51
|
Day TA, Wilson RJA. Specific carotid body chemostimulation is sufficient to elicit phrenic poststimulus frequency decline in a novel in situ dual-perfused rat preparation. Am J Physiol Regul Integr Comp Physiol 2005; 289:R532-R544. [PMID: 15802555 DOI: 10.1152/ajpregu.00812.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Time-dependent ventilatory responses to hypoxic and hypercapnic challenges, such as posthypoxic frequency decline (PHxFD) and posthypercapnic frequency decline (PHcFD), could profoundly affect breathing stability. However, little is known about the mechanisms that mediate these phenomena. To determine the contribution of specific carotid body chemostimuli to PHxFD and PHcFD, we developed a novel in situ arterially perfused, vagotomized, decerebrate rat preparation in which central and peripheral chemoreceptors are perfused separately (i.e., a nonanesthetized in situ dual perfused preparation). We confirmed that 1) the perfusion of central and peripheral chemoreceptor compartments was independent by applying specific carotid body hypoxia and hypercapnia before and after carotid sinus nerve transection, 2) the PCO(2) chemoresponse of the dual perfused preparation was similar to other decerebrate preparations, and 3) the phrenic output was stable enough to allow investigation of time-dependent phenomena. We then applied four 5-min bouts (separated by 5 min) of specific carotid body hypoxia (40 Torr PO(2) and 40 Torr PCO(2)) or hypercapnia (100 Torr PO(2) and 60 Torr PCO(2)) while holding the brain stem PO(2) and PCO(2) constant. We report the novel finding that specific carotid body chemostimuli were sufficient to elicit several phrenic time-dependent phenomena in the rat. Hypoxic challenges elicited PHxFD that increased with bout, leading to progressive augmentation of the phrenic response. Conversely, hypercapnia elicited short-term depression and PHcFD, neither of which was bout dependent. These results, placed in the context of previous findings, suggest multiple physiological mechanisms are responsible for PHxFD and PHcFD, a redundancy that may illustrate that these phenomena have significant adaptive advantages.
Collapse
Affiliation(s)
- Trevor A Day
- Dept. of Physiology and Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
52
|
Donoghue S, Fatemian M, Balanos GM, Crosby A, Liu C, O'Connor D, Talbot NP, Robbins PA. Ventilatory acclimatization in response to very small changes in PO2 in humans. J Appl Physiol (1985) 2004; 98:1587-91. [PMID: 15591290 DOI: 10.1152/japplphysiol.01019.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ventilatory acclimatization to hypoxia (VAH) consists of a progressive increase in ventilation and decrease in end-tidal Pco(2) (Pet(CO(2))). Underlying VAH, there are also increases in the acute ventilatory sensitivities to hypoxia and hypercapnia. To investigate whether these changes could be induced with very mild alterations in end-tidal Po(2) (Pet(O(2))), two 5-day exposures were compared: 1) mild hypoxia, with Pet(O(2)) held at 10 Torr below the subject's normal value; and 2) mild hyperoxia, with Pet(O(2)) held at 10 Torr above the subject's normal value. During both exposures, Pet(CO(2)) was uncontrolled. For each exposure, the entire protocol required measurements on 13 consecutive mornings: 3 mornings before the hypoxic or hyperoxic exposure, 5 mornings during the exposure, and 5 mornings postexposure. After the subjects breathed room air for at least 30 min, measurements were made of Pet(CO(2)), Pet(O(2)), and the acute ventilatory sensitivities to hypoxia and hypercapnia. Ten subjects completed both protocols. There was a significant increase in the acute ventilatory sensitivity to hypoxia (Gp) after exposure to mild hypoxia, and a significant decrease in Gp after exposure to mild hyperoxia (P < 0.05, repeated-measures ANOVA). No other variables were affected by mild hypoxia or hyperoxia. The results, when combined with those from other studies, suggest that Gp varies linearly with Pet(O(2)), with a sensitivity of 3.5%/Torr (SE 1.0). This sensitivity is sufficient to suggest that Gp is continuously varying in response to normal physiological fluctuations in Pet(O(2)). We conclude that at least some of the mechanisms underlying VAH may have a physiological role at sea level.
Collapse
Affiliation(s)
- Simon Donoghue
- University Laboratory of Physiology, Parks Rd., Oxford OX1 3PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Crosby A, Talbot NP, Balanos GM, Donoghue S, Fatemian M, Robbins PA. Respiratory effects in humans of a 5-day elevation of end-tidal PCO2 by 8 Torr. J Appl Physiol (1985) 2003; 95:1947-54. [PMID: 14555667 DOI: 10.1152/japplphysiol.00548.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aims of this study were to determine 1) whether ventilatory adaptation occurred over a 5-day exposure to a constant elevation in end-tidal Pco2 and 2) whether such an exposure altered the sensitivity of the chemoreflexes to acute hypoxia and hypercapnia. Ten healthy human subjects were studied over a period of 13 days. Their ventilation, chemoreflex sensitivities, and acid-base status were measured daily before, during, and after 5 days of elevated end-tidal Pco2 at 8 Torr above normal. There was no major adaptation of ventilation during the 5 days of hypercapnic exposure. There was an increase in ventilatory chemosensitivity to acute hypoxia (from 1.35 ± 0.08 to 1.70 ± 0.07 l/min/%; P < 0.01) but no change in ventilatory chemosensitivity to acute hypercapnia. There was a degree of compensatory metabolic alkalosis. The results do not support the hypothesis that the ventilatory adaptation to chronic hypercapnia would be much greater with constant elevation of alveolar Pco2 than with constant elevation of inspired Pco2, as has been used in previous studies and in which the feedback loop between ventilation and alveolar Pco2 is left intact.
Collapse
Affiliation(s)
- Alexi Crosby
- University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
54
|
Fatemian M, Nieuwenhuijs DJF, Teppema LJ, Meinesz S, van der Mey AGL, Dahan A, Robbins PA. The respiratory response to carbon dioxide in humans with unilateral and bilateral resections of the carotid bodies. J Physiol 2003; 549:965-73. [PMID: 12717011 PMCID: PMC2342971 DOI: 10.1113/jphysiol.2003.042259] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Accepted: 04/07/2003] [Indexed: 11/08/2022] Open
Abstract
The acute hypercapnic ventilatory response (AHCVR) arises from both peripheral and central chemoreflexes. In humans, one technique for identifying the separate contributions of these chemoreflexes to AHCVR has been to associate the rapid component of AHCVR with the peripheral chemoreflex and the slow component with the central chemoreflex. Our first aim was to validate this technique further by determining whether a single slow component was sufficient to describe AHCVR in patients with bilateral carotid body resections (BR) for glomus cell tumours. Our second aim was to determine whether the slow component of AHCVR was diminished following carotid body resection as has been suggested by studies in experimental animals. Seven BR subjects were studied together with seven subjects with unilateral resections (UR) and seven healthy controls. A multifrequency binary sequence in end-tidal PCO2 was employed to stimulate ventilation dynamically under conditions of both euoxia and mild hypoxia. Both two- and one-compartment models of AHCVR were fitted to the data. For BR subjects, the two-compartment model fitted significantly better on 1 out of 13 occasions compared with 22 out of 28 occasions for the other subjects. Average values for the chemoreflex sensitivity of the slow component of AHCVR differed significantly (P < 0.05) between the groups and were 0.95, 1.38 and 1.50 l min-1 Torr-1 for BR, UR and control subjects, respectively. We conclude that, without the peripheral chemoreflex, AHCVR is adequately described by a single slow component and that BR subjects have sensitivities for the slow component that are lower than those of control subjects.
Collapse
Affiliation(s)
- Marzieh Fatemian
- University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | | | |
Collapse
|
55
|
Fatemian M, Gamboa A, Léon-Velarde F, Rivera-Ch M, Palacios JA, Robbins PA. Selected contribution: Ventilatory response to CO2 in high-altitude natives and patients with chronic mountain sickness. J Appl Physiol (1985) 2003; 94:1279-87; discussion 1253-4. [PMID: 12571150 DOI: 10.1152/japplphysiol.00859.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ventilatory responses to CO(2) of high-altitude (HA) natives and patients with chronic mountain sickness (CMS) were studied and compared with sea-level (SL) natives living at SL. A multifrequency binary sequence (MFBS) in end-tidal Pco(2) was employed to separate the fast (peripheral) and slow (central) components of the chemoreflex response. MFBS was imposed against a background of both euoxia (end-tidal Po(2) of 100 Torr) and hypoxia (52.5 Torr). Both total and central chemoreflex sensitivity to CO(2) in euoxia were higher in HA and CMS subjects compared with SL subjects. Peripheral chemoreflex sensitivity to CO(2) in euoxia was higher in HA subjects than in SL subjects. Hypoxia induced a greater increase in total chemoreflex sensitivity to CO(2) in SL subjects than in HA and CMS subjects, but peripheral chemoreflex sensitivity to CO(2) in hypoxia was no greater in SL subjects than in HA and CMS subjects. Values for the slow (central) time constant were significantly greater for HA and CMS subjects than for SL subjects.
Collapse
Affiliation(s)
- Marzieh Fatemian
- University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
56
|
Fatemian M, Dahan A, Meinesz S, van der Mey A, Robbins PA. Modeling the ventilatory response to variations in end-tidal PCO2 in patients who have undergone bilateral carotid body resection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 499:275-7. [PMID: 11729891 DOI: 10.1007/978-1-4615-1375-9_43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- M Fatemian
- University Laboratory of Physiology, University of Oxford, UK
| | | | | | | | | |
Collapse
|
57
|
Nattie EE, Prabhakar NR. Peripheral and central chemosensitivity: multiple mechanisms, multiple sites? A workshop summary. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 499:73-80. [PMID: 11729937 DOI: 10.1007/978-1-4615-1375-9_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- E E Nattie
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | |
Collapse
|
58
|
Duffin J. Simulation of the respiratory control system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 499:315-20. [PMID: 11729899 DOI: 10.1007/978-1-4615-1375-9_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- J Duffin
- University of Toronto, Department of Physiology, Ontario, Canada
| |
Collapse
|
59
|
Pandit JJ, Robbins PA. Respiratory effects of breathing high oxygen during incremental exercise in humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 499:331-6. [PMID: 11729903 DOI: 10.1007/978-1-4615-1375-9_53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- J J Pandit
- Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
60
|
Topor ZL, Johannson L, Kasprzyk J, Remmers JE. Dynamic ventilatory response to CO(2) in congestive heart failure patients with and without central sleep apnea. J Appl Physiol (1985) 2001; 91:408-16. [PMID: 11408458 DOI: 10.1152/jappl.2001.91.1.408] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nonobstructive (i.e., central) sleep apnea is a major cause of sleep-disordered breathing in patients with stable congestive heart failure (CHF). Although central sleep apnea (CSA) is prevalent in this population, occurring in 40-50% of patients, its pathogenesis is poorly understood. Dynamic loop gain and delay of the chemoreflex response to CO(2) was measured during wakefulness in CHF patients with and without CSA by use of a pseudorandom binary CO(2) stimulus method. Use of a hyperoxic background minimized responses derived from peripheral chemoreceptors. The closed-loop and open-loop gain, estimated from the impulse response, was three times greater in patients with nocturnal CSA (n = 9) than in non-CSA patients (n = 9). Loop dynamics, estimated by the 95% response duration time, did not differ between the two groups of patients. We speculate that an increase in dynamic gain of the central chemoreflex response to CO(2) contributes to the genesis of CSA in patients with CHF.
Collapse
Affiliation(s)
- Z L Topor
- Center for Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA.
| | | | | | | |
Collapse
|
61
|
Rodman JR, Curran AK, Henderson KS, Dempsey JA, Smith CA. Carotid body denervation in dogs: eupnea and the ventilatory response to hyperoxic hypercapnia. J Appl Physiol (1985) 2001; 91:328-35. [PMID: 11408448 DOI: 10.1152/jappl.2001.91.1.328] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed the time course of changes in eupneic arterial PCO(2) (Pa(CO(2))) and the ventilatory response to hyperoxic rebreathing after removal of the carotid bodies (CBX) in awake female dogs. Elimination of the ventilatory response to bolus intravenous injections of NaCN was used to confirm CBX status on each day of data collection. Relative to eupneic control (Pa(CO(2)) = 40 +/- 3 Torr), all seven dogs hypoventilated after CBX, reaching a maximum Pa(CO(2)) of 53 +/- 6 Torr by day 3 post-CBX. There was no significant recovery of eupneic Pa(CO(2)) over the ensuing 18 days. Relative to control, the hyperoxic CO(2) ventilatory (change in inspired minute ventilation/change in end-tidal PCO(2)) and tidal volume (change in tidal volume/ change in end-tidal PCO(2)) response slopes were decreased 40 +/- 15 and 35 +/- 20% by day 2 post-CBX. There was no recovery in the ventilatory or tidal volume response slopes to hyperoxic hypercapnia over the ensuing 19 days. We conclude that 1) the carotid bodies contribute approximately 40% of the eupneic drive to breathe and the ventilatory response to hyperoxic hypercapnia and 2) there is no recovery in the eupneic drive to breathe or the ventilatory response to hyperoxic hypercapnia after removal of the carotid chemoreceptors, indicating a lack of central or aortic chemoreceptor plasticity in the adult dog after CBX.
Collapse
Affiliation(s)
- J R Rodman
- The John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin School of Medicine, Madison, Wisconsin 53705, USA.
| | | | | | | | | |
Collapse
|
62
|
Fatemian M, Robbins PA. Selected contribution: chemoreflex responses to CO2 before and after an 8-h exposure to hypoxia in humans. J Appl Physiol (1985) 2001; 90:1607-14; discussion 1606. [PMID: 11247968 DOI: 10.1152/jappl.2001.90.4.1607] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ventilatory sensitivity to CO2, in hyperoxia, is increased after an 8-h exposure to hypoxia. The purpose of the present study was to determine whether this increase arises through an increase in peripheral or central chemosensitivity. Ten healthy volunteers each underwent 8-h exposures to 1) isocapnic hypoxia, with end-tidal PO2 (PET(O2)) = 55 Torr and end-tidal PCO2 (PET(CO2)) = eucapnia; 2) poikilocapnic hypoxia, with PET(O2) = 55 Torr and PET(CO2) = uncontrolled; and 3) air-breathing control. The ventilatory response to CO2 was measured before and after each exposure with the use of a multifrequency binary sequence with two levels of PET(CO2): 1.5 and 10 Torr above the normal resting value. PET(O2) was held at 250 Torr. The peripheral (Gp) and the central (Gc) sensitivities were calculated by fitting the ventilatory data to a two-compartment model. There were increases in combined Gp + Gc (26%, P < 0.05), Gp (33%, P < 0.01), and Gc (23%, P = not significant) after exposure to hypoxia. There were no significant differences between isocapnic and poikilocapnic hypoxia. We conclude that sustained hypoxia induces a significant increase in chemosensitivity to CO2 within the peripheral chemoreflex.
Collapse
Affiliation(s)
- M Fatemian
- University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom
| | | |
Collapse
|
63
|
Pedersen ME, Dorrington KL, Robbins PA. Effects of somatostatin on the control of breathing in humans. J Physiol 1999; 521 Pt 1:289-97. [PMID: 10562352 PMCID: PMC2269659 DOI: 10.1111/j.1469-7793.1999.00289.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Somatostatin depresses the ventilatory response to hypoxia (AHVR). This study sought to determine whether somatostatin also reduced the peripheral chemoreflex sensitivity to hypercapnia, and if so, whether this was related to the reduction in AHVR. 2. Nine subjects completed the study. AHVR and the ventilatory responses to hypercapnia under both hyperoxic and hypoxic conditions were assessed both without and with an infusion of somatostatin (0.5 BsBs5mgBs5 h-1). Peripheral (fast) and central (slow) responses to hypercapnia were distingushed by use of a multi-frequency binary sequence input in end-tidal PCO2 (PET,CO2) that included 13 steps into and out of hypercapnia. 3. The acute ventilatory response to a reduction in end-tidal PO2 (PET,O2) from 100 to 50 Torr (at a PET, CO2 of +1.5-2.0 Torr above normal) was reduced from (mean +/- s.e.m. ) 16.4 +/- 3.3 to 9.5 +/- 3.2 l min-1 (P < 0.005, Student's t test) by somatostatin. The magnitude of the ensuing hypoxic ventilatory decline was unaltered (8.8 +/- 2.7 l min-1 in control vs. 8.0 +/- 2. 9 l min-1 with somatostatin). 4. The peripheral chemoreflex sensitivity to CO2 in hypoxia was reduced from 2.42 +/- 0.36 to 1.18 +/- 0.20 l min-1 Torr-1 (P < 0.005) with somatostatin. The reduction under hyperoxic conditions from 0.75 +/- 0.34 to 0.49 +/- 0.09 l min-1 Torr-1 did not reach significance. Central chemoreflex sensitivity to CO2 was unchanged. Changes in peripheral chemoreflex sensitivity to CO2 in hypoxia correlated with changes in AHVR. 5. We conclude that peripheral chemoreflex sensitivity to CO2 is reduced by somatostatin, probably via the same mechanism as that by which somatostatin exerts its effects on AHVR.
Collapse
Affiliation(s)
- M E Pedersen
- University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | | | | |
Collapse
|