by phosphorylation of Ser/Thr residues in a C-terminal region. Phosphorylation stimulates the C-terminal autoinhibitory domain to attain a highly extended conformation triggering dimerization through extensive contacts to a second subunit. Dimers are then transported into the nucleus and assemble with the coactivator CBP/p300 to activate transcription of type I interferons and other target genes. The advances made in understanding the release of inhibition after IRF dimerization have generated a detailed structural model of how IRFs signaling pathways are activated.
Collapse
Affiliation(s)
- Weijun Chen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|
81
|
|
82
|
Cruz CC, Suthar MS, Montgomery SA, Shabman R, Simmons J, Johnston RE, Morrison TE, Heise MT. Modulation of type I IFN induction by a virulence determinant within the alphavirus nsP1 protein. Virology 2010; 399:1-10. [PMID: 20097400 DOI: 10.1016/j.virol.2009.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/05/2009] [Accepted: 12/18/2009] [Indexed: 12/25/2022]
Abstract
Alphaviruses are mosquito-borne viruses that cause serious human and animal diseases. Previous studies demonstrated that a determinant within the nsP1/nsP2 cleavage domain of the virulent Sindbis AR86 virus played a key role in regulating adult mouse virulence without adversely affecting viral replication. Additional characterization of this determinant demonstrated that a virus with the attenuating mutation induced more type I IFN production both in vivo and in vitro. Interestingly, this phenotype was not specific to the Sindbis AR86 virus, as a similar mutation in a distantly related alphavirus, Ross River Virus (RRV), also led to enhanced IFN induction. This effect was independent of virus-induced host shutoff, since IRF-3 phosphorylation, which occurs independently of de novo host transcription/translation, was induced more robustly in cells infected with the mutant viruses. Altogether, these results demonstrate that critical determinants within the nsP1/nsP2 cleavage domain play an important role in regulating alphavirus-induced IFN responses.
Collapse
Affiliation(s)
- Catherine C Cruz
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mehul S Suthar
- Department of Immunology, University of Washington, Seattle, WA 98195-76504, USA
| | - Stephanie A Montgomery
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Reed Shabman
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason Simmons
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert E Johnston
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas E Morrison
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology, The University of Colorado Denver, Aurora, CO 80045
| | - Mark T Heise
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Vaccine Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
83
|
Krupina KA, Sheval EV, Lidsky PV. Variability in inhibition of host RNA synthesis by entero- and cardioviruses. J Gen Virol 2010; 91:1239-44. [PMID: 20089798 DOI: 10.1099/vir.0.017723-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both entero- and cardioviruses have been shown to suppress host mRNA synthesis. Enteroviruses are also known to inhibit the activity of rRNA genes, whereas this ability of cardioviruses is under debate. This study reported that mengovirus (a cardiovirus) suppressed rRNA synthesis but less efficiently than poliovirus (an enterovirus). In contrast to poliovirus infection, the incorporation of BrUTP, fluorouridine and [14C]uridine in rRNA precursors was observed even during the late stages of mengovirus infection, although at a significantly reduced level. The cleavage of TATA-binding protein, considered to be one of the central events in poliovirus-induced transcription shutoff, was not detected in mengovirus-infected cells, indicating a difference in the mechanisms of host RNA synthesis inhibition caused by these viruses. The results also showed that functional leader protein is redundant for the suppression of host RNA synthesis by cardiovirus.
Collapse
Affiliation(s)
- Ksenia A Krupina
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region 142782, Russia
| | | | | |
Collapse
|
84
|
Hato SV, Sorgeloos F, Ricour C, Zoll J, Melchers WJG, Michiels T, van Kuppeveld FJM. Differential IFN-alpha/beta production suppressing capacities of the leader proteins of mengovirus and foot-and-mouth disease virus. Cell Microbiol 2009; 12:310-7. [PMID: 19863558 DOI: 10.1111/j.1462-5822.2009.01395.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Picornaviruses encompass a large family of RNA viruses. Some picornaviruses possess a leader (L) protein at the N-terminus of their polyprotein. The L proteins of encephalomyocarditis virus, a cardiovirus, and foot-and-mouth disease virus (FMDV), an aphthovirus, are both dispensable for replication and their major function seems to be the suppression of antiviral host cell responses. Previously, we showed that the L protein of mengovirus, a strain of encephalomyocarditis virus, inhibits antiviral responses by inhibiting type I interferon (IFN-alpha/beta) gene transcription. The L protein of the FMDV is a protease (L(pro)) that cleaves cellular factors to reduce cytokine and chemokine mRNA production and to inhibit cap-dependent cellular host mRNA translation, thereby limiting the production of proteins with antiviral activity. In this study, we constructed a viable chimeric mengovirus that expresses FMDV L(pro) in place of the authentic L protein in order to compare the efficiency of the immune evasion mechanisms mediated by L and L(pro) respectively. We show that in this mengovirus background the L protein is more potent than FMDV L(pro) in suppressing IFN-alpha/beta responses. Yet, FMDV L(pro) is important to antagonize infection-limiting responses both in vitro and in vivo.
Collapse
Affiliation(s)
- Stanleyson V Hato
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
85
|
Random mutagenesis defines a domain of Theiler's virus leader protein that is essential for antagonism of nucleocytoplasmic trafficking and cytokine gene expression. J Virol 2009; 83:11223-32. [PMID: 19710133 DOI: 10.1128/jvi.00829-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The leader protein of cardioviruses, Theiler's murine encephalomyelitis virus (TMEV) and encephalomyocarditis virus (EMCV), is a multifunctional protein known to antagonize type I interferon expression and to interfere with nucleocytoplasmic trafficking of host proteins and mRNA. This protein plays an important role in the capacity of TMEV to establish persistent infection of the central nervous system. Mutant forms of the TMEV leader protein were generated by random mutagenesis and selected after retroviral transduction on the basis of the loss of the highly toxic nature of this protein. Selected mutations define a short C-terminal domain of the leader conserved in TMEV and Saffold virus but lacking in the EMCV leader and thus called the Theilo domain. Mutations in this domain had a dramatic impact on TMEV L protein activity. Like the zinc finger mutation, Theilo domain mutations affected all of the activities of the L protein tested: interferon gene transcription and IRF-3 dimerization antagonism, alteration of nucleocytoplasmic trafficking, nucleoporin 98 hyperphosphorylation, and viral persistence in vivo. This suggests that the Zn finger and the Theilo domain of the protein cooperate for function. Moreover, the fact that all of the activities tested were affected by these mutations suggests that the various leader protein functions are somehow coupled.
Collapse
|
86
|
Interactions between viral and prokaryotic pathogens in a mixed infection with cardiovirus and mycoplasma. J Virol 2009; 83:9940-51. [PMID: 19605479 DOI: 10.1128/jvi.01167-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the natural environment, animal and plant viruses often share ecological niches with microorganisms, but the interactions between these pathogens, although potentially having important implications, are poorly investigated. The present report demonstrates, in a model system, profound mutual effects of mycoplasma and cardioviruses in animal cell cultures. In contrast to mycoplasma-free cells, cultures contaminated with Mycoplasma hyorhinis responded to infection with encephalomyocarditis virus (EMCV), a picornavirus, but not with poliovirus (also a picornavirus), with a strong activation of a DNase(s), as evidenced by the TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) immunofluorescence assay and electrophoretic analysis of host DNA. This degradation was reminiscent of that observed upon apoptosis but was caspase independent, judging by the failure of the specific pan-caspase inhibitor Q-VD-OPh to prevent it. The electrophoretic mobility of the enzyme responsible for DNA degradation and dependence of its activity on ionic conditions strongly suggested that it was represented by a DNase(s) of mycoplasma origin. In cells not infected with EMCV, the relevant DNase was dormant. The possibility is discussed that activation of the mycoplasma DNase might be linked to a relatively early increase in permeability of plasma membrane of the infected cells caused by EMCV. This type of unanticipated virus-mycoplasma "cooperation" may exemplify the complexity of pathogen-host interactions under conditions when viruses and microorganisms are infecting the same host. In the course of the present study, it was also demonstrated that pan-caspase inhibitor zVAD(OMe).fmk strongly suppressed cardiovirus polyprotein processing, illustrating an additional pitfall in investigations of viral effects on the apoptotic system of host cells.
Collapse
|
87
|
Taniura N, Saito M, Okuwa T, Saito K, Ohara Y. Different subcellular localization of Theiler's murine encephalomyelitis virus leader proteins of GDVII and DA strains in BHK-21 cells. J Virol 2009; 83:6624-30. [PMID: 19386716 PMCID: PMC2698518 DOI: 10.1128/jvi.02385-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 04/13/2009] [Indexed: 11/20/2022] Open
Abstract
The highly virulent GDVII strain of Theiler's murine encephalomyelitis virus causes acute and fatal encephalomyelitis, whereas the DA strain causes mild encephalomyelitis followed by a chronic inflammatory demyelinating disease with virus persistence. The differences in the amino acid sequences of the leader protein (L) of the DA and GDVII strains are greater than those for any other viral protein. We examined the subcellular distribution of DA L and GDVII L tagged with the FLAG epitope in BHK-21 cells. Wild-type GDVII L was localized predominantly in the cytoplasm, whereas wild-type DA L showed a nucleocytoplasmic distribution. A series of the L mutant experiments demonstrated that the zinc finger domain, acidic domain, and C-terminal region of L were necessary for the nuclear accumulation of DA L. A GDVII L mutant with a deletion of the serine/threonine (S/T)-rich domain showed a nucleocytoplasmic distribution, in contrast to the predominant cytoplasmic distribution of wild-type GDVII L. A chimeric DA/GDVII L, D/G, which encodes the N region of DA L including the zinc finger domain and acidic domain, followed by the GDVII L sequence including the S/T-rich domain, was distributed exclusively throughout the cytoplasm but not in the nucleus, as observed with wild-type GDVII L. Another chimeric L, G/D (which is the converse of the D/G construct), accumulated in the nucleus as well as the cytoplasm, as was observed for wild-type DA L. The findings suggest that the differential distribution of DA L and GDVII L is determined primarily by the S/T-rich domain. The S/T-rich domain may be important for the viral activity through the regulation of the subcellular distribution of L.
Collapse
Affiliation(s)
- Naoko Taniura
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | |
Collapse
|
88
|
Antiapoptotic activity of the cardiovirus leader protein, a viral "security" protein. J Virol 2009; 83:7273-84. [PMID: 19420082 DOI: 10.1128/jvi.00467-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis is a common antiviral defensive mechanism that potentially limits viral reproduction and spread. Many viruses possess apoptosis-suppressing tools. Here, we show that the productive infection of HeLa cells with encephalomyocarditis virus (a cardiovirus) was not accompanied by full-fledged apoptosis (although the activation of caspases was detected late in infection) but rather elicited a strong antiapoptotic state, as evidenced by the resistance of infected cells to viral and nonviral apoptosis inducers. The development of the antiapoptotic state appeared to depend on a function(s) of the viral leader (L) protein, since its mutational inactivation resulted in the efflux of cytochrome c from mitochondria, the early activation of caspases, and the appearance of morphological and biochemical signs of apoptosis in a significant proportion of infected cells. Infection with both wild-type and L-deficient viruses induced the fragmentation of mitochondria, which in the former case was not accompanied with cytochrome c efflux. Although the exact nature of the antiapoptotic function(s) of cardioviruses remains obscure, our results suggested that it includes previously undescribed mechanisms operating upstream and possibly downstream of the mitochondrial level, and that L is involved in the control of these mechanisms. We propose that cardiovirus L belongs to a class of viral proteins, dubbed here security proteins, whose roles consist solely, or largely, in counteracting host antidefenses. Unrelated L proteins of other picornaviruses as well as their highly variable 2A proteins also may be security proteins. These proteins appear to be independent acquisitions in the evolution of picornaviruses, implying multiple cases of functional (though not structural) convergence.
Collapse
|
89
|
Morrison JM, Racaniello VR. Proteinase 2Apro is essential for enterovirus replication in type I interferon-treated cells. J Virol 2009; 83:4412-22. [PMID: 19211759 PMCID: PMC2668472 DOI: 10.1128/jvi.02177-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 02/03/2009] [Indexed: 12/24/2022] Open
Abstract
The Picornaviridae family comprises a diverse group of small RNA viruses that cause a variety of human and animal diseases. Some of these viruses are known to induce cleavage of components of the innate immune system and to inhibit steps in the interferon pathway that lead to the production of type I interferon. There has been no study of the effect of picornaviral infection on the events that occur after interferons have been produced. To determine whether members of the Enterovirus genus can antagonize the antiviral activity of interferon-stimulated genes (ISGs), we pretreated cells with alpha interferon (IFN-alpha) and then infected the cells with poliovirus type 1, 2, or 3; enterovirus type 70; or human rhinovirus type 16. We found that these viruses were able to replicate in IFN-alpha-pretreated cells but that replication of vesicular stomatitis virus, a Rhabdovirus, and encephalomyocarditis virus (EMCV), a picornavirus of the Cardiovirus genus, was completely inhibited. Although EMCV is sensitive to IFN-alpha, coinfection of cells with poliovirus and EMCV leads to EMCV replication in IFN-alpha-pretreated cells. The enteroviral 2A proteinase (2A(pro)) is essential for replication in cells pretreated with interferon, because amino acid changes in this protein render poliovirus sensitive to IFN-alpha. The addition of the poliovirus 2A(pro) gene to the EMCV genome allowed EMCV to replicate in IFN-alpha-pretreated cells. These results support an inhibitory role for 2A(pro) in the most downstream event in interferon signaling, the antiviral activities of ISGs.
Collapse
Affiliation(s)
- Juliet M Morrison
- Department of Microbiology, Columbia University College of Physicians, New York, NY 10032, USA.
| | | |
Collapse
|
90
|
Zoll J, Erkens Hulshof S, Lanke K, Verduyn Lunel F, Melchers WJG, Schoondermark-van de Ven E, Roivainen M, Galama JMD, van Kuppeveld FJM. Saffold virus, a human Theiler's-like cardiovirus, is ubiquitous and causes infection early in life. PLoS Pathog 2009; 5:e1000416. [PMID: 19412527 PMCID: PMC2670511 DOI: 10.1371/journal.ppat.1000416] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 04/07/2009] [Indexed: 12/23/2022] Open
Abstract
The family Picornaviridae contains well-known human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and parechovirus). In addition, this family contains a number of viruses that infect animals, including members of the genus Cardiovirus such as Encephalomyocarditis virus (EMCV) and Theiler's murine encephalomyelits virus (TMEV). The latter are important murine pathogens that cause myocarditis, type 1 diabetes and chronic inflammation in the brains, mimicking multiple sclerosis. Recently, a new picornavirus was isolated from humans, named Saffold virus (SAFV). The virus is genetically related to Theiler's virus and classified as a new species in the genus Cardiovirus, which until the discovery of SAFV did not contain human viruses. By analogy with the rodent cardioviruses, SAFV may be a relevant new human pathogen. Thus far, SAFVs have sporadically been detected by molecular techniques in respiratory and fecal specimens, but the epidemiology and clinical significance remained unclear. Here we describe the first cultivated SAFV type 3 (SAFV-3) isolate, its growth characteristics, full-length sequence, and epidemiology. Unlike the previously isolated SAFV-1 and -2 viruses, SAFV-3 showed efficient growth in several cell lines with a clear cytopathic effect. The latter allowed us to conduct a large-scale serological survey by a virus-neutralization assay. This survey showed that infection by SAFV-3 occurs early in life (>75% positive at 24 months) and that the seroprevalence reaches >90% in older children and adults. Neutralizing antibodies were found in serum samples collected in several countries in Europe, Africa, and Asia. In conclusion, this study describes the first cultivated SAFV-3 isolate, its full-length sequence, and epidemiology. SAFV-3 is a highly common and widespread human virus causing infection in early childhood. This finding has important implications for understanding the impact of these ubiquitous viruses and their possible role in acute and/or chronic disease. Recently, a new picornavirus was isolated from humans, named Saffold virus (SAFV). Picornaviruses are small RNA viruses with poliovirus as prototype. Saffold virus is genetically related to Theiler's virus, a member of the Cardiovirus genus, which until this recent discovery did not contain human viruses. Theiler's virus is an important mouse pathogen that causes chronic inflammation in the brains, closely resembling multiple sclerosis in humans. By analogy, SAFV may be a relevant human pathogen. Thus far, SAFVs have been sporadically detected by molecular techniques in respiratory and fecal specimens, but the epidemiology and clinical significance have remained unclear. Here we describe the first SAFV type 3 (SAFV-3) isolate, its growth characteristics in cell lines, full-length RNA-sequence, and epidemiology. Unlike the previously isolated SAFV-1 and SAFV-2, SAFV-3 grows well in cell lines, resulting in cell damage. This feature enabled us to conduct a large-scale serological survey for virus-neutralizing antibodies. This survey showed that SAFV-3 infection occurs early in life and that >90% of children >2 years and adults had antibodies. Neutralizing antibodies were found in serum samples collected in several countries in three continents. Hence, we concluded that SAFV-3 is a genuine and widespread human virus causing infection early in life.
Collapse
Affiliation(s)
- Jan Zoll
- Department of Medical Microbiology, Virology Section, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sandra Erkens Hulshof
- Department of Medical Microbiology, Virology Section, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kjerstin Lanke
- Department of Medical Microbiology, Virology Section, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Frans Verduyn Lunel
- Department of Medical Microbiology, Virology Section, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Virology Section, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Merja Roivainen
- Enterovirus Laboratory, National Public Health Institute, Helsinki, Finland
| | - Jochem M. D. Galama
- Department of Medical Microbiology, Virology Section, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (JMDG); (FJMvK)
| | - Frank J. M. van Kuppeveld
- Department of Medical Microbiology, Virology Section, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail: (JMDG); (FJMvK)
| |
Collapse
|
91
|
Theiler's murine encephalomyelitis virus leader protein is the only nonstructural protein tested that induces apoptosis when transfected into mammalian cells. J Virol 2009; 83:6546-53. [PMID: 19403676 DOI: 10.1128/jvi.00353-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces two distinct cell death programs, necrosis and apoptosis. The apoptotic pathway is of particular interest because TMEV persists in the central nervous system of mice, largely in infiltrating macrophages, which undergo apoptosis. Infection of murine macrophages in culture induces apoptosis that is Bax dependent through the intrinsic or mitochondrial pathway, restricting infectious-virus yields and raising the possibility that apoptosis represents a mechanism to attenuate TMEV yet promote macrophage-to-macrophage spread during persistent infection. To help define the cellular stressors and upstream signaling events leading to apoptosis during TMEV infection, we screened baby hamster kidney (BHK-21) cells transfected to express individual nonstructural genes (except 3B) of the low-neurovirulence BeAn virus strain for cell death. Only expression of the leader protein led to apoptosis, as assessed by fluorescence-activated cell sorting analysis of propidium iodide- and annexin V-stained transfected cells, immunoblot analysis of poly(ADP-ribose) polymerase and caspase cleavages, electron microscopy, and inhibition of apoptosis by the pancaspase inhibitor qVD-OPh. After transfection, Bak and not Bax expression increased, suggesting that the apical pathway leading to activation of these Bcl-2 multi-BH-domain proapoptotic proteins differs in BeAn virus infection versus L transfection. Mutation to remove the CHCC Zn finger motif from L, a motif required by L to mediate inhibition of nucleocytoplasmic trafficking, significantly reduced L-protein-induced apoptosis in both BHK-21 and M1-D macrophages.
Collapse
|
92
|
Ricour C, Delhaye S, Hato SV, Olenyik TD, Michel B, van Kuppeveld FJM, Gustin KE, Michiels T. Inhibition of mRNA export and dimerization of interferon regulatory factor 3 by Theiler's virus leader protein. J Gen Virol 2009; 90:177-86. [PMID: 19088287 DOI: 10.1099/vir.0.005678-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV or Theiler's virus) is a neurotropic picornavirus that can persist lifelong in the central nervous system of infected mice, causing a chronic inflammatory demyelinating disease. The leader (L) protein of the virus is an important determinant of viral persistence and has been shown to inhibit transcription of type I interferon (IFN) genes and to cause nucleocytoplasmic redistribution of host proteins. In this study, it was shown that expression of the L protein shuts off synthesis of the reporter proteins green fluorescent protein and firefly luciferase, suggesting that it induces a global shut-off of host protein expression. The L protein did not inhibit transcription or translation of the reporter genes, but blocked cellular mRNA export from the nucleus. This activity correlated with the phosphorylation of nucleoporin 98 (Nup98), an essential component of the nuclear pore complex. In contrast, the data confirmed that the L protein inhibited IFN expression at the transcriptional level, and showed that transcription of other chemokine or cytokine genes was affected by the L protein. This transcriptional inhibition correlated with inhibition of interferon regulatory factor 3 (IRF-3) dimerization. Whether inhibition of IRF-3 dimerization and dysfunction of the nuclear pore complex are related phenomena remains an open question. In vivo, IFN antagonism appears to be an important role of the L protein early in infection, as a virus bearing a mutation in the zinc finger of the L protein replicated as efficiently as the wild-type virus in type I IFN receptor-deficient mice, but had impaired fitness in IFN-competent mice.
Collapse
Affiliation(s)
- Céline Ricour
- Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Mengovirus-induced rearrangement of the nuclear pore complex: hijacking cellular phosphorylation machinery. J Virol 2009; 83:3150-61. [PMID: 19144712 DOI: 10.1128/jvi.01456-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Representatives of several picornavirus genera have been shown previously to significantly enhance non-controllable bidirectional exchange of proteins between nuclei and cytoplasm. In enteroviruses and rhinoviruses, enhanced permeabilization of the nuclear pores appears to be primarily due to proteolytic degradation of some nucleoporins (protein components of the pore), whereas this effect in cardiovirus-infected cells is triggered by the leader (L) protein, devoid of any enzymatic activities. Here, we present evidence that expression of L alone was sufficient to cause permeabilization of the nuclear envelope in HeLa cells. In contrast to poliovirus, mengovirus infection of these cells did not elicit loss of nucleoporins Nup62 and Nup153 from the nuclear pore complex. Instead, nuclear envelope permeabilization was accompanied by hyperphosphorylation of Nup62 in cells infected with wild-type mengovirus, whereas both of these alterations were suppressed in L-deficient virus mutants. Since phosphorylation of Nup62 (although less prominent) did accompany permeabilization of the nuclear envelope prior to its mitotic disassembly in uninfected cells, we hypothesize that cardiovirus L alters the nucleocytoplasmic traffic by hijacking some components of the normal cell division machinery. The variability and biological significance of picornaviral interactions with the nucleocytoplasmic transport in the infected cells are discussed.
Collapse
|
94
|
Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. J Virol 2008; 83:1856-69. [PMID: 19052084 DOI: 10.1128/jvi.01099-08] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The BGLF4 protein kinase of Epstein-Barr virus (EBV) is a member of the conserved family of herpesvirus protein kinases which, to some extent, have a function similar to that of the cellular cyclin-dependent kinase in regulating multiple cellular and viral substrates. In a yeast two-hybrid screening assay, a splicing variant of interferon (IFN) regulatory factor 3 (IRF3) was found to interact with the BGLF4 protein. This interaction was defined further by coimmunoprecipitation in transfected cells and glutathione S-transferase (GST) pull-down in vitro. Using reporter assays, we show that BGLF4 effectively suppresses the activities of the poly(I:C)-stimulated IFN-beta promoter and IRF3-responsive element. Moreover, BGLF4 represses the poly(I:C)-stimulated expression of endogenous IFN-beta mRNA and the phosphorylation of STAT1 at Tyr701. In searching for a possible mechanism, BGLF4 was shown not to affect the dimerization, nuclear translocation, or CBP recruitment of IRF3 upon poly(I:C) treatment. Notably, BGLF4 reduces the amount of active IRF3 recruited to the IRF3-responsive element containing the IFN-beta promoter region in a chromatin immunoprecipitation assay. BGLF4 phosphorylates GST-IRF3 in vitro, but Ser339-Pro340 phosphorylation-dependent, Pin1-mediated downregulation is not responsible for the repression. Most importantly, we found that three proline-dependent phosphorylation sites at Ser123, Ser173, and Thr180, which cluster in a region between the DNA binding and IRF association domains of IRF3, contribute additively to the BGLF4-mediated repression of IRF3(5D) transactivation activity. IRF3 signaling is activated in reactivated EBV-positive NA cells, and the knockdown of BGLF4 further stimulates IRF3-responsive reporter activity. The data presented here thus suggest a novel mechanism by which herpesviral protein kinases suppress host innate immune responses and facilitate virus replication.
Collapse
|
95
|
Frieman M, Baric R. Mechanisms of severe acute respiratory syndrome pathogenesis and innate immunomodulation. Microbiol Mol Biol Rev 2008; 72:672-85, Table of Contents. [PMID: 19052324 PMCID: PMC2593566 DOI: 10.1128/mmbr.00015-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The modulation of the immune response is a common practice of many highly pathogenic viruses. The emergence of the highly pathogenic coronavirus severe acute respiratory virus (SARS-CoV) serves as a robust model system to elucidate the virus-host interactions that mediate severe end-stage lung disease in humans and animals. Coronaviruses encode the largest positive-sense RNA genome of approximately 30 kb, encode a variety of replicase and accessory open reading frames that are structurally unique, and encode novel enzymatic functions among RNA viruses. These viruses have broad or specific host ranges, suggesting the possibility of novel strategies for targeting and regulating host innate immune responses following virus infection. Using SARS-CoV as a model, we review the current literature on the ability of coronaviruses to interact with and modify the host intracellular environment during infection. These studies are revealing a rich set of novel viral proteins that engage, modify, and/or disrupt host cell signaling and nuclear import machinery for the benefit of virus replication.
Collapse
Affiliation(s)
- Matthew Frieman
- University of North Carolina, 210 McGaveran-Greenberg Hall, CB 7435, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
96
|
Komuro A, Bamming D, Horvath CM. Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Cytokine 2008; 43:350-8. [PMID: 18703349 DOI: 10.1016/j.cyto.2008.07.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/22/2008] [Indexed: 12/19/2022]
Abstract
The recent, rapid progress in our understanding of cytoplasmic RNA-mediated antiviral innate immune signaling was initiated by the discovery of retinoic acid-inducible gene I (RIG-I) as a sensor of viral RNA. It is now widely recognized that RIG-I and related RNA helicases, melanoma differentiation-associated gene-5 (MDA5) and laboratory of genetics and physiology-2 (LGP2), can initiate and/or regulate RNA and virus-mediated type I IFN production and antiviral responses. As with other cytokine systems, production of type I IFN is a transient process, and can be hazardous to the host if unregulated, resulting in chronic cellular toxicity or inflammatory and autoimmune diseases. In addition, the RIG-I-like receptor (RLR) system is a fundamental target for virus-encoded immune suppression, with many indirect and direct examples of interference described. In this article, we review the current understanding of endogenous negative regulation in RLR signaling and explore direct inhibition of RLR signaling by viruses as a host immune evasion strategy.
Collapse
Affiliation(s)
- Akihiko Komuro
- Department of Medicine, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|