51
|
Harmand N, Federico V, Hindré T, Lenormand T. Nonlinear frequency-dependent selection promotes long-term coexistence between bacteria species. Ecol Lett 2019; 22:1192-1202. [PMID: 31099951 DOI: 10.1111/ele.13276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 11/29/2022]
Abstract
Negative frequency-dependent selection (NFDS) is an important mechanism for species coexistence and for the maintenance of genetic polymorphism. Long-term coexistence nevertheless requires NFDS interactions to be resilient to further evolution of the interacting species or genotypes. For closely related genotypes, NFDS interactions have been shown to be preserved through successive rounds of evolution in coexisting lineages. On the contrary, the evolution of NFDS interactions between distantly related species has received less attention. Here, we tracked the co-evolution of Escherichia coli and Citrobacter freundii that initially differ in their ecological characteristics. We showed that these two bacterial species engaged in an NFDS interaction particularly resilient to further evolution: despite a very strong asymmetric rate of adaptation, their coexistence was maintained owing to an NFDS pattern where fitness increases steeply as the frequency decreases towards zero. Using a model, we showed how and why such NFDS pattern can emerge. These findings provide a robust explanation for the long-term maintenance of species at very low frequencies.
Collapse
Affiliation(s)
- Noémie Harmand
- UMR 5175, CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, Montpellier, Cedex 5, France
| | - Valentine Federico
- UMR 5175, CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, Montpellier, Cedex 5, France
| | - Thomas Hindré
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble Institut National Polytechnique (INP), Mathématiques et Applications, Grenoble (TIMC-IMAG), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, F-38000, Grenoble, France
| | - Thomas Lenormand
- UMR 5175, CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, Montpellier, Cedex 5, France
| |
Collapse
|
52
|
Saumitou-Laprade P, Vernet P, Dowkiw A, Bertrand S, Billiard S, Albert B, Gouyon PH, Dufay M. Polygamy or subdioecy? The impact of diallelic self-incompatibility on the sexual system in Fraxinus excelsior (Oleaceae). Proc Biol Sci 2019; 285:rspb.2018.0004. [PMID: 29467269 DOI: 10.1098/rspb.2018.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 01/02/2023] Open
Abstract
How flowering plants have recurrently evolved from hermaphroditism to separate sexes (dioecy) is a central question in evolutionary biology. Here, we investigate whether diallelic self-incompatibility (DSI) is associated with sexual specialization in the polygamous common ash (Fraxinus excelsior), which would ultimately facilitate the evolution towards dioecy. Using interspecific crosses, we provide evidence of strong relationships between the DSI system and sexual phenotype. The reproductive system in F. excelsior that was previously viewed as polygamy (co-occurrence of unisexuals and hermaphrodites with varying degrees of allocation to the male and female functions) and thus appears to actually behave as a subdioecious system. Hermaphrodites and females belong to one SI group and functionally reproduce as females, whereas males and male-biased hermaphrodites belong to the other SI group and are functionally males. Our results offer an alternative mechanism for the evolution of sexual specialization in flowering plants.
Collapse
Affiliation(s)
| | - Philippe Vernet
- CNRS, UMR 8198-Evo-Eco-Paléo, Univ Lille, 59000 Lille, France
| | - Arnaud Dowkiw
- INRA, UR 0588, Amélioration Génétique et Physiologie Forestières, INRA, 45075 Orléans, France
| | - Sylvain Bertrand
- CNRS, UMR 8198-Evo-Eco-Paléo, Univ Lille, 59000 Lille, France.,INRA, UR 0588, Amélioration Génétique et Physiologie Forestières, INRA, 45075 Orléans, France
| | | | - Béatrice Albert
- Ecologie Systématique et Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay cedex, France
| | - Pierre-Henri Gouyon
- UMR MNHN CNRS 7205, Dept Systemat and Evolut, Museum Natl Hist Nat, 75005 Paris, France
| | - Mathilde Dufay
- CNRS, UMR 8198-Evo-Eco-Paléo, Univ Lille, 59000 Lille, France.,CEFE, Université Montpellier, CNRS, Université Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| |
Collapse
|
53
|
Pearce TL, Scott JB, Pilkington SJ, Pethybridge SJ, Hay FS. Evidence for Sexual Recombination in Didymella tanaceti Populations, and Their Evolution Over Spring Production in Australian Pyrethrum Fields. PHYTOPATHOLOGY 2019; 109:155-168. [PMID: 29989847 DOI: 10.1094/phyto-08-17-0280-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tan spot, caused by Didymella tanaceti, is one of the most important foliar diseases affecting pyrethrum in Tasmania, Australia. Population dynamics, including mating-type ratios and genetic diversity of D. tanaceti, was characterized within four geographically separated fields in both late winter and spring 2012. A set of 10 microsatellite markers was developed and used to genotype 774 D. tanaceti isolates. Isolates were genotypically diverse, with 123 multilocus genotypes (MLG) identified across the four fields. Fifty-eight MLG contained single isolates and Psex analysis estimated that, within many of the recurrent MLG, there were multiple clonal lineages derived from recombination. Isolates of both mating types were at a 1:1 ratio following clone correction in each field at each sampling period, which was suggestive of sexual recombination. No evidence of genetic divergence of isolates of each mating type was identified, indicating admixture within the population. Linkage equilibrium in two of the four field populations sampled in late winter could not be discounted following clone correction. Evaluation of temporal changes in gene and genotypic diversity identified that they were both similar for the two sampling periods despite an increased D. tanaceti isolation frequency in spring. Genetic differentiation was similar in populations sampled between the two sampling periods within fields or between fields. These results indicated that sexual reproduction may have contributed to tan spot epidemics within Australian pyrethrum fields and has contributed to a genetically diverse D. tanaceti population.
Collapse
Affiliation(s)
- Tamieka L Pearce
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Jason B Scott
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Stacey J Pilkington
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Sarah J Pethybridge
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Frank S Hay
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| |
Collapse
|
54
|
The rate of facultative sex governs the number of expected mating types in isogamous species. Nat Ecol Evol 2018; 2:1168-1175. [DOI: 10.1038/s41559-018-0580-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/16/2018] [Indexed: 01/30/2023]
|
55
|
Repeated evolution of self-compatibility for reproductive assurance. Nat Commun 2018; 9:1639. [PMID: 29691402 PMCID: PMC5915400 DOI: 10.1038/s41467-018-04054-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 01/22/2023] Open
Abstract
Sexual reproduction in eukaryotes requires the fusion of two compatible gametes of opposite sexes or mating types. To meet the challenge of finding a mating partner with compatible gametes, evolutionary mechanisms such as hermaphroditism and self-fertilization have repeatedly evolved. Here, by combining the insights from comparative genomics, computer simulations and experimental evolution in fission yeast, we shed light on the conditions promoting separate mating types or self-compatibility by mating-type switching. Analogous to multiple independent transitions between switchers and non-switchers in natural populations mediated by structural genomic changes, novel switching genotypes readily evolved under selection in the experimental populations. Detailed fitness measurements accompanied by computer simulations show the benefits and costs of switching during sexual and asexual reproduction, governing the occurrence of both strategies in nature. Our findings illuminate the trade-off between the benefits of reproductive assurance and its fitness costs under benign conditions facilitating the evolution of self-compatibility. Mating-type switching enables self-compatible reproduction in fungi, but switching ability is variable even within species. Here, the authors find de novo evolution of switching genotypes in experimentally evolved fission yeast populations and show a trade-off between mating success and growth.
Collapse
|
56
|
Hanschen ER, Herron MD, Wiens JJ, Nozaki H, Michod RE. Repeated evolution and reversibility of self-fertilization in the volvocine green algae. Evolution 2018; 72:386-398. [PMID: 29134623 PMCID: PMC5796843 DOI: 10.1111/evo.13394] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Outcrossing and self-fertilization are fundamental strategies of sexual reproduction, each with different evolutionary costs and benefits. Self-fertilization is thought to be an evolutionary "dead-end" strategy, beneficial in the short term but costly in the long term, resulting in self-fertilizing species that occupy only the tips of phylogenetic trees. Here, we use volvocine green algae to investigate the evolution of self-fertilization. We use ancestral-state reconstructions to show that self-fertilization has repeatedly evolved from outcrossing ancestors and that multiple reversals from selfing to outcrossing have occurred. We use three phylogenetic metrics to show that self-fertilization is not restricted to the tips of the phylogenetic tree, a finding inconsistent with the view of self-fertilization as a dead-end strategy. We also find no evidence for higher extinction rates or lower speciation rates in selfing lineages. We find that self-fertilizing species have significantly larger colonies than outcrossing species, suggesting the benefits of selfing may counteract the costs of increased size. We speculate that our macroevolutionary results on self-fertilization (i.e., non-tippy distribution, no decreased diversification rates) may be explained by the haploid-dominant life cycle that occurs in volvocine algae, which may alter the costs and benefits of selfing.
Collapse
Affiliation(s)
- Erik R. Hanschen
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - Richard E. Michod
- Department of Ecology and Evolutionary Biology, University of Arizona
| |
Collapse
|
57
|
Wilken PM, Steenkamp ET, van der Nest MA, Wingfield MJ, de Beer ZW, Wingfield BD. Unexpected placement of the MAT1-1-2 gene in the MAT1-2 idiomorph of Thielaviopsis. Fungal Genet Biol 2018; 113:32-41. [PMID: 29409964 DOI: 10.1016/j.fgb.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 01/24/2023]
Abstract
Sexual reproduction in the Ascomycota is controlled by genes encoded at the mating-type or MAT1 locus. The two allelic versions of this locus in heterothallic species, referred to as idiomorphs, are defined by the MAT1-1-1 (for the MAT1-1 idiomorph) and MAT1-2-1 (for the MAT1-2 idiomorph) genes. Both idiomorphs can contain additional genes, although the contents of each is typically specific to and conserved within particular Pezizomycotina lineages. Using full genome sequences, complemented with conventional PCR and Sanger sequencing, we compared the mating-type idiomorphs in heterothallic species of Thielaviopsis (Ceratocystidaceae). The analyses showed that the MAT1-1 idiomorph of T. punctulata, T. paradoxa, T. euricoi, T. ethacetica and T. musarum harboured only the expected MAT1-1-1 gene. In contrast, the MAT1-2 idiomorph of T. punctulata, T. paradoxa and T. euricoi encoded the MAT1-2-1, MAT1-2-7 and MAT1-1-2 genes. Of these, MAT1-2-1 and MAT1-2-7 are genes previously reported in this idiomorph, while MAT1-1-2 is known only in the MAT1-1 idiomorph. Phylogenetic analysis showed that the Thielaviopsis MAT1-1-2 groups with the known homologues of this gene in other Microascales, thus confirming its annotation. Previous work suggests that MAT1-1-2 is involved in fruiting body development, a role that would be unaffected by its idiomorphic position. This notion is supported by our findings for the MAT1 locus structure in Thielaviopsis species. This also serves as the first example of a MAT1-1-specific gene restricted to only the MAT1-2 idiomorph.
Collapse
Affiliation(s)
- P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
58
|
Lee DH, Roux J, Wingfield BD, Wingfield MJ. Non-Mendelian segregation influences the infection biology and genetic structure of the African tree pathogen Ceratocystis albifundus. Fungal Biol 2017; 122:222-230. [PMID: 29551196 DOI: 10.1016/j.funbio.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/02/2017] [Accepted: 12/12/2017] [Indexed: 02/04/2023]
Abstract
The African fungal tree pathogen, Ceratocystis albifundus, undergoes uni-directional mating type switching, giving rise to either self-fertile or self-sterile progeny. Self-sterile isolates lack the MAT1-2-1 gene and have reduced fitness such as slower growth and reduced pathogenicity, relative to self-fertile isolates. While it has been hypothesized that there is a 1:1 ratio of self-fertile to self-sterile ascospore progeny in relatives of C. albifundus, some studies have reported a significant bias in this ratio. This could be due to the fact that either fewer self-sterile ascospores are produced or that self-sterile ascospores have low viability. We quantified the percentage of self-sterile and self-fertile ascospores from ascospore masses in C. albifundus using real-time PCR. Primers were designed to distinguish between spores that contained the MAT1-2-1 gene and those where this gene had been deleted. A significant bias towards the self-fertile mating type was observed in all single ascospore masses taken from sexual structures produced in haploid-selfed cultures. The same result was observed from a disease outbreak situation in an intensively managed field of cultivated native trees, and this was coupled with very low population diversity in the pathogen. This was in contrast to the results obtained from ascospore masses taken from the crosses performed under laboratory conditions or ascomata on native trees in a non-disease situation, where either self-fertile or self-sterile ascospores were dominant. The results suggest that reproductive strategies play a significant role in the infection biology and genetic structure of C. albifundus populations.
Collapse
Affiliation(s)
- Dong-Hyeon Lee
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jolanda Roux
- Department of Plant and Soil Sciences, FABI, University of Pretoria, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Genetics, FABI, University of Pretoria, Pretoria, South Africa.
| | - Michael J Wingfield
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
59
|
Nieuwenhuis BPS, James TY. The frequency of sex in fungi. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0540. [PMID: 27619703 DOI: 10.1098/rstb.2015.0540] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 12/16/2022] Open
Abstract
Fungi are a diverse group of organisms with a huge variation in reproductive strategy. While almost all species can reproduce sexually, many reproduce asexually most of the time. When sexual reproduction does occur, large variation exists in the amount of in- and out-breeding. While budding yeast is expected to outcross only once every 10 000 generations, other fungi are obligate outcrossers with well-mixed panmictic populations. In this review, we give an overview of the costs and benefits of sexual and asexual reproduction in fungi, and the mechanisms that evolved in fungi to reduce the costs of either mode. The proximate molecular mechanisms potentiating outcrossing and meiosis appear to be present in nearly all fungi, making them of little use for predicting outcrossing rates, but also suggesting the absence of true ancient asexual lineages. We review how population genetic methods can be used to estimate the frequency of sex in fungi and provide empirical data that support a mixed mode of reproduction in many species with rare to frequent sex in between rounds of mitotic reproduction. Finally, we highlight how these estimates might be affected by the fungus-specific mechanisms that evolved to reduce the costs of sexual and asexual reproduction.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Bart P S Nieuwenhuis
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
60
|
Hadjivasiliou Z, Pomiankowski A. Gamete signalling underlies the evolution of mating types and their number. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0531. [PMID: 27619695 PMCID: PMC5031616 DOI: 10.1098/rstb.2015.0531] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 01/02/2023] Open
Abstract
The gametes of unicellular eukaryotes are morphologically identical, but are nonetheless divided into distinct mating types. The number of mating types varies enormously and can reach several thousand, yet most species have only two. Why do morphologically identical gametes need to be differentiated into self-incompatible mating types, and why is two the most common number of mating types? In this work, we explore a neglected hypothesis that there is a need for asymmetric signalling interactions between mating partners. Our review shows that isogamous gametes always interact asymmetrically throughout sex and argue that this asymmetry is favoured because it enhances the efficiency of the mating process. We further develop a simple mathematical model that allows us to study the evolution of the number of mating types based on the strength of signalling interactions between gametes. Novel mating types have an advantage as they are compatible with all others and rarely meet their own type. But if existing mating types coevolve to have strong mutual interactions, this restricts the spread of novel types. Similarly, coevolution is likely to drive out less attractive mating types. These countervailing forces specify the number of mating types that are evolutionarily stable. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
61
|
Radzvilavicius AL, Lane N, Pomiankowski A. Sexual conflict explains the extraordinary diversity of mechanisms regulating mitochondrial inheritance. BMC Biol 2017; 15:94. [PMID: 29073898 PMCID: PMC5658935 DOI: 10.1186/s12915-017-0437-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mitochondria are predominantly inherited from the maternal gamete, even in unicellular organisms. Yet an extraordinary array of mechanisms enforce uniparental inheritance, which implies shifting selection pressures and multiple origins. RESULTS We consider how this high turnover in mechanisms controlling uniparental inheritance arises using a novel evolutionary model in which control of mitochondrial transmission occurs either during spermatogenesis (by paternal nuclear genes) or at/after fertilization (by maternal nuclear genes). The model treats paternal leakage as an evolvable trait. Our evolutionary analysis shows that maternal control consistently favours strict uniparental inheritance with complete exclusion of sperm mitochondria, whereas some degree of paternal leakage of mitochondria is an expected outcome under paternal control. This difference arises because mito-nuclear linkage builds up with maternal control, allowing the greater variance created by asymmetric inheritance to boost the efficiency of purifying selection and bring benefits in the long term. In contrast, under paternal control, mito-nuclear linkage tends to be much weaker, giving greater advantage to the mixing of cytotypes, which improves mean fitness in the short term, even though it imposes a fitness cost to both mating types in the long term. CONCLUSIONS Sexual conflict is an inevitable outcome when there is competition between maternal and paternal control of mitochondrial inheritance. If evolution has led to complete uniparental inheritance through maternal control, it creates selective pressure on the paternal nucleus in favour of subversion through paternal leakage, and vice versa. This selective divergence provides a reason for the repeated evolution of novel mechanisms that regulate the transmission of paternal mitochondria, both in the fertilized egg and spermatogenesis. Our analysis suggests that the widespread occurrence of paternal leakage and prevalence of heteroplasmy are natural outcomes of this sexual conflict.
Collapse
Affiliation(s)
- Arunas L Radzvilavicius
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nick Lane
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Andrew Pomiankowski
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
62
|
Brandeis M. New-age ideas about age-old sex: separating meiosis from mating could solve a century-old conundrum. Biol Rev Camb Philos Soc 2017; 93:801-810. [PMID: 28913952 DOI: 10.1111/brv.12367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/01/2022]
Abstract
Ever since Darwin first addressed it, sexual reproduction reigns as the 'queen' of evolutionary questions. Multiple theories tried to explain how this apparently costly and cumbersome method has become the universal mode of eukaryote reproduction. Most theories stress the adaptive advantages of sex by generating variation, they fail however to explain the ubiquitous persistence of sexual reproduction also where adaptation is not an issue. I argue that the obstacle for comprehending the role of sex stems from the conceptual entanglement of two distinct processes - gamete production by meiosis and gamete fusion by mating (mixis). Meiosis is an ancient, highly rigid and evolutionary conserved process identical and ubiquitous in all eukaryotes. Mating, by contrast, shows tremendous evolutionary variability even in closely related clades and exhibits wonderful ecological adaptability. To appreciate the respective roles of these two processes, which are normally linked and alternating, we require cases where one takes place without the other. Such cases are rather common. The heteromorphic sex chromosomes Y and W, that do not undergo meiotic recombination are an evolutionary test case for demonstrating the role of meiosis. Substantial recent genomic evidence highlights the accelerated rates of change and attrition these chromosomes undergo in comparison to those of recombining autosomes. I thus propose that the most basic role of meiosis is conserving integrity of the genome. A reciprocal case of meiosis without bi-parental mating, is presented by self-fertilization, which is fairly common in flowering plants, as well as most types of apomixis. I argue that deconstructing sex into these two distinct processes - meiosis and mating - will greatly facilitate their analysis and promote our understanding of sexual reproduction.
Collapse
Affiliation(s)
- Michael Brandeis
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
63
|
Wilken PM, Steenkamp ET, Wingfield MJ, de Beer ZW, Wingfield BD. Which MAT gene? Pezizomycotina (Ascomycota) mating-type gene nomenclature reconsidered. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2017.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
64
|
Hedgethorne K, Eustermann S, Yang JC, Ogden TEH, Neuhaus D, Bloomfield G. Homeodomain-like DNA binding proteins control the haploid-to-diploid transition in Dictyostelium. SCIENCE ADVANCES 2017; 3:e1602937. [PMID: 28879231 PMCID: PMC5580921 DOI: 10.1126/sciadv.1602937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Homeodomain proteins control the developmental transition between the haploid and diploid phases in several eukaryotic lineages, but it is not known whether this regulatory mechanism reflects the ancestral condition or, instead, convergent evolution. We have characterized the mating-type locus of the amoebozoan Dictyostelium discoideum, which encodes two pairs of small proteins that determine the three mating types of this species; none of these proteins display recognizable homology to known families. We report that the nuclear magnetic resonance structures of two of them, MatA and MatB, contain helix-turn-helix folds flanked by largely disordered amino- and carboxyl-terminal tails. This fold closely resembles that of homeodomain transcription factors, and, like those proteins, MatA and MatB each bind DNA characteristically using the third helix of their folded domains. By constructing chimeric versions containing parts of MatA and MatB, we demonstrate that the carboxyl-terminal tail, not the central DNA binding motif, confers mating specificity, providing mechanistic insight into how a third mating type might have originated. Finally, we show that these homeodomain-like proteins specify zygote function: Hemizygous diploids, formed in crosses between a wild-type strain and a mat null mutant, grow and differentiate identically to haploids. We propose that Dictyostelium MatA and MatB are divergent homeodomain proteins with a conserved function in triggering the haploid-to-diploid transition that can be traced back to the last common ancestor of eukaryotes.
Collapse
Affiliation(s)
| | | | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tom E. H. Ogden
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gareth Bloomfield
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
65
|
Evolutionary strata on young mating-type chromosomes despite the lack of sexual antagonism. Proc Natl Acad Sci U S A 2017. [PMID: 28630332 DOI: 10.1073/pnas.1701658114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sex chromosomes can display successive steps of recombination suppression known as "evolutionary strata," which are thought to result from the successive linkage of sexually antagonistic genes to sex-determining genes. However, there is little evidence to support this explanation. Here we investigate whether evolutionary strata can evolve without sexual antagonism using fungi that display suppressed recombination extending beyond loci determining mating compatibility despite lack of male/female roles associated with their mating types. By comparing full-length chromosome assemblies from five anther-smut fungi with or without recombination suppression in their mating-type chromosomes, we inferred the ancestral gene order and derived chromosomal arrangements in this group. This approach shed light on the chromosomal fusion underlying the linkage of mating-type loci in fungi and provided evidence for multiple clearly resolved evolutionary strata over a range of ages (0.9-2.1 million years) in mating-type chromosomes. Several evolutionary strata did not include genes involved in mating-type determination. The existence of strata devoid of mating-type genes, despite the lack of sexual antagonism, calls for a unified theory of sex-related chromosome evolution, incorporating, for example, the influence of partially linked deleterious mutations and the maintenance of neutral rearrangement polymorphism due to balancing selection on sexes and mating types.
Collapse
|
66
|
Coelho MA, Bakkeren G, Sun S, Hood ME, Giraud T. Fungal Sex: The Basidiomycota. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0046-2016. [PMID: 28597825 PMCID: PMC5467461 DOI: 10.1128/microbiolspec.funk-0046-2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 12/29/2022] Open
Abstract
Fungi of the Basidiomycota, representing major pathogen lineages and mushroom-forming species, exhibit diverse means to achieve sexual reproduction, with particularly varied mechanisms to determine compatibilities of haploid mating partners. For species that require mating between distinct genotypes, discrimination is usually based on both the reciprocal exchange of diffusible mating pheromones, rather than sexes, and the interactions of homeodomain protein signals after cell fusion. Both compatibility factors must be heterozygous in the product of mating, and genetic linkage relationships of the mating pheromone/receptor and homeodomain genes largely determine the complex patterns of mating-type variation. Independent segregation of the two compatibility factors can create four haploid mating genotypes from meiosis, referred to as tetrapolarity. This condition is thought to be ancestral to the basidiomycetes. Alternatively, cosegregation by linkage of the two mating factors, or in some cases the absence of the pheromone-based discrimination, yields only two mating types from meiosis, referred to as bipolarity. Several species are now known to have large and highly rearranged chromosomal regions linked to mating-type genes. At the population level, polymorphism of the mating-type genes is an exceptional aspect of some basidiomycete fungi, where selection under outcrossing for rare, intercompatible allelic variants is thought to be responsible for numbers of mating types that may reach several thousand. Advances in genome sequencing and assembly are yielding new insights by comparative approaches among and within basidiomycete species, with the promise to resolve the evolutionary origins and dynamics of mating compatibility genetics in this major eukaryotic lineage.
Collapse
Affiliation(s)
- Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, V0H 1Z0, Canada
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA 01002
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
67
|
Rodriguez-Algaba J, Sørensen CK, Labouriau R, Justesen AF, Hovmøller MS. Genetic diversity within and among aecia of the wheat rust fungus Puccinia striiformis on the alternate host Berberis vulgaris. Fungal Biol 2017; 121:541-549. [PMID: 28606349 DOI: 10.1016/j.funbio.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
An isolate of the fungus Puccinia striiformis, causing yellow (stripe) rust on cereals and grasses, was selfed on the alternate (sexual) host, Berberis vulgaris. This enabled us to investigate genetic variability of progeny isolates within and among aecia. Nine aecial clusters each consisting of an aecium (single aecial cup) and nine clusters containing multiple aecial cups were selected from 18 B. vulgaris leaves. Aeciospores from each cluster were inoculated on susceptible wheat seedlings and 64 progeny isolates were recovered. Molecular genotyping using 37 simple sequence repeat markers confirmed the parental origin of all progeny isolates. Thirteen molecular markers, which were heterozygous in the parental isolate, were used to analyse genetic diversity within and among aecial cups. The 64 progeny isolates resulted in 22 unique recombinant multilocus genotypes and none of them were resampled in different aecial clusters. Isolates derived from a single cup were always of the same genotype whereas isolates originating from clusters containing up to nine aecial cups revealed one to three genotypes per cluster. These results implied that each aecium was the result of a successful fertilization in a corresponding pycnium and that an aecium consisted of genetically identical aeciospores probably multiplied via repetitive mitotic divisions. Furthermore, the results suggested that aecia within a cluster were the result of independent fertilization events often involving genetically different pycniospores. The application of molecular markers represented a major advance in comparison to previous studies depending on phenotypic responses on host plants. The study allowed significant conclusions about fundamental aspects of the biology and genetics of an important cereal rust fungus.
Collapse
Affiliation(s)
- Julian Rodriguez-Algaba
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark.
| | - Chris K Sørensen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Rodrigo Labouriau
- Department of Mathematics, Faculty of Science and Technology, Aarhus University, Ny Munkegade 118, 8000 Aarhus, Denmark
| | - Annemarie F Justesen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Mogens S Hovmøller
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| |
Collapse
|
68
|
Unconventional Recombination in the Mating Type Locus of Heterothallic Apple Canker Pathogen Valsa mali. G3-GENES GENOMES GENETICS 2017; 7:1259-1265. [PMID: 28228472 PMCID: PMC5386874 DOI: 10.1534/g3.116.037853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sexual reproduction in filamentous ascomycetes is controlled by the mating type (MAT) locus, including two idiomorphs MAT1-1 and MAT1-2 Understanding the MAT locus can provide clues for unveiling the sexual development and virulence factors for fungal pathogens. The genus Valsa (Sordariomycetes, Diaporthales) contains many tree pathogens responsible for destructive canker diseases. The sexual stage of these ascomycetes is occasionally observed in nature, and no MAT locus has been reported to date. Here, we identified the MAT locus of the apple canker pathogen Valsa mali, which causes extensive damage, and even death, to trees. V. mali is heterothallic in that each isolate carries either the MAT1-1 or MAT1-2 idiomorph. However, the MAT structure is distinct from that of many other heterothallic fungi in the Sordariomycetes. Two flanking genes, COX13 and APN2, were coopted into the MAT locus, possibly by intrachromosomal rearrangement. After the acquisition of foreign genes, unequal recombination occurred between MAT1-1/2 idiomorphs, resulting in a reverse insertion in the MAT1-2 idiomorph. Evolutionary analysis showed that the three complete MAT1-1-2, COX13, and APN2 genes in this region diverged independently due to different selection pressure. Null hypothesis tests of a 1:1 MAT ratio of 86 V. mali isolates from four different provinces showed a relatively balanced distribution of the two idiomorphs in the fields. These results provide insights into the evolution of the mating systems in Sordariomycetes.
Collapse
|
69
|
The inhibition of mating in Phycomyces blakesleeanus by light is dependent on the MadA-MadB complex that acts in a sex-specific manner. Fungal Genet Biol 2017; 101:20-30. [PMID: 28214601 DOI: 10.1016/j.fgb.2017.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
Light is an environmental signal that influences reproduction in the Mucoromycotina fungi, as it does in many other species of fungi. Mating in Phycomyces blakesleeanus is inhibited by light, but the molecular mechanisms for this inhibition are uncharacterized. In this analysis, the role of the light-sensing MadA-MadB complex in mating was tested. The MadA-MadB complex is homologous to the Neurospora crassa White Collar complex. Three genes required for cell type determination in the sex locus or pheromone biosynthesis are transcriptionally-regulated by light and are controlled by MadA and MadB. This regulation acts through the plus partner, indicating that the inhibitory effect of light on mating is executed through only one of the two sexes. These results are an example whereby the mating types of fungi have acquired sex-specific properties beyond their role in conferring cell-type identity, and provide insight into how sex-determining chromosomal regions can expand the traits they control.
Collapse
|
70
|
Toh SS, Chen Z, Schultz DJ, Cuomo CA, Perlin MH. Transcriptional analysis of mating and pre-infection stages of the anther smut, Microbotryum lychnidis-dioicae. MICROBIOLOGY-SGM 2017; 163:410-420. [PMID: 28100297 DOI: 10.1099/mic.0.000421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbotryum lychnidis-dioicae is an obligate biotrophic parasite of the wildflower species Silene latifolia. This dikaryotic fungus, commonly known as an anther smut, requires that haploid, yeast-like sporidia of opposite mating types fuse and differentiate into dikaryotic hyphae that penetrate host tissue as part of the fungal life cycle. Mating occurs under conditions of cool temperatures and limited nutrients. Further development requires host cues or chemical mimics, including a variety of lipids, e.g. phytols. To identify global changes in transcription associated with developmental shifts, RNA-Seq was conducted at several in vitro stages of fungal propagation, i.e. haploid cells grown independently on rich and nutrient-limited media, mated cells on nutrient-limited media as well as a time course of such mated cells exposed to phytol. Comparison of haploid cells grown under rich and nutrient-limited conditions identified classes of genes probably associated with general nutrient availability, including components of the RNAi machinery. Some gene enrichment patterns comparing the nutrient-limited and mated transcriptomes suggested gene expression changes associated with the mating programme (e.g. homeodomain binding proteins, secreted proteins, proteins unique to M. lychnidis-dioicae¸ multicopper oxidases and RhoGEFs). Analysis for phytol treatment compared with mated cells alone allowed identification of genes likely to be involved in the dikaryotic switch (e.g. oligopeptide transporters). Gene categories of particular note in all three conditions included those in the major facilitator superfamily, proteins containing PFAM domains of the secretory lipase family as well as proteins predicted to be secreted, many of which have the hallmarks of fungal effectors with potential roles in pathogenicity.
Collapse
Affiliation(s)
- Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA.,Present address: DSO National Laboratories, Defence Medical and Environmental Research Institute, Singapore
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Present address: WuXi NextCODE, Cambridge, MA, USA
| | - David J Schultz
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA
| | | | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
71
|
Ravigné V, Lemesle V, Walter A, Mailleret L, Hamelin FM. Mate Limitation in Fungal Plant Parasites Can Lead to Cyclic Epidemics in Perennial Host Populations. Bull Math Biol 2017; 79:430-447. [PMID: 28091971 DOI: 10.1007/s11538-016-0240-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Fungal plant parasites represent a growing concern for biodiversity and food security. Most ascomycete species are capable of producing different types of infectious spores both asexually and sexually. Yet the contributions of both types of spores to epidemiological dynamics have still to been fully researched. Here we studied the effect of mate limitation in parasites which perform both sexual and asexual reproduction in the same host. Since mate limitation implies positive density dependence at low population density, we modeled the dynamics of such species with both density-dependent (sexual) and density-independent (asexual) transmission rates. A first simple SIR model incorporating these two types of transmission from the infected compartment, suggested that combining sexual and asexual spore production can generate persistently cyclic epidemics in a significant part of the parameter space. It was then confirmed that cyclic persistence could occur in realistic situations by parameterizing a more detailed model fitting the biology of the Black Sigatoka disease of banana, for which literature data are available. We discuss the implications of these results for research on and management of Sigatoka diseases of banana.
Collapse
Affiliation(s)
- Virginie Ravigné
- UMR BGPI, CIRAD, 34398, Montpellier, France. .,UMR PVBMT, CIRAD, 97410, Saint Pierre, Réunion, France.
| | | | - Alicia Walter
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, 35000, Rennes, France
| | - Ludovic Mailleret
- INRA, CNRS, ISA, Université Côte d'Azur, 06903, Sophia Antipolis, France.,Inria, INRA, CNRS, UPMC Univ. Paris 06, Université Côte d'Azur, 06902, Sophia Antipolis, France
| | - Frédéric M Hamelin
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, 35000, Rennes, France
| |
Collapse
|
72
|
Lehtonen J, Kokko H, Parker GA. What do isogamous organisms teach us about sex and the two sexes? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150532. [PMID: 27619696 PMCID: PMC5031617 DOI: 10.1098/rstb.2015.0532] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 11/12/2022] Open
Abstract
Isogamy is a reproductive system where all gametes are morphologically similar, especially in terms of size. Its importance goes beyond specific cases: to this day non-anisogamous systems are common outside of multicellular animals and plants, they can be found in all eukaryotic super-groups, and anisogamous organisms appear to have isogamous ancestors. Furthermore, because maleness is synonymous with the production of small gametes, an explanation for the initial origin of males and females is synonymous with understanding the transition from isogamy to anisogamy. As we show here, this transition may also be crucial for understanding why sex itself remains common even in taxa with high costs of male production (the twofold cost of sex). The transition to anisogamy implies the origin of male and female sexes, kickstarts the subsequent evolution of sex roles, and has a major impact on the costliness of sexual reproduction. Finally, we combine some of the consequences of isogamy and anisogamy in a thought experiment on the maintenance of sexual reproduction. We ask what happens if there is a less than twofold benefit to sex (not an unlikely scenario as large short-term benefits have proved difficult to find), and argue that this could lead to a situation where lineages that evolve anisogamy-and thus the highest costs of sex-end up being associated with constraints that make invasion by asexual reproduction unlikely (the 'anisogamy gateway' hypothesis).This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Jussi Lehtonen
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Geoff A Parker
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
73
|
Nieuwenhuis BPS, Immler S. The evolution of mating-type switching for reproductive assurance. Bioessays 2016; 38:1141-1149. [DOI: 10.1002/bies.201600139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Simone Immler
- Department of Evolutionary Biology; Uppsala University; Uppsala Sweden
| |
Collapse
|
74
|
Gorelick R, Carpinone J, Derraugh LJ. No universal differences between female and male eukaryotes: anisogamy and asymmetrical female meiosis. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Root Gorelick
- Department of Biology; Carleton University; 1125 Raven Road Ottawa Ontario K1S 5B6 Canada
- School of Mathematics & Statistics and Institute of Interdisciplinary Studies; Carleton University; 1125 Raven Road Ottawa Ontario K1S 5B6 Canada
| | - Jessica Carpinone
- Department of Biology; Carleton University; 1125 Raven Road Ottawa Ontario K1S 5B6 Canada
| | | |
Collapse
|
75
|
Increased frequency of self-fertile isolates in Phytophthora infestans may attribute to their higher fitness relative to the A1 isolates. Sci Rep 2016; 6:29428. [PMID: 27384813 PMCID: PMC4935937 DOI: 10.1038/srep29428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023] Open
Abstract
Knowledge of population dynamics of mating types is important for better understanding pathogen's evolutionary potential and sustainable management of natural and chemical resources such as host resistances and fungicides. In this study, 2250 Phytophthora infestans isolates sampled from 61 fields across China were assayed for spatiotemporal dynamics of mating type frequency. Self-fertile isolates dominated in ~50% of populations and all but one cropping region with an average frequency of 0.64 while no A2 isolates were detected. Analyses of 140 genotypes consisting of 82 self-fertile and 58 A1 isolates indicated that on average self-fertile isolates grew faster, demonstrated higher aggressiveness and were more tolerant to fungicides than A1 isolates; Furthermore, pattern of association between virulence complexity (defined as the number of differential cultivars on which an isolate can induce disease) and frequency was different in the two mating types. In A1 isolates, virulence complexity was negatively correlated (r = -0.515, p = 0.043) with frequency but this correlation was positive (r = 0.532, p = 0.037) in self-fertile isolates. Our results indicate a quick increase of self-fertile isolates possibly attributable to their higher fitness relative to A1 mating type counterpart in the field populations of P. infestans in China.
Collapse
|
76
|
Hadjivasiliou Z, Pomiankowski A, Kuijper B. The evolution of mating type switching. Evolution 2016; 70:1569-81. [PMID: 27271362 PMCID: PMC5008120 DOI: 10.1111/evo.12959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023]
Abstract
Predictions about the evolution of sex determination mechanisms have mainly focused on animals and plants, whereas unicellular eukaryotes such as fungi and ciliates have received little attention. Many taxa within the latter groups can stochastically switch their mating type identity during vegetative growth. Here, we investigate the hypothesis that mating type switching overcomes distortions in the distribution of mating types due to drift during asexual growth. Using a computational model, we show that smaller population size, longer vegetative periods and more mating types lead to greater distortions in the distribution of mating types. However, the impact of these parameters on optimal switching rates is not straightforward. We find that longer vegetative periods cause reductions and considerable fluctuations in the switching rate over time. Smaller population size increases the strength of selection for switching but has little impact on the switching rate itself. The number of mating types decreases switching rates when gametes can freely sample each other, but increases switching rates when there is selection for speedy mating. We discuss our results in light of empirical work and propose new experiments that could further our understanding of sexuality in isogamous eukaryotes.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- CoMPLEX, Centre for Mathematics and Physics in the Life sciences and Experimental biology, University College London, Gower Street, London, United Kingdom. .,Department of Genetics, Evolution and Environment, University College London, Gower Street, London, United Kingdom.
| | - Andrew Pomiankowski
- CoMPLEX, Centre for Mathematics and Physics in the Life sciences and Experimental biology, University College London, Gower Street, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, Gower Street, London, United Kingdom
| | - Bram Kuijper
- CoMPLEX, Centre for Mathematics and Physics in the Life sciences and Experimental biology, University College London, Gower Street, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, Gower Street, London, United Kingdom
| |
Collapse
|
77
|
Limits to Adaptation in Partially Selfing Species. Genetics 2016; 203:959-74. [PMID: 27098913 DOI: 10.1534/genetics.116.188821] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/15/2016] [Indexed: 12/26/2022] Open
Abstract
In outcrossing populations, "Haldane's sieve" states that recessive beneficial alleles are less likely to fix than dominant ones, because they are less exposed to selection when rare. In contrast, selfing organisms are not subject to Haldane's sieve and are more likely to fix recessive types than outcrossers, as selfing rapidly creates homozygotes, increasing overall selection acting on mutations. However, longer homozygous tracts in selfers also reduce the ability of recombination to create new genotypes. It is unclear how these two effects influence overall adaptation rates in partially selfing organisms. Here, we calculate the fixation probability of beneficial alleles if there is an existing selective sweep in the population. We consider both the potential loss of the second beneficial mutation if it has a weaker advantage than the first one, and the possible replacement of the initial allele if the second mutant is fitter. Overall, loss of weaker adaptive alleles during a first selective sweep has a larger impact on preventing fixation of both mutations in highly selfing organisms. Furthermore, the presence of linked mutations has two opposing effects on Haldane's sieve. First, recessive mutants are disproportionally likely to be lost in outcrossers, so it is likelier that dominant mutations will fix. Second, with elevated rates of adaptive mutation, selective interference annuls the advantage in selfing organisms of not suffering from Haldane's sieve; outcrossing organisms are more able to fix weak beneficial mutations of any dominance value. Overall, weakened recombination effects can greatly limit adaptation in selfing organisms.
Collapse
|
78
|
Douglas TE, Strassmann JE, Queller DC. Sex ratio and gamete size across eastern North America in
Dictyostelium discoideum,
a social amoeba with three sexes. J Evol Biol 2016; 29:1298-306. [DOI: 10.1111/jeb.12871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/22/2016] [Accepted: 03/25/2016] [Indexed: 01/17/2023]
Affiliation(s)
- T. E. Douglas
- Department of Biology Washington University in St. Louis St. Louis MO USA
| | - J. E. Strassmann
- Department of Biology Washington University in St. Louis St. Louis MO USA
| | - D. C. Queller
- Department of Biology Washington University in St. Louis St. Louis MO USA
| |
Collapse
|
79
|
Zimmerman KCK, Levitis DA, Pringle A. Beyond animals and plants: dynamic maternal effects in the fungus Neurospora crassa. J Evol Biol 2016; 29:1379-93. [PMID: 27062053 DOI: 10.1111/jeb.12878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/05/2016] [Indexed: 11/28/2022]
Abstract
Maternal effects are widely documented in animals and plants, but not in fungi or other eukaryotes. A principal cause of maternal effects is asymmetrical parental investment in a zygote, creating greater maternal vs. paternal influence on offspring phenotypes. Asymmetrical investments are not limited to animals and plants, but are also prevalent in fungi and groups including apicomplexans, dinoflagellates and red algae. Evidence suggesting maternal effects among fungi is sparse and anecdotal. In an experiment designed to test for maternal effects across sexual reproduction in the model fungus Neurospora crassa, we measured offspring phenotypes from crosses of all possible pairs of 22 individuals. Crosses encompassed reciprocals of 11 mating-type 'A' and 11 mating-type 'a' wild strains. After controlling for the genetic and geographic distances between strains in any individual cross, we found strong evidence for maternal control of perithecia (sporocarp) production, as well as maternal effects on spore numbers and spore germination. However, both parents exert equal influence on the percentage of spores that are pigmented and size of pigmented spores. We propose a model linking the stage-specific presence or absence of maternal effects to cellular developmental processes: effects appear to be mediated primarily through the maternal cytoplasm, and, after spore cell walls form, maternal influence on spore development is limited. Maternal effects in fungi, thus far largely ignored, are likely to shape species' evolution and ecologies. Moreover, the association of anisogamy and maternal effects in a fungus suggests maternal effects may also influence the biology of other anisogamous eukaryotes.
Collapse
Affiliation(s)
- K C K Zimmerman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - D A Levitis
- Department of Biology, Bates College, Lewiston, ME, USA
| | - A Pringle
- Departments of Botany and Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
80
|
Hamelin FM, Castella F, Doli V, Marçais B, Ravigné V, Lewis MA. Mate Finding, Sexual Spore Production, and the Spread of Fungal Plant Parasites. Bull Math Biol 2016; 78:695-712. [DOI: 10.1007/s11538-016-0157-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/14/2016] [Indexed: 12/25/2022]
|
81
|
Menat J, Armstrong-Cho C, Banniza S. Lack of evidence for sexual reproduction in field populations of Colletotrichum lentis. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2015.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
82
|
Valentova JV, Varella MAC. Further Steps Toward a Truly Integrative Theory of Sexuality. ARCHIVES OF SEXUAL BEHAVIOR 2016; 45:517-520. [PMID: 26395464 DOI: 10.1007/s10508-015-0630-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Jaroslava Varella Valentova
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo (USP), São Paulo, 05508-030, Brazil.
| | - Marco Antonio Corrêa Varella
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo (USP), São Paulo, 05508-030, Brazil
| |
Collapse
|
83
|
|
84
|
|
85
|
James TY. Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
86
|
Idnurm A, Hood ME, Johannesson H, Giraud T. Contrasted patterns in mating-type chromosomes in fungi: hotspots versus coldspots of recombination. FUNGAL BIOL REV 2015; 29:220-229. [PMID: 26688691 PMCID: PMC4680991 DOI: 10.1016/j.fbr.2015.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is striking that, while central to sexual reproduction, the genomic regions determining sex or mating-types are often characterized by suppressed recombination that leads to a decrease in the efficiency of selection, shelters genetic load, and inevitably contributes to their genic degeneration. Research on model and lesser-explored fungi has revealed similarities in recombination suppression of the genomic regions involved in mating compatibility across eukaryotes, but fungi also provide opposite examples of enhanced recombination in the genomic regions that determine their mating types. These contrasted patterns of genetic recombination (sensu lato, including gene conversion and ectopic recombination) in regions of the genome involved in mating compatibility point to important yet complex processes occurring in their evolution. A number of pieces in this puzzle remain to be solved, in particular on the unclear selective forces that may cause the patterns of recombination, prompting theoretical developments and experimental studies. This review thus points to fungi as a fascinating group for studying the various evolutionary forces at play in the genomic regions involved in mating compatibility.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, VIC 3010, Australia
| | - Michael E. Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002 USA
| | - Hanna Johannesson
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution, UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360, Université Paris-Sud, 91405 Orsay cedex, France
| |
Collapse
|
87
|
Rocha de Brito M, Foulongne-Oriol M, Moinard M, Souza Dias E, Savoie JM, Callac P. Spore behaviors reveal a category of mating-competent infertile heterokaryons in the offspring of the medicinal fungus Agaricus subrufescens. Appl Microbiol Biotechnol 2015; 100:781-96. [DOI: 10.1007/s00253-015-7070-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
|
88
|
Hood ME, Scott M, Hwang M. Breaking linkage between mating compatibility factors: Tetrapolarity in Microbotryum. Evolution 2015; 69:2561-72. [PMID: 26339889 DOI: 10.1111/evo.12765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/02/2015] [Indexed: 12/31/2022]
Abstract
Linkage of genes determining separate self-incompatibility mechanisms is a general expectation of sexual eukaryotes that helps to resolve conflicts between reproductive assurance and recombination. However, in some organisms, multiple loci are required to be heterozygous in offspring while segregating independently in meiosis. This condition, termed "tetrapolarity" in basidiomycete fungi, originated in the ancestor to that phylum, and there have been multiple reports of subsequent transitions to "bipolarity" (i.e., linkage of separate mating factors). In the genus Microbotryum, we present the first report of the breaking of linkage between two haploid self-incompatibility factors and derivation of a tetrapolar breeding system. This breaking of linkage is associated with major alteration of genome structure, with the compatibility factors residing on separate mating-type chromosome pairs, reduced in size but retaining the structural dimorphism characteristic for regions of recombination suppression. The challenge to reproductive assurance from unlinked compatibility factors may be overcome by the automictic mating system in Microbotryum (i.e., mating among products of the same meiosis). As a curious outcome, this linkage transition and its effects upon outcrossing compatibility rates may reinforce automixis as a mating system. These observations contribute to understanding mating systems and linkage as fundamental principles of sexual life cycles, with potential impacts on conventional wisdom regarding mating-type evolution.
Collapse
Affiliation(s)
- Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002.
| | - Molly Scott
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002
| | - Mindy Hwang
- Department of Biology, Amherst College, Amherst, Massachusetts, 01002
| |
Collapse
|
89
|
Grognet P, Silar P. Maintaining heterokaryosis in pseudo-homothallic fungi. Commun Integr Biol 2015; 8:e994382. [PMID: 26479494 PMCID: PMC4594319 DOI: 10.4161/19420889.2014.994382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/06/2014] [Indexed: 01/09/2023] Open
Abstract
Among all the strategies displayed by fungi to reproduce and propagate, some species have adopted a peculiar behavior called pseudo-homothallism. Pseudo-homothallic fungi are true heterothallics, i.e., they need 2 genetically-compatible partners to mate, but they produce self-fertile mycelium in which the 2 different nuclei carrying the compatible mating types are present. This lifestyle not only enables the fungus to reproduce without finding a compatible partner, but also to cross with any mate it may encounter. However, to be fully functional, pseudo-homothallism requires maintaining heterokaryosis at every stage of the life cycle. We recently showed that neither the structure of the mating-type locus nor hybrid-enhancing effect due to the presence of the 2 mating types accounts for the maintenance of heterokaryosis in the pseudo-homothallic fungus P. anserina. In this addendum, we summarize the mechanisms creating heterokaryosis in P. anserina and 2 other well-known pseudo-homothallic fungi, Neurospora tetrasperma and Agaricus bisporus. We also discuss mechanisms potentially involved in maintaining heterokaryosis in these 3 species.
Collapse
Affiliation(s)
- Pierre Grognet
- Univ Paris Diderot; Sorbonne Paris Cité; Institut des Energies de Demain ; Paris, France
| | - Philippe Silar
- Univ Paris Diderot; Sorbonne Paris Cité; Institut des Energies de Demain ; Paris, France
| |
Collapse
|
90
|
Xu L, Petit E, Hood ME. Variation in mate-recognition pheromones of the fungal genus Microbotryum. Heredity (Edinb) 2015; 116:44-51. [PMID: 26306729 PMCID: PMC4675872 DOI: 10.1038/hdy.2015.68] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/05/2015] [Accepted: 06/09/2015] [Indexed: 11/24/2022] Open
Abstract
Mate recognition is an essential life-cycle stage that exhibits strong conservation in function, whereas diversification of mating signals can contribute directly to the integrity of species boundaries through assortative mating. Fungi are simple models, where compatibility is based on the recognition of pheromone peptides by corresponding receptor proteins, but clear patterns of diversification have not emerged from the species examined, which are few compared with mate signaling studies in plant and animal systems. In this study, candidate loci from Microbotryum species were used to characterize putative pheromones that were synthesized and found to be functional across multiple species in triggering a mating response in vitro. There is no significant correlation between the strength of a species' response and its genetic distance from the pheromone sequence source genome. Instead, evidence suggests that species may be strong or weak responders, influenced by environmental conditions or developmental differences. Gene sequence comparisons reveals very strong purifying selection on the a1 pheromone peptide and corresponding receptor, but significantly less purifying selection on the a2 pheromone peptide that corresponds with more variation across species in the receptor. This represents an exceptional case of a reciprocally interacting mate-recognition system in which the two mating types are under different levels of purifying selection.
Collapse
Affiliation(s)
- L Xu
- Department of Biology, Amherst College, Amherst, MA, USA
| | - E Petit
- Department of Biology, Amherst College, Amherst, MA, USA
| | - M E Hood
- Department of Biology, Amherst College, Amherst, MA, USA
| |
Collapse
|
91
|
Hadjivasiliou Z, Iwasa Y, Pomiankowski A. Cell-cell signalling in sexual chemotaxis: a basis for gametic differentiation, mating types and sexes. J R Soc Interface 2015; 12:20150342. [PMID: 26156301 PMCID: PMC4535405 DOI: 10.1098/rsif.2015.0342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022] Open
Abstract
While sex requires two parents, there is no obvious need for them to be differentiated into distinct mating types or sexes. Yet this is the predominate state of nature. Here, we argue that mating types could play a decisive role because they prevent the apparent inevitability of self-stimulation during sexual signalling. We rigorously assess this hypothesis by developing a model for signaller-detector dynamics based on chemical diffusion, chemotaxis and cell movement. Our model examines the conditions under which chemotaxis improves partner finding. Varying parameter values within ranges typical of protists and their environments, we show that simultaneous secretion and detection of a single chemoattractant can cause a multifold movement impediment and severely hinder mate finding. Mutually exclusive roles result in faster pair formation, even when cells conferring the same roles cannot pair up. This arrangement also allows the separate mating types to optimize their signalling or detecting roles, which is effectively impossible for cells that are both secretors and detectors. Our findings suggest that asymmetric roles in sexual chemotaxis (and possibly other forms of sexual signalling) are crucial, even without morphological differences, and may underlie the evolution of gametic differentiation among both mating types and sexes.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Yoh Iwasa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Andrew Pomiankowski
- Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
92
|
Evolution of Mating Systems in Basidiomycetes and the Genetic Architecture Underlying Mating-Type Determination in the Yeast Leucosporidium scottii. Genetics 2015; 201:75-89. [PMID: 26178967 DOI: 10.1534/genetics.115.177717] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
In most fungi, sexual reproduction is bipolar; that is, two alternate sets of genes at a single mating-type (MAT) locus determine two mating types. However, in the Basidiomycota, a unique (tetrapolar) reproductive system emerged in which sexual identity is governed by two unlinked MAT loci, each of which controls independent mechanisms of self/nonself recognition. Tetrapolar-to-bipolar transitions have occurred on multiple occasions in the Basidiomycota, resulting, for example, from linkage of the two MAT loci into a single inheritable unit. Nevertheless, owing to the scarcity of molecular data regarding tetrapolar systems in the earliest-branching lineage of the Basidiomycota (subphylum Pucciniomycotina), it is presently unclear if the last common ancestor was tetrapolar or bipolar. Here, we address this question, by investigating the mating system of the Pucciniomycotina yeast Leucosporidium scottii. Using whole-genome sequencing and chromoblot analysis, we discovered that sexual reproduction is governed by two physically unlinked gene clusters: a multiallelic homeodomain (HD) locus and a pheromone/receptor (P/R) locus that is biallelic, thereby dismissing the existence of a third P/R allele as proposed earlier. Allele distribution of both MAT genes in natural populations showed that the two loci were in strong linkage disequilibrium, but independent assortment of MAT alleles was observed in the meiotic progeny of a test cross. The sexual cycle produces fertile progeny with similar proportions of the four mating types, but approximately 2/3 of the progeny was found to be nonhaploid. Our study adds to others in reinforcing tetrapolarity as the ancestral state of all basidiomycetes.
Collapse
|
93
|
Wang P, Zhang Y, Mi F, Tang X, He X, Cao Y, Liu C, Yang D, Dong J, Zhang K, Xu J. Recent advances in population genetics of ectomycorrhizal mushrooms Russula spp. Mycology 2015; 6:110-120. [PMID: 30151319 PMCID: PMC6106078 DOI: 10.1080/21501203.2015.1062810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022] Open
Abstract
The mushroom genus Russula is among the largest and morphologically most diverse basidiomycete genera in the world. They are broadly distributed both geographically and ecologically, forming ectomycorrhizal relationships with a diversity of plants. Aside from their ecological roles, some Russula species are gourmet mushrooms. Therefore, understanding their population biology and fundamental life history processes are important for illustrating their ecological roles and for developing effective conservation and utilization strategies. Here, we review recent population genetic and molecular ecological studies of Russula. We focus on issues related to genet sizes, modes of reproduction, population structures, and roles of geography on their genetic relationships. The sampling strategies, molecule markers, and analytical approaches used in these studies will also be discussed. Our review suggests that in Russula, genets are typically small, local recombination is frequent, and that long-distance spore dispersal is relatively uncommon. We finish by discussing several long-standing issues as well as future trends with regard to life history and evolution of this important group of mushrooms.
Collapse
Affiliation(s)
- Pengfei Wang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, PR China
| | - Ying Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, PR China
| | - Fei Mi
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, PR China
| | - Xiaozhao Tang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, PR China
| | - Xiaoxia He
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, PR China
| | - Yang Cao
- Yunnan Institute for Tropical Crop Research, Jinghong, Yunnan, PR China
| | - Chunli Liu
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, PR China
| | - Dan Yang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, PR China
| | - Jianyong Dong
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, PR China
| | - Keqing Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, PR China
| | - Jianping Xu
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, PR China
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
94
|
Perlin MH, Amselem J, Fontanillas E, Toh SS, Chen Z, Goldberg J, Duplessis S, Henrissat B, Young S, Zeng Q, Aguileta G, Petit E, Badouin H, Andrews J, Razeeq D, Gabaldón T, Quesneville H, Giraud T, Hood ME, Schultz DJ, Cuomo CA. Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus. BMC Genomics 2015; 16:461. [PMID: 26076695 PMCID: PMC4469406 DOI: 10.1186/s12864-015-1660-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
Background The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development. Results We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14 % of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions. Conclusions The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1660-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Joelle Amselem
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France. .,Institut National de la Recherche Agronomique (INRA), Biologie et gestion des risques en agriculture (BIOGER), Thiverval-Grignon, France.
| | - Eric Fontanillas
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - Sebastien Duplessis
- INRA, UMR 1136, Interactions Arbres-Microorganismes, Champenoux, France. .,UMR 1136, Université de Lorraine, Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France.
| | - Bernard Henrissat
- Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France. .,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - Elsa Petit
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France. .,Centre National de la Recherche Scientifique (CNRS), UMR7257, Université Aix-Marseille, 13288, Marseille, France.
| | - Helene Badouin
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Jared Andrews
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Dominique Razeeq
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana d'Estudis Avançats (ICREA), Barcelona, Spain.
| | - Hadi Quesneville
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Génomique Info (URGI), Versailles, France.
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, F-91405, Orsay, France. .,CNRS, F-91405, Orsay, France.
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, MA, 01002, USA.
| | - David J Schultz
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, KY, 40292, USA.
| | | |
Collapse
|
95
|
Chaos of Rearrangements in the Mating-Type Chromosomes of the Anther-Smut Fungus Microbotryum lychnidis-dioicae. Genetics 2015; 200:1275-84. [PMID: 26044594 PMCID: PMC4574255 DOI: 10.1534/genetics.115.177709] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/02/2015] [Indexed: 12/02/2022] Open
Abstract
Sex chromosomes in plants and animals and fungal mating-type chromosomes often show exceptional genome features, with extensive suppression of homologous recombination and cytological differentiation between members of the diploid chromosome pair. Despite strong interest in the genetics of these chromosomes, their large regions of suppressed recombination often are enriched in transposable elements and therefore can be challenging to assemble. Here we show that the latest improvements of the PacBio sequencing yield assembly of the whole genome of the anther-smut fungus, Microbotryum lychnidis-dioicae (the pathogenic fungus causing anther-smut disease of Silene latifolia), into finished chromosomes or chromosome arms, even for the repeat-rich mating-type chromosomes and centromeres. Suppressed recombination of the mating-type chromosomes is revealed to span nearly 90% of their lengths, with extreme levels of rearrangements, transposable element accumulation, and differentiation between the two mating types. We observed no correlation between allelic divergence and physical position in the nonrecombining regions of the mating-type chromosomes. This may result from gene conversion or from rearrangements of ancient evolutionary strata, i.e., successive steps of suppressed recombination. Centromeres were found to be composed mainly of copia-like transposable elements and to possess specific minisatellite repeats identical between the different chromosomes. We also identified subtelomeric motifs. In addition, extensive signs of degeneration were detected in the nonrecombining regions in the form of transposable element accumulation and of hundreds of gene losses on each mating-type chromosome. Furthermore, our study highlights the potential of the latest breakthrough PacBio chemistry to resolve complex genome architectures.
Collapse
|
96
|
Van de Paer C, Saumitou-Laprade P, Vernet P, Billiard S. The joint evolution and maintenance of self-incompatibility with gynodioecy or androdioecy. J Theor Biol 2015; 371:90-101. [PMID: 25681148 DOI: 10.1016/j.jtbi.2015.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
Mating systems show two kinds of frequent transitions: from hermaphroditism to dioecy, gynodioecy or androdioecy, or from self-incompatibility (SI) to self-compatibility (SC). While models have mostly investigated these two kinds of transitions as independent, empirical observations suggest that, to some extent, they can evolve jointly. Here, we study the joint evolution and maintenance of SI and androdioecy or SI and gynodioecy by the means of phenotypic models. Our models focus on three parameters: the unisexuals׳ advantage relative to that of the hermaphrodites due to resource reallocation, inbreeding depression and the selfing rate. We assume no pollen limitation or discounting. We show that SI helps the maintenance of androdioecy, but favors the loss of gynodioecy, and also that androdioecy facilitates the maintenance of SI, whereas gynodioecy does not affect it. We finally investigate how gynodioecy and androdioecy may affect the diversification of SI groups, especially considering an evolutionary pathway through SC intermediates. We show that while androdioecy prevents the increase of the number of SI groups, under certain conditions of inbreeding depression and selfing rates, gynodioecy allows it.
Collapse
Affiliation(s)
- Céline Van de Paer
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| | - Pierre Saumitou-Laprade
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| | - Philippe Vernet
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| | - Sylvain Billiard
- Unité (EEP), Université des Sciences et Technologies Lille 1, Cité scientifique, 59655 Villeneuve d׳Ascq Cedex, France.
| |
Collapse
|
97
|
Fontanillas E, Hood ME, Badouin H, Petit E, Barbe V, Gouzy J, de Vienne DM, Aguileta G, Poulain J, Wincker P, Chen Z, Toh SS, Cuomo CA, Perlin MH, Gladieux P, Giraud T. Degeneration of the nonrecombining regions in the mating-type chromosomes of the anther-smut fungi. Mol Biol Evol 2015; 32:928-43. [PMID: 25534033 PMCID: PMC4379399 DOI: 10.1093/molbev/msu396] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dimorphic mating-type chromosomes in fungi are excellent models for understanding the genomic consequences of recombination suppression. Their suppressed recombination and reduced effective population size are expected to limit the efficacy of natural selection, leading to genomic degeneration. Our aim was to identify the sequences of the mating-type chromosomes (a1 and a2) of the anther-smut fungi and to investigate degeneration in their nonrecombining regions. We used the haploid a1 Microbotryum lychnidis-dioicae reference genome sequence. The a1 and a2 mating-type chromosomes were both isolated electrophoretically and sequenced. Integration with restriction-digest optical maps identified regions of recombination and nonrecombination in the mating-type chromosomes. Genome sequence data were also obtained for 12 other Microbotryum species. We found strong evidence of degeneration across the genus in the nonrecombining regions of the mating-type chromosomes, with significantly higher rates of nonsynonymous substitution (dN/dS) than in nonmating-type chromosomes or in recombining regions of the mating-type chromosomes. The nonrecombining regions of the mating-type chromosomes also showed high transposable element content, weak gene expression, and gene losses. The levels of degeneration did not differ between the a1 and a2 mating-type chromosomes, consistent with the lack of homogametic/heterogametic asymmetry between them, and contrasting with X/Y or Z/W sex chromosomes.
Collapse
Affiliation(s)
- Eric Fontanillas
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| | | | - Hélène Badouin
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| | - Elsa Petit
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France Department of Biology, Amherst College
| | - Valérie Barbe
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Jérôme Gouzy
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Damien M de Vienne
- Laboratoire de Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5558, Université Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gabriela Aguileta
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France CNRS UMR 8030, Evry, France
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Su San Toh
- Department of Biology, Program on Disease Evolution, University of Louisville
| | | | - Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville
| | - Pierre Gladieux
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, Bâtiment 360, Université Paris-Sud, Orsay, France CNRS, Orsay, France
| |
Collapse
|
98
|
Billiard S, Husse L, Lepercq P, Godé C, Bourceaux A, Lepart J, Vernet P, Saumitou-Laprade P. Selfish male-determining element favors the transition from hermaphroditism to androdioecy. Evolution 2015; 69:683-93. [PMID: 25643740 DOI: 10.1111/evo.12613] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 01/09/2015] [Indexed: 11/28/2022]
Abstract
According to the current, widely accepted paradigm, the evolutionary transition from hermaphroditism toward separate sexes occurs in two successive steps: an initial, intermediate step in which unisexual individuals, male or female, sterility mutants coexist with hermaphrodites and a final step that definitively establishes dioecy. Two nonexclusive processes can drive this transition: inbreeding avoidance and reallocation of resources from one sexual function to the other. Here, we report results of controlled crosses between males and hermaphrodites in Phillyrea angustifolia, an androdioecious species with two mutually intercompatible, but intraincompatible groups of hermaphrodites. We observed different segregation patterns that can be explained by: (1) epistatic interactions between two unlinked diallelic loci, determining sex and mating compatibility, and (2) a mutation with pleiotropic effects: female sterility, full compatibility of males with both hermaphrodite incompatibility groups, and complete male-biased sex-ratio distortion in one of the two groups. Modeling shows that these mechanisms can explain the high frequency of males in populations of P. angustifolia and can promote the maintenance of androdioecy without requiring inbreeding depression or resource reallocation. We thus argue that segregation distortion establishes the right conditions for the evolution of cryptic dioecy and potentially initiates the evolution toward separate sexes.
Collapse
Affiliation(s)
- Sylvain Billiard
- Unité Evolution, Ecologie et Paléontologie (EEP), UMR CNRS 8198, Université des Sciences et Technologies de Lille-Lille1, F-59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Why the DNA-containing organelles, chloroplasts, and mitochondria, are inherited maternally is a long standing and unsolved question. However, recent years have seen a paradigm shift, in that the absoluteness of uniparental inheritance is increasingly questioned. Here, we review the field and propose a unifying model for organelle inheritance. We argue that the predominance of the maternal mode is a result of higher mutational load in the paternal gamete. Uniparental inheritance evolved from relaxed organelle inheritance patterns because it avoids the spread of selfish cytoplasmic elements. However, on evolutionary timescales, uniparentally inherited organelles are susceptible to mutational meltdown (Muller's ratchet). To prevent this, fall-back to relaxed inheritance patterns occurs, allowing low levels of sexual organelle recombination. Since sexual organelle recombination is insufficient to mitigate the effects of selfish cytoplasmic elements, various mechanisms for uniparental inheritance then evolve again independently. Organelle inheritance must therefore be seen as an evolutionary unstable trait, with a strong general bias to the uniparental, maternal, mode.
Collapse
Affiliation(s)
- Stephan Greiner
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Johanna Sobanski
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| |
Collapse
|
100
|
Ahmed S, Cock JM, Pessia E, Luthringer R, Cormier A, Robuchon M, Sterck L, Peters AF, Dittami SM, Corre E, Valero M, Aury JM, Roze D, Van de Peer Y, Bothwell J, Marais GAB, Coelho SM. A haploid system of sex determination in the brown alga Ectocarpus sp. Curr Biol 2014; 24:1945-57. [PMID: 25176635 DOI: 10.1016/j.cub.2014.07.042] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/11/2014] [Accepted: 07/15/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND A common feature of most genetic sex-determination systems studied so far is that sex is determined by nonrecombining genomic regions, which can be of various sizes depending on the species. These regions have evolved independently and repeatedly across diverse groups. A number of such sex-determining regions (SDRs) have been studied in animals, plants, and fungi, but very little is known about the evolution of sexes in other eukaryotic lineages. RESULTS We report here the sequencing and genomic analysis of the SDR of Ectocarpus, a brown alga that has been evolving independently from plants, animals, and fungi for over one giga-annum. In Ectocarpus, sex is expressed during the haploid phase of the life cycle, and both the female (U) and the male (V) sex chromosomes contain nonrecombining regions. The U and V of this species have been diverging for more than 70 mega-annum, yet gene degeneration has been modest, and the SDR is relatively small, with no evidence for evolutionary strata. These features may be explained by the occurrence of strong purifying selection during the haploid phase of the life cycle and the low level of sexual dimorphism. V is dominant over U, suggesting that femaleness may be the default state, adopted when the male haplotype is absent. CONCLUSIONS The Ectocarpus UV system has clearly had a distinct evolutionary trajectory not only to the well-studied XY and ZW systems but also to the UV systems described so far. Nonetheless, some striking similarities exist, indicating remarkable universality of the underlying processes shaping sex chromosome evolution across distant lineages.
Collapse
Affiliation(s)
- Sophia Ahmed
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France; Medical Biology Centre, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - J Mark Cock
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Eugenie Pessia
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Centre National de la Recherche Scientifique, Université Lyon 1, 69622 Villeurbanne, France
| | - Remy Luthringer
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Alexandre Cormier
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Marine Robuchon
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France; Evolutionary Biology and Ecology of Algae, CNRS UMI 3604, Sorbonne Université, UPMC, PUCCh, UACH, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Lieven Sterck
- Department of Plant Systems Biology (VIB) and Department of Plant Biotechnology and Bioinformatics (Ghent University), Technologiepark 927, 9052 Gent, Belgium
| | | | - Simon M Dittami
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Erwan Corre
- ABiMS Platform, FR2424, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Myriam Valero
- Evolutionary Biology and Ecology of Algae, CNRS UMI 3604, Sorbonne Université, UPMC, PUCCh, UACH, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 91000 Evry, France
| | - Denis Roze
- Evolutionary Biology and Ecology of Algae, CNRS UMI 3604, Sorbonne Université, UPMC, PUCCh, UACH, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Yves Van de Peer
- Department of Plant Systems Biology (VIB) and Department of Plant Biotechnology and Bioinformatics (Ghent University), Technologiepark 927, 9052 Gent, Belgium; Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria 0028, South Africa
| | - John Bothwell
- Medical Biology Centre, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Gabriel A B Marais
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Centre National de la Recherche Scientifique, Université Lyon 1, 69622 Villeurbanne, France
| | - Susana M Coelho
- Integrative Biology of Marine Models, CNRS UMR 8227, Sorbonne Universités, UPMC Université Paris 6, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| |
Collapse
|