51
|
Cleland BT, Sisel E, Madhavan S. Motor evoked potential latency and duration from tibialis anterior in individuals with chronic stroke. Exp Brain Res 2021; 239:2251-2260. [PMID: 34059935 DOI: 10.1007/s00221-021-06144-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Ipsilateral motor pathways from the contralesional hemisphere to the paretic limbs may be upregulated to compensate for impaired function after stroke. Onset latency and duration of motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS) provide insight into compensatory pathways but have been understudied in the lower limb. This study assessed MEP onset latency and duration in the lower limb after stroke, and compared ipsilateral and contralateral MEPs in the paretic and non-paretic limb. We hypothesized that: (1) onset latency would be longer for ipsilateral than contralateral MEPs and longer for the paretic than the non-paretic limb, and (2) duration would be shorter for ipsilateral than contralateral MEPs and longer for the paretic than the non-paretic limb. Data were collected as a part of a pre-test of a randomized controlled trial. TMS was applied to the ipsilateral and contralateral hemisphere of the paretic and non-paretic limb. MEP onset latency and duration were calculated from the tibialis anterior. Thirty-five participants with chronic stroke were included in the final analysis. Onset latency was longer in the paretic than the non-paretic limb (~ 6.0 ms) and longer after ipsilateral than contralateral stimulation (~ 1.8 ms). Duration was longer in the paretic than the non-paretic limb (~ 9.2 ms) and longer after contralateral than ipsilateral stimulation (~ 5.2 ms). Ipsilateral MEPs may be elicited through ipsilateral pathways with fewer fibers with a higher activation threshold and/or greater spinal branching. MEPs from the paretic limb may reflect slower central motor conduction, peripheral changes, or changes in motor pathway.
Collapse
Affiliation(s)
- Brice T Cleland
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, 1919 W. Taylor St., Chicago, IL, 60612, USA
| | - Emily Sisel
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, 1919 W. Taylor St., Chicago, IL, 60612, USA.
| |
Collapse
|
52
|
Hoonhorst MHJ, Nijland RHM, Emmelot CH, Kollen BJ, Kwakkel G. TMS-Induced Central Motor Conduction Time at the Non-Infarcted Hemisphere Is Associated with Spontaneous Motor Recovery of the Paretic Upper Limb after Severe Stroke. Brain Sci 2021; 11:brainsci11050648. [PMID: 34063558 PMCID: PMC8157217 DOI: 10.3390/brainsci11050648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Stroke affects the neuronal networks of the non-infarcted hemisphere. The central motor conduction time (CMCT) induced by transcranial magnetic stimulation (TMS) could be used to determine the conduction time of the corticospinal tract of the non-infarcted hemisphere after a stroke. Objectives: Our primary aim was to demonstrate the existence of prolonged CMCT in the non-infarcted hemisphere, measured within the first 48 h when compared to normative data, and secondly, if the severity of motor impairment of the affected upper limb was significantly associated with prolonged CMCTs in the non-infarcted hemisphere when measured within the first 2 weeks post stroke. Methods: CMCT in the non-infarcted hemisphere was measured in 50 patients within 48 h and at 11 days after a first-ever ischemic stroke. Patients lacking significant spontaneous motor recovery, so-called non-recoverers, were defined as those who started below 18 points on the FM-UE and showed less than 6 points (10%) improvement within 6 months. Results: CMCT in the non-infarcted hemisphere was prolonged in 30/50 (60%) patients within 48 h and still in 24/49 (49%) patients at 11 days. Sustained prolonged CMCT in the non-infarcted hemisphere was significantly more frequent in non-recoverers following FM-UE. Conclusions: The current study suggests that CMCT in the non-infarcted hemisphere is significantly prolonged in 60% of severely affected, ischemic stroke patients when measured within the first 48 h post stroke. The likelihood of CMCT is significantly higher in non-recoverers when compared to those that show spontaneous motor recovery early post stroke.
Collapse
Affiliation(s)
| | - Rinske H. M. Nijland
- Amsterdam Rehabilitation Research Center|Reade, 1054 HW Amsterdam, The Netherlands;
| | - Cornelis H. Emmelot
- Department of Rehabilitation Medicine, Isala, 8025 AB Zwolle, The Netherlands;
| | - Boudewijn J. Kollen
- Department of General Practice and Elderly Care Medicine, University of Groningen, University Medical Center Groningen, 9712 CP Groningen, The Netherlands;
| | - Gert Kwakkel
- Amsterdam Rehabilitation Research Center|Reade, 1054 HW Amsterdam, The Netherlands;
- Amsterdam University Medical Center, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands
- Amsterdam Neurosciences, Amsterdam University Medical Centre, 1081 HV Amsterdam, The Netherlands
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University of Chicago, Evanston, IL 60208, USA
- Correspondence: ; Tel.: +31-204-441-940
| |
Collapse
|
53
|
Jiang N, Wang L, Huang Z, Li G. Mapping Responses of Lumbar Paravertebral Muscles to Single-Pulse Cortical TMS Using High-Density Surface Electromyography. IEEE Trans Neural Syst Rehabil Eng 2021; 29:831-840. [PMID: 33905333 DOI: 10.1109/tnsre.2021.3076095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motor evoked potential (MEP), which was elicited by transcranial magnetic stimulation (TMS), has been widely used to detect corticospinal projection from TMS cortical site to trunk muscles. It can help to find the stimulation hotspot in the scalp. However, it fails to precisely describe coordinated activities of trunk muscle groups with only single-channel myoelectric signal. In this study, we aimed to use high-density surface electromyography (sEMG) to explore the effect of cortical TMS on lumbar paravertebral muscles in healthy subjects. The cortical site at 1 cm anterior and 4 cm lateral to vertex was chosen to simulate using a single-pulse TMS with different intensities and forward-bending angles. A high-density electrode array (45 channels) was placed on the surface of lumbar paravertebral muscles to record sEMG signals during a TMS experiment. MEP signals elicited by TMS were extracted from 45-channel recordings and one topographic map of the MEP amplitudes with six spatial features was constructed at each sampling point. The results showed TMS could successfully evoke an oval area with high intensity in the MEP topographic map, while this area mainly located in ipsilateral side of the TMS site. Intensity features related to the high intensity area rose significantly with TMS intensity and forward-bending angle increasing, but location features showed no change. The optimal stimulation parameters were 80% of maximum stimulator output (MSO) for TMS intensity and 30/60 degree for forward-bending angle. This study provided a potentially effective mapping tool to explore the hotspot for transcranial stimulation on trunk muscles.
Collapse
|
54
|
Cleland BT, Madhavan S. Ipsilateral Motor Pathways and Transcallosal Inhibition During Lower Limb Movement After Stroke. Neurorehabil Neural Repair 2021; 35:367-378. [PMID: 33703951 DOI: 10.1177/1545968321999049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Stroke rehabilitation may be improved with a better understanding of the contribution of ipsilateral motor pathways to the paretic limb and alterations in transcallosal inhibition. Few studies have evaluated these factors during dynamic, bilateral lower limb movements, and it is unclear whether they relate to functional outcomes. OBJECTIVE Determine if lower limb ipsilateral excitability and transcallosal inhibition after stroke depend on target limb, task, or number of limbs involved, and whether these factors are related to clinical measures. METHODS In 29 individuals with stroke, ipsilateral and contralateral responses to transcranial magnetic stimulation were measured in the paretic and nonparetic tibialis anterior during dynamic (unilateral or bilateral ankle dorsiflexion/plantarflexion) and isometric (unilateral dorsiflexion) conditions. Relative ipsilateral excitability and transcallosal inhibition were assessed. Fugl-Meyer, ankle movement accuracy, and walking characteristics were assessed. RESULTS Relative ipsilateral excitability was greater during dynamic than isometric conditions in the paretic limb (P ≤ .02) and greater in the paretic than the nonparetic limb during dynamic conditions (P ≤ .004). Transcallosal inhibition was greater in the ipsilesional than contralesional hemisphere (P = .002) and during dynamic than isometric conditions (P = .03). Greater ipsilesional transcallosal inhibition was correlated with better ankle movement accuracy (R2 = 0.18, P = .04). Greater contralateral excitability to the nonparetic limb was correlated with improved walking symmetry (R2 = 0.19, P = .03). CONCLUSIONS Ipsilateral pathways have increased excitability to the paretic limb, particularly during dynamic tasks. Transcallosal inhibition is greater in the ipsilesional than contralesional hemisphere and during dynamic than isometric tasks. Ipsilateral pathways and transcallosal inhibition may influence walking asymmetry and ankle movement accuracy.
Collapse
|
55
|
Cleland BT, Madhavan S. Ipsilateral motor pathways to the lower limb after stroke: Insights and opportunities. J Neurosci Res 2021; 99:1565-1578. [PMID: 33665910 DOI: 10.1002/jnr.24822] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/17/2021] [Indexed: 01/04/2023]
Abstract
Stroke-related damage to the crossed lateral corticospinal tract causes motor deficits in the contralateral (paretic) limb. To restore functional movement in the paretic limb, the nervous system may increase its reliance on ipsilaterally descending motor pathways, including the uncrossed lateral corticospinal tract, the reticulospinal tract, the rubrospinal tract, and the vestibulospinal tract. Our knowledge about the role of these pathways for upper limb motor recovery is incomplete, and even less is known about the role of these pathways for lower limb motor recovery. Understanding the role of ipsilateral motor pathways to paretic lower limb movement and recovery after stroke may help improve our rehabilitative efforts and provide alternate solutions to address stroke-related impairments. These advances are important because walking and mobility impairments are major contributors to long-term disability after stroke, and improving walking is a high priority for individuals with stroke. This perspective highlights evidence regarding the contributions of ipsilateral motor pathways from the contralesional hemisphere and spinal interneuronal pathways for paretic lower limb movement and recovery. This perspective also identifies opportunities for future research to expand our knowledge about ipsilateral motor pathways and provides insights into how this information may be used to guide rehabilitation.
Collapse
Affiliation(s)
- Brice T Cleland
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
56
|
Papadopoulou M, Karavasilis E, Christidi F, Argyropoulos GD, Skitsa I, Makrydakis G, Efstathopoulos E, Zambelis T, Karandreas N. Multimodal Neurophysiological and Neuroimaging Evidence of Genetic Influence on Motor Control: A Case Report of Monozygotic Twins. Cogn Behav Neurol 2021; 34:53-62. [PMID: 33652469 DOI: 10.1097/wnn.0000000000000262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/06/2020] [Indexed: 11/26/2022]
Abstract
Considering genetic influence on brain structure and function, including motor control, we report a case of right-handed monozygotic twins with atypical organization of fine motor movement control that might imply genetic influence. Structural and functional organization of the twins' motor function was assessed using transcranial magnetic stimulation (TMS), fMRI with a motor-task paradigm, and diffusion tensor imaging (DTI) tractography. TMS revealed that both twins presented the same unexpected activation and inhibition of both motor cortices during volitional unilateral fine hand movement. The right ipsilateral corticospinal tract was weaker than the left contralateral one. The motor-task fMRI identified activation in the left primary motor cortex and bilateral secondary motor areas during right-hand (dominant) movement and activation in the bilateral primary motor cortex and secondary motor areas during left-hand movement. Based on DTI tractography, both twins showed a significantly lower streamline count (number of fibers) in the right corticospinal tract compared with a control group, which was not the case for the left corticospinal tract. Neither twin reported any difficulty in conducting fine motor movements during their activities of daily living. The combination of TMS and advanced neuroimaging techniques identified an atypical motor control organization that might be influenced by genetic factors. This combination emphasizes that activation of the unilateral uncrossed pyramidal tract represents an alternative scheme to a "failure" of building a standard pattern but may not necessarily lead to disability.
Collapse
Affiliation(s)
| | - Efstratios Karavasilis
- Second Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- Department of Physiotherapy, University of West Attica, Athens, Greece
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios D Argyropoulos
- Second Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioulia Skitsa
- DNA Analysis Laboratory, Athens Legal Medicine Service Hellenic Ministry of Justice, Athens, Greece
| | - George Makrydakis
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- Second Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Zambelis
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Karandreas
- First Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
57
|
Maitland S, Baker SN. Ipsilateral Motor Evoked Potentials as a Measure of the Reticulospinal Tract in Age-Related Strength Changes. Front Aging Neurosci 2021; 13:612352. [PMID: 33746734 PMCID: PMC7966512 DOI: 10.3389/fnagi.2021.612352] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Background: The reticulospinal tract (RST) is essential for balance, posture, and strength, all functions which falter with age. We hypothesized that age-related strength reductions might relate to differential changes in corticospinal and reticulospinal connectivity. Methods: We divided 83 participants (age 20-84) into age groups <50 (n = 29) and ≥50 (n = 54) years; five of which had probable sarcopenia. Transcranial Magnetic Stimulation (TMS) was applied to the left cortex, inducing motor evoked potentials (MEPs) in the biceps muscles bilaterally. Contralateral (right, cMEPs) and ipsilateral (left, iMEPs) MEPs are carried by mainly corticospinal and reticulospinal pathways respectively; the iMEP/cMEP amplitude ratio (ICAR) therefore measured the relative importance of the two descending tracts. Grip strength was measured with a dynamometer and normalized for age and sex. Results: We found valid iMEPs in 74 individuals (n = 44 aged ≥50, n = 29 < 50). Younger adults had a significant negative correlation between normalized grip strength and ICAR (r = -0.37, p = 0.045); surprisingly, in older adults, the correlation was also significant, but positive (r = 0.43, p = 0.0037). Discussion: Older individuals who maintain or strengthen their RST are stronger than their peers. We speculate that reduced RST connectivity could predict those at risk of age-related muscle weakness; interventions that reinforce the RST could be a candidate for treatment or prevention of sarcopenia.
Collapse
Affiliation(s)
- Stuart Maitland
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
58
|
Škarabot J, Brownstein CG, Casolo A, Del Vecchio A, Ansdell P. The knowns and unknowns of neural adaptations to resistance training. Eur J Appl Physiol 2020; 121:675-685. [PMID: 33355714 PMCID: PMC7892509 DOI: 10.1007/s00421-020-04567-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
The initial increases in force production with resistance training are thought to be primarily underpinned by neural adaptations. This notion is firmly supported by evidence displaying motor unit adaptations following resistance training; however, the precise locus of neural adaptation remains elusive. The purpose of this review is to clarify and critically discuss the literature concerning the site(s) of putative neural adaptations to short-term resistance training. The proliferation of studies employing non-invasive stimulation techniques to investigate evoked responses have yielded variable results, but generally support the notion that resistance training alters intracortical inhibition. Nevertheless, methodological inconsistencies and the limitations of techniques, e.g. limited relation to behavioural outcomes and the inability to measure volitional muscle activity, preclude firm conclusions. Much of the literature has focused on the corticospinal tract; however, preliminary research in non-human primates suggests reticulospinal tract is a potential substrate for neural adaptations to resistance training, though human data is lacking due to methodological constraints. Recent advances in technology have provided substantial evidence of adaptations within a large motor unit population following resistance training. However, their activity represents the transformation of afferent and efferent inputs, making it challenging to establish the source of adaptation. Whilst much has been learned about the nature of neural adaptations to resistance training, the puzzle remains to be solved. Additional analyses of motoneuron firing during different training regimes or coupling with other methodologies (e.g., electroencephalography) may facilitate the estimation of the site(s) of neural adaptations to resistance training in the future.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Callum G Brownstein
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Université Lyon, Saint-Étienne, France
| | - Andrea Casolo
- Department of Bioengineering, Imperial College London, London, UK.,Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence and Biomedical Engineering, Faculty of Engineering, Friedrich-Alexander University, Erlangen-Nurnberg, 91052, Erlangen, Germany
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
59
|
Hupfeld KE, Swanson CW, Fling BW, Seidler RD. TMS-induced silent periods: A review of methods and call for consistency. J Neurosci Methods 2020; 346:108950. [PMID: 32971133 PMCID: PMC8276277 DOI: 10.1016/j.jneumeth.2020.108950] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022]
Abstract
Transcranial magnetic stimulation (TMS)-induced silent periods provide an in vivo measure of human motor cortical inhibitory function. Cortical silent periods (cSP, also sometimes referred to as contralateral silent periods) and ipsilateral silent periods (iSP) may change with advancing age and disease and can provide insight into cortical control of the motor system. The majority of past silent period work has implemented largely varying methodology, sometimes including subjective analyses and incomplete methods descriptions. This limits reproducibility of silent period work and hampers comparisons of silent period measures across studies. Here, we discuss methodological differences in past silent period work, highlighting how these choices affect silent period outcome measures. We also outline challenges and possible solutions for measuring silent periods in the unique case of the lower limbs. Finally, we provide comprehensive recommendations for collection, analysis, and reporting of future silent period studies.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - C W Swanson
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - B W Fling
- Department of Health & Exercise Science, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular, and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
60
|
Zoghi M, Hafezi P, Amatya B, Khan F, Galea MP. Intracortical Circuits in the Contralesional Primary Motor Cortex in Patients With Chronic Stroke After Botulinum Toxin Type A Injection: Case Studies. Front Hum Neurosci 2020; 14:342. [PMID: 33100987 PMCID: PMC7497670 DOI: 10.3389/fnhum.2020.00342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022] Open
Abstract
Spasticity and motor recovery are both related to neural plasticity after stroke. A balance of activity in the primary motor cortex (M1) in both hemispheres is essential for functional recovery. In this study, we assessed the intracortical inhibitory and facilitatory circuits in the contralesional M1 area in four patients with severe upper limb spasticity after chronic stroke and treated with botulinum toxin-A (BoNT-A) injection and 12 weeks of upper limb rehabilitation. There was little to no change in the level of spasticity post-injection, and only one participant experienced a small improvement in arm function. All reported improvements in quality of life. However, the levels of intracortical inhibition and facilitation in the contralesional hemisphere were different at baseline for all four participants, and there was no clear pattern in the response to the intervention. Further investigation is needed to understand how BoNT-A injections affect inhibitory and facilitatory circuits in the contralesional hemisphere, the severity of spasticity, and functional improvement.
Collapse
Affiliation(s)
- Maryam Zoghi
- Department of Physiotherapy, Podiatry, Prosthetics and Orthotics, La Trobe University, Melbourne, VIC, Australia
| | | | - Bhasker Amatya
- The Royal Melbourne Hospital, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia
| | - Fary Khan
- The Royal Melbourne Hospital, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia
| | - Mary Pauline Galea
- The Royal Melbourne Hospital, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
61
|
Collins AF, Brown STR, Baker MR. Minimum Electromyographic Burst Duration in Healthy Controls: Implications for Electrodiagnosis in Movement Disorders. Mov Disord Clin Pract 2020; 7:827-833. [PMID: 33033737 PMCID: PMC7533965 DOI: 10.1002/mdc3.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 11/29/2022] Open
Abstract
Background Electromyogram (EMG) burst duration can provide additional diagnostic information when investigating hyperkinetic movement disorders, particularly when a functional movement disorder is suspected. It is generally accepted that EMG bursts <50 milliseconds are pathological. Objective To reassess minimum physiological EMG burst duration. Methods Surface EMG was recorded from face, trunk, and limb muscles in controls (n = 60; ages 19–85). Participants were instructed to generate the briefest possible ballistic movements involving each muscle (40 repetitions) or, in muscles spanning joints, to generate rapid rhythmic alternating movements (20–30 seconds), or both. Results We found no effect of age on EMG burst duration. However, EMG burst duration varied significantly between body regions. Rhythmic EMG bursts were shorter than ballistic bursts but only significantly so for lower limbs (P < 0.001). EMG bursts of duration <50 milliseconds were frequently observed, particularly in appendicular muscles. Conclusion We present normal reference data for minimum EMG burst duration, which may assist clinical interpretation when investigating hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Alexis F Collins
- Translational and Clinical Research Institute, The Medical School Newcastle University Newcastle upon Tyne United Kingdom.,Sheffield Institute for Translational Neuroscience The University of Sheffield Sheffield United Kingdom
| | - Steven T R Brown
- Translational and Clinical Research Institute, The Medical School Newcastle University Newcastle upon Tyne United Kingdom
| | - Mark R Baker
- Translational and Clinical Research Institute, The Medical School Newcastle University Newcastle upon Tyne United Kingdom.,Department of Neurology Royal Victoria Infirmary Newcastle upon Tyne United Kingdom.,Department of Clinical Neurophysiology Royal Victoria Infirmary Newcastle upon Tyne United Kingdom
| |
Collapse
|
62
|
Zhang L, Duval L, Hasanbarani F, Zhu Y, Zhang X, Barthelemy D, Dancause N, Feldman AG. Participation of ipsilateral cortical descending influences in bimanual wrist movements in humans. Exp Brain Res 2020; 238:2359-2372. [PMID: 32766959 DOI: 10.1007/s00221-020-05899-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023]
Abstract
There are contralateral and less studied ipsilateral (i), indirect cortical descending projections to motoneurons (MNs). We compared ipsilateral cortical descending influences on MNs of wrist flexors by applying transcranial magnetic stimulation (TMS) over the right primary motor cortex at actively maintained flexion and extension wrist positions in uni- and bimanual tasks in right-handed participants (n = 23). The iTMS response includes a short latency (~ 25 ms) motor evoked potential (iMEP), a silent period (iSP) and a long latency (~ 60 ms) facilitation called rebound (iRB). We also investigated whether the interaction between the two hands while holding an object in a bimanual task involves ipsilateral cortical descending influences. In the unimanual task, iTMS responses in the right wrist flexors were unaffected by changes in wrist position. In the bimanual task with an object, iMEPs in the right wrist flexors were larger when the ipsilateral wrist was in flexion compared to extension. Without the object, only iRB were larger when the ipsilateral wrist was extended. Thus, ipsilateral cortical descending influences on MNs were modulated only in bimanual tasks and depended on how the two hands interacted. It is concluded that the left and right cortices cooperate in bimanual tasks involving holding an object with both hands, with possible involvement of oligo- and poly-synaptic, as well as transcallosal projections to MNs. The possible involvement of spinal and transcortical stretch and cutaneous reflexes in bimanual tasks when holding an object is discussed in the context of the well-established notion that indirect, referent control underlies motor actions.
Collapse
Affiliation(s)
- L Zhang
- Institut für Neuroinformatik, Ruhr-Universität Bochum, Bochum, Germany
| | - L Duval
- Department of Neuroscience, University of Montreal, Montreal, Canada
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), IRGLM, Institut de Readaptation Gingras-Lindsay de Montreal, 6300 Darlington, Montreal, Canada
| | - F Hasanbarani
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), IRGLM, Institut de Readaptation Gingras-Lindsay de Montreal, 6300 Darlington, Montreal, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - Y Zhu
- Faculty of Medicine, University of Montreal, Montreal, Canada
| | - X Zhang
- Faculty of Medicine, University of Montreal, Montreal, Canada
| | - D Barthelemy
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), IRGLM, Institut de Readaptation Gingras-Lindsay de Montreal, 6300 Darlington, Montreal, Canada
- Ecole de Readaptation, University of Montreal, Montreal, Canada
| | - N Dancause
- Department of Neuroscience, University of Montreal, Montreal, Canada
| | - A G Feldman
- Department of Neuroscience, University of Montreal, Montreal, Canada.
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), IRGLM, Institut de Readaptation Gingras-Lindsay de Montreal, 6300 Darlington, Montreal, Canada.
| |
Collapse
|
63
|
Senesh MR, Barragan K, Reinkensmeyer DJ. Rudimentary Dexterity Corresponds With Reduced Ability to Move in Synergy After Stroke: Evidence of Competition Between Corticoreticulospinal and Corticospinal Tracts? Neurorehabil Neural Repair 2020; 34:904-914. [PMID: 32830602 PMCID: PMC7572533 DOI: 10.1177/1545968320943582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE When a stroke damages the corticospinal tract (CST), it has been hypothesized that the motor system switches to using the corticoreticulospinal tract (CRST) resulting in abnormal arm synergies. Is use of these tracts mutually exclusive, or can the motor system spontaneously switch between them depending on the type of movement it wants to make? If the motor system can share control at will, then people with a rudimentary ability to make dexterous movements should be able to perform synergistic arm movements as well. METHODS We analyzed clinical assessments of 319 persons' abilities to perform "out-of-synergy" and "in-synergy" arm movements after chronic stroke using the Upper Extremity Fugl-Meyer (UEFM) scale. RESULTS We identified a moderate range of arm impairment (UEFM = ~30-40) where subjects had a rudimentary ability to make out-of-synergy (~23%-50% on the out-of-synergy score) and dexterous hand movements (~3-10 blocks on Box and Blocks Test). Below this range persons could perform in-synergy but not out-of-synergy or dexterous movements. In the moderate range, however, scoring better on out-of-synergy movements correlated with scoring worse on in-synergy movements (P = .001, r ≈ -0.6). CONCLUSION Rudimentary dexterity corresponded with reduced ability to move the arm in-synergy. This finding supports the idea that CST and CRST compete and has implications for rehabilitation therapy.
Collapse
|
64
|
Distinct Corticospinal and Reticulospinal Contributions to Voluntary Control of Elbow Flexor and Extensor Muscles in Humans with Tetraplegia. J Neurosci 2020; 40:8831-8841. [PMID: 32883710 DOI: 10.1523/jneurosci.1107-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Humans with cervical spinal cord injury (SCI) often recover voluntary control of elbow flexors and, to a much lesser extent, elbow extensor muscles. The neural mechanisms underlying this asymmetrical recovery remain unknown. Anatomical and physiological evidence in animals and humans indicates that corticospinal and reticulospinal pathways differentially control elbow flexor and extensor motoneurons; therefore, it is possible that reorganization in these pathways contributes to the asymmetrical recovery of elbow muscles after SCI. To test this hypothesis, we examined motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the arm representation of the primary motor cortex, maximal voluntary contractions, the StartReact response (a shortening in reaction time evoked by a startling stimulus), and the effect of an acoustic startle cue on MEPs elicited by cervicomedullary stimulation (CMEPs) on biceps and triceps brachii in males and females with and without chronic cervical incomplete SCI. We found that SCI participants showed similar MEPs and maximal voluntary contractions in biceps but smaller responses in triceps compared with controls, suggesting reduced corticospinal inputs to elbow extensors. The StartReact and CMEP facilitation was larger in biceps but similar to controls in triceps, suggesting enhanced reticulospinal inputs to elbow flexors. These findings support the hypothesis that the recovery of biceps after cervical SCI results, at least in part, from increased reticulospinal inputs and that the lack of these extra inputs combined with the loss of corticospinal drive contribute to the pronounced weakness found in triceps.SIGNIFICANCE STATEMENT Although a number of individuals with cervical incomplete spinal cord injury show limited functional recovery of elbow extensors compared with elbow flexor muscles, to date, the neural mechanisms underlying this asymmetrical recovery remain unknown. Here, we provide for the first time evidence for increased reticulospinal inputs to biceps but not triceps brachii and loss of corticospinal drive to triceps brachii in humans with tetraplegia. We propose that this reorganization in descending control contributes to the asymmetrical recovery between elbow flexor and extensor muscles after cervical spinal cord injury.
Collapse
|
65
|
Deficits in corticospinal control of stretch reflex thresholds in stroke: Implications for motor impairment. Clin Neurophysiol 2020; 131:2067-2078. [DOI: 10.1016/j.clinph.2020.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
|
66
|
Chettouf S, Rueda-Delgado LM, de Vries R, Ritter P, Daffertshofer A. Are unimanual movements bilateral? Neurosci Biobehav Rev 2020; 113:39-50. [DOI: 10.1016/j.neubiorev.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022]
|
67
|
Sivaramakrishnan A, Madhavan S. Stimulus Intensity Affects Variability of Motor Evoked Responses of the Non-Paretic, but Not Paretic Tibialis Anterior Muscle in Stroke. Brain Sci 2020; 10:brainsci10050297. [PMID: 32429115 PMCID: PMC7287783 DOI: 10.3390/brainsci10050297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Transcranial magnetic stimulus induced motor evoked potentials (MEPs) are quantified either with a single suprathreshold stimulus or using a stimulus response curve. Here, we explored variability in MEPs influenced by different stimulus intensities for the tibialis anterior muscle in stroke. Methods: MEPs for the paretic and non-paretic tibialis anterior (TA) muscle representations were collected from 26 participants with stroke at seven intensities. Variability of MEP parameters was examined with coefficients of variation (CV). Results: CV for the non-paretic TA MEP amplitude and area was significantly lower at 130% and 140% active motor threshold (AMT). CV for the paretic TA MEP amplitude and area did not vary with intensity. CV of MEP latency decreased with higher intensities for both muscles. CV of the silent period decreased with higher intensity for the non-paretic TA, but was in reverse for the paretic TA. Conclusion: We recommend a stimulus intensity of greater than 130% AMT to reduce variability for the non-paretic TA. The stimulus intensity did not affect the MEP variability of the paretic TA. Variability of MEPs is affected by intensity and side tested (paretic and non-paretic), suggesting careful selection of experimental parameters for testing.
Collapse
Affiliation(s)
- Anjali Sivaramakrishnan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA;
- Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA;
- Correspondence: ; Tel.: +1-312-355-2517; Fax: +1-312-996-4583
| |
Collapse
|
68
|
Höller Y, Versace V, Trinka E, Nardone R. Functional connectivity after hemispherectomy. Quant Imaging Med Surg 2020; 10:1174-1178. [PMID: 32489942 DOI: 10.21037/qims.2020.03.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy.,Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Eugen Trinka
- Department of Neurology, Paracelsus Medical University Salzburg, Salzburg, Austria.,Centre for Cognitive Neurosciences Salzburg, Salzburg, Austria.,University for Medical Informatics and Health Technology, UMIT, Hall in Tirol, Austria
| | - Raffaele Nardone
- Franz Tappeiner Hospital, Merano, Italy.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Salzburg, Austria.,Department of Neurology, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
69
|
Summers RLS, Chen M, MacKinnon CD, Kimberley TJ. Evidence for normal intracortical inhibitory recruitment properties in cervical dystonia. Clin Neurophysiol 2020; 131:1272-1279. [PMID: 32304844 DOI: 10.1016/j.clinph.2020.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Dystonia is associated with reduced intracortical inhibition as measured by the cortical silent period (cSP); however, this may be due to abnormal cSP threshold or input-output properties. This study evaluated cSP recruitment properties in people with cervical dystonia (CD). METHODS Bilateral electromyographic recordings were collected in the upper trapezius muscle in response to transcranial magnetic stimulation of the left and right primary motor cortex in a group with CD (n = 19) and controls (n = 21). cSP threshold, cSP input-output properties at stimulation intensities from 1 to 1.4x the cSP threshold, ipsilateral silent period duration (iSP) and timing and magnitude of the contralateral and ipsilateral motor evoked potential (MEP) were assessed. RESULTS The cSP threshold, input-output properties, and contralateral MEP magnitude were not significantly different between groups (all p > 0.07). Hemispheric symmetry was present in the control group while the CD group had reduced iSP (p < 0.01) and a trend for reduced ipsilateral MEP response (p = 0.053) in the left hemisphere. CONCLUSIONS Recruitment properties of intracortical inhibition are similar between control and CD groups. Transcallosal inhibition is asymmetric between hemispheres in people with CD. SIGNIFICANCE Evidence of normal intracortical inhibition recruitment properties challenge the commonly held view that cortical inhibition is reduced in dystonia.
Collapse
Affiliation(s)
- Rebekah L S Summers
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, 426 Church St. SE, Minneapolis, MN 55455, USA; Department of Neurology, School of Medicine, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN 55414, USA.
| | - Mo Chen
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, 426 Church St. SE, Minneapolis, MN 55455, USA; Non-invasive Neuromodulation Laboratory, MnDRIVE Initiative, University of Minnesota, 247, 717 Delaware St. SE, Minneapolis, MN 55414, USA
| | - Colum D MacKinnon
- Department of Neurology, School of Medicine, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN 55414, USA
| | - Teresa J Kimberley
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, 426 Church St. SE, Minneapolis, MN 55455, USA; School of Health and Rehabilitation Sciences, Department of Physical Therapy, Massachusetts General Hospital, Institute of Health Professions, 36 First Ave, Boston, MA 02129, USA
| |
Collapse
|
70
|
Lopes A, Alves K, Fiúza C, Mesquita I. Manual dexterity and palmar grip strength of ipsilesional upper limb of post-stroke adults. EUROPEAN JOURNAL OF PHYSIOTHERAPY 2020. [DOI: 10.1080/21679169.2018.1561944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Alfredo Lopes
- Department of Physiotherapy, Center for Research in Rehabilitation, School of Health Sciences of Polytechnic Institute of Porto, Porto, Portugal
- Department of Orthophysiatry, Hospital Center of Porto, Porto, Portugal
| | - Katia Alves
- Department of Physiotherapy, School of Health Sciences of Polytechnic Institute of Porto, Porto, Portugal
| | - Carolina Fiúza
- Department of Physiotherapy, School of Health Sciences of Polytechnic Institute of Porto, Porto, Portugal
| | - Inês Mesquita
- Department of Functional Sciences, Center for Research in Rehabilitation, School of Health Sciences of Polytechnic Institute of Porto, Porto, Portugal
| |
Collapse
|
71
|
Bani-Ahmed A, Cirstea CM. Ipsilateral primary motor cortex and behavioral compensation after stroke: a case series study. Exp Brain Res 2020; 238:439-452. [PMID: 31950216 DOI: 10.1007/s00221-020-05728-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022]
Abstract
Arm motor recovery after stroke is mainly attributed to reorganization of the primary motor cortex (M1). While M1 contralateral to the paretic arm (cM1) is critical for recovery, the role of ipsilateral M1 (iM1) is still inconclusive. Whether iM1 activity is related to recovery, behavioral compensation, or both is still far from settled. We hypothesized that the magnitude of iM1 activity in chronic stroke survivors will increase or decrease in direct proportion to the degree that movements of the paretic arm are compensated. Movement kinematics (VICON, Oxford Metrics) and functional MRI data (3T MR system) were collected in 11 patients before and after a 4-week training designed to improve motor control of the paretic arm and decrease compensatory trunk recruitment. Twelve matched controls underwent similar evaluations and training. Relationships between iM1 activity and trunk motion were analyzed. At baseline, patients exhibited increased iM1 activity (p = 0.001) and relied more on trunk movement (p = 0.02) than controls. These two variables were directly and significantly related in patients (r = 0.74, p = 0.01) but not in controls (r = 0.28, p = 0.4). After training, patients displayed a significant reduction in iM1 activity (p = 0.008) and a trend toward decreased trunk use (p = 0.1). The relationship between these two variables remained significant (r = 0.66, p = 0.03) and different from controls (r = 0.26, p = 0.4). Our preliminary results suggest that iM1 may play a role in compensating for brain damage rather than directly gaining control of the paretic arm. However, we recommend caution in interpreting these results until more work is completed.
Collapse
Affiliation(s)
- Ali Bani-Ahmed
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Therapy, University of Tabuk, Tabuk, Saudi Arabia
| | - Carmen M Cirstea
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Physical Medicine and Rehabilitation, University of Missouri, One Hospital Drive, DC046.00, Columbia, MO, 65212, USA.
| |
Collapse
|
72
|
Pandey S, Rawat C. Clinical signs in movement disorders: Phenomenology of mirror movements. ANNALS OF MOVEMENT DISORDERS 2020. [DOI: 10.4103/aomd.aomd_11_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
73
|
Harrington RM, Chan E, Rounds AK, Wutzke CJ, Dromerick AW, Turkeltaub PE, Harris-Love ML. Roles of Lesioned and Nonlesioned Hemispheres in Reaching Performance Poststroke. Neurorehabil Neural Repair 2020; 34:61-71. [PMID: 31858870 PMCID: PMC6954952 DOI: 10.1177/1545968319876253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background. Severe poststroke arm impairment is associated with greater activation of the nonlesioned hemisphere during movement of the affected arm. The circumstances under which this activation may be adaptive or maladaptive remain unclear. Objective. To identify the functional relevance of key lesioned and nonlesioned hemisphere motor areas to reaching performance in patients with mild versus severe arm impairment. Methods. A total of 20 participants with chronic stroke performed a reaching response time task with their affected arm. During the reaction time period, a transient magnetic stimulus was applied over the primary (M1) or dorsal premotor cortex (PMd) of either hemisphere, and the effect of the perturbation on movement time (MT) was calculated. Results. For perturbation of the nonlesioned hemisphere, there was a significant interaction effect of Site of perturbation (PMd vs M1) by Group (mild vs severe; P < .001). Perturbation of PMd had a greater effect on MT in the severe versus the mild group. This effect was not observed with perturbation of M1. For perturbation of the lesioned hemisphere, there was a main effect of site of perturbation (P < .05), with perturbation of M1 having a greater effect on MT than PMd. Conclusions. These results demonstrate that, in the context of reaching movements, the role of the nonlesioned hemisphere depends on both impairment severity and the specific site that is targeted. A deeper understanding of these individual-, task-, and site-specific factors is essential for advancing the potential usefulness of neuromodulation to enhance poststroke motor recovery.
Collapse
Affiliation(s)
- Rachael M. Harrington
- Georgetown University, Interdisciplinary Program in Neuroscience
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- George Mason University, Department of Bioengineering
- Georgia State University, Center for Research on the Acquisition of Language and Literacy
| | - Evan Chan
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- MedStar Health Research Institute
| | - Amanda K. Rounds
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- MedStar Health Research Institute
- George Mason University, Department of Rehabilitation Science
| | | | - Alexander W. Dromerick
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- Georgetown University Medical Center, Department of Neurology
- Georgetown University Medical Center, Department of Rehabilitation Medicine
| | - Peter E. Turkeltaub
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- Georgetown University Medical Center, Department of Neurology
| | - Michelle L. Harris-Love
- MedStar National Rehabilitation Hospital, Center for Brain Plasticity and Recovery
- George Mason University, Department of Bioengineering
| |
Collapse
|
74
|
Glover IS, Baker SN. Multimodal stimuli modulate rapid visual responses during reaching. J Neurophysiol 2019; 122:1894-1908. [DOI: 10.1152/jn.00158.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The reticulospinal tract plays an important role in primate upper limb function, but methods for assessing its activity are limited. One promising approach is to measure rapid visual responses (RVRs) in arm muscle activity during a visually cued reaching task; these may arise from a tecto-reticulospinal pathway. We investigated whether changes in reticulospinal excitability can be assessed noninvasively using RVRs, by pairing the visual stimuli of the reaching task with electrical stimulation of the median nerve, galvanic vestibular stimulation, or loud sounds, all of which are known to activate the reticular formation. Surface electromyogram (EMG) recordings were made from the right deltoid of healthy human subjects as they performed fast reaching movements toward visual targets. Stimuli were delivered up to 200 ms before target appearance, and RVR was quantified as the EMG amplitude in a window 75–125 ms after visual target onset. Median nerve, vestibular, and auditory stimuli all consistently facilitated the RVRs, as well as reducing the latency of responses. We propose that this facilitation reflects modulation of tecto-reticulospinal excitability, which is consistent with the idea that the amplitude of RVRs can be used to assess changes in brain stem excitability noninvasively in humans. NEW & NOTEWORTHY Short-latency responses in arm muscles evoked during a visually driven reaching task have previously been proposed to be tecto-reticulospinal in origin. We demonstrate that these responses can be facilitated by pairing the appearance of a visual target with stimuli that activate the reticular formation: median nerve, vestibular, and auditory stimuli. We propose that this reflects noninvasive measurement and modulation of reticulospinal excitability.
Collapse
Affiliation(s)
- Isabel S. Glover
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N. Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
75
|
Smith V, Maslovat D, Drummond NM, Hajj J, Leguerrier A, Carlsen AN. High-intensity transcranial magnetic stimulation reveals differential cortical contributions to prepared responses. J Neurophysiol 2019; 121:1809-1821. [PMID: 30864866 DOI: 10.1152/jn.00510.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Corticospinal output pathways have typically been considered to be the primary driver for voluntary movements of the hand/forearm; however, more recently, reticulospinal drive has also been implicated in the production of these movements. Although both pathways may play a role, the reticulospinal tract is thought to have stronger connections to flexor muscles than to extensors. Similarly, movements involuntarily triggered via a startling acoustic stimulus (SAS) are believed to receive greater reticular input than voluntary movements. To investigate a differential role of reticulospinal drive depending on movement type or acoustic stimulus, corticospinal drive was transiently interrupted using high-intensity transcranial magnetic stimulation (TMS) applied during the reaction time (RT) interval. This TMS-induced suppression of cortical drive leads to RT delays that can be used to assess cortical contributions to movement. Participants completed targeted flexion and extension movements of the wrist in a simple RT paradigm in response to a control auditory go signal or SAS. Occasionally, suprathreshold TMS was applied over the motor cortical representation for the prime mover. Results revealed that TMS significantly increased RT in all conditions. There was a significantly longer TMS-induced RT delay seen in extension movements than in flexion movements and a greater RT delay in movements initiated in response to control stimuli compared with SAS. These results suggest that the contribution of reticulospinal drive is larger for wrist flexion than for extension. Similarly, movements triggered involuntarily by an SAS appear to involve greater reticulospinal drive, and relatively less corticospinal drive, than those that are voluntarily initiated. NEW & NOTEWORTHY Through the use of the transcranial magnetic stimulation-induced silent period, we provide novel evidence for a greater contribution of reticulospinal drive, and a relative decrease in corticospinal drive, to movements involuntarily triggered by a startle compared with voluntary movements. These results also provide support for the notion that both cortical and reticular structures are involved in the neural pathway underlying startle-triggered movements. Furthermore, our results indicate greater reticulospinal contribution to wrist flexion than extension movements.
Collapse
Affiliation(s)
- Victoria Smith
- School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| | - Dana Maslovat
- School of Kinesiology, University of British Columbia , Vancouver, British Columbia , Canada
| | - Neil M Drummond
- School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| | - Joëlle Hajj
- School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| | | | - Anthony N Carlsen
- School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| |
Collapse
|
76
|
Influence of Chronic Stroke on Functional Arm Reaching: Quantifying Deficits in the Ipsilesional Upper Extremity. Rehabil Res Pract 2019; 2019:5182310. [PMID: 30937192 PMCID: PMC6413383 DOI: 10.1155/2019/5182310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/27/2019] [Indexed: 11/17/2022] Open
Abstract
Purpose The purpose of this study was to quantify ipsilesional upper extremity (UE) stand-reaching performance (kinematics and kinetics) among chronic stroke survivors. Method Community-dwelling chronic stroke survivors (n=13) and age-similar healthy adults (n=13) performed flexion- and abduction-reaching tasks. Surface EMG and acceleration were sampled using wireless sensors from the prime movers (anterior and middle deltoid) and provided performance-outcome (reaction time, burst duration, movement time, and movement initiation time) and performance-production (peak acceleration) measures and were then evaluated. Results Individuals with chronic stroke demonstrated significantly reduced performance outcomes (i.e., longer reaction time, burst duration, movement time, and movement initiation time) and performance production ability (i.e., smaller peak acceleration) compared to their healthy counterparts (p < 0.05) for both flexion- and abduction-reaching movements. Conclusion Our results are suggestive of post-stroke deficits in ipsilesional motor execution during a stand-reaching task. Based on these findings, it is essential to integrate ipsilesional UE training into rehabilitation interventions as this might aid functional reaching activities of daily living and could ultimately help community-dwelling chronic stroke survivors maintain their independent living.
Collapse
|
77
|
Choudhury S, Shobhana A, Singh R, Sen D, Anand SS, Shubham S, Baker MR, Kumar H, Baker SN. The Relationship Between Enhanced Reticulospinal Outflow and Upper Limb Function in Chronic Stroke Patients. Neurorehabil Neural Repair 2019; 33:375-383. [DOI: 10.1177/1545968319836233] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background. Recent evidence from both monkey and human studies suggests that the reticulospinal tract may contribute to recovery of arm and hand function after stroke. In this study, we evaluated a marker of reticulospinal output in stroke survivors with varying degrees of motor recovery. Methods. We recruited 95 consecutive stroke patients presenting 6 months to 12 years after their index stroke, and 19 heathy control subjects. Subjects were asked to respond to a light flash with a rapid wrist flexion; at random, the flash was paired with either a quiet or loud (startling) sound. The mean difference in electromyogram response time after flash with quiet sound compared with flash with loud sound measured the StartReact effect. Upper limb function was assessed by the Action Research Arm Test (ARAT), spasticity was graded using the Modified Ashworth Scale (MAS) and active wrist angular movement using an electrogoniometer. Results. StartReact was significantly larger in stroke patients than healthy participants (78.4 vs 45.0 ms, P < .005). StartReact showed a significant negative correlation with the ARAT score and degree of active wrist movement. The StartReact effect was significantly larger in patients with higher spasticity scores. Conclusion. We speculate that in some patients with severe damage to their corticospinal tract, recovery led to strengthening of reticulospinal connections and an enhanced StartReact effect, but this did not occur for patients with milder impairment who could use surviving corticospinal connections to mediate recovery.
Collapse
Affiliation(s)
| | | | - Ravi Singh
- Institute of Neurosciences, Kolkata, India
| | | | | | | | - Mark R. Baker
- Department of Clinical Neurophysiology and Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | | | - Stuart N. Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
78
|
Parry R, Macias Soria S, Pradat-Diehl P, Marchand-Pauvert V, Jarrassé N, Roby-Brami A. Effects of Hand Configuration on the Grasping, Holding, and Placement of an Instrumented Object in Patients With Hemiparesis. Front Neurol 2019; 10:240. [PMID: 30941091 PMCID: PMC6433942 DOI: 10.3389/fneur.2019.00240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/22/2019] [Indexed: 11/24/2022] Open
Abstract
Objective: Limitations with manual dexterity are an important problem for patients suffering from hemiparesis post stroke. Sensorimotor deficits, compensatory strategies and the use of alternative grasping configurations may influence the efficiency of prehensile motor behavior. The aim of the present study is to examine how different grasp configurations affect patient ability to regulate both grip forces and object orientation when lifting, holding and placing an object. Methods: Twelve stroke patients with mild to moderate hemiparesis were recruited. Each was required to lift, hold and replace an instrumented object. Four different grasp configurations were tested on both the hemiparetic and less affected arms. Load cells from each of the 6 faces of the instrumented object and an integrated inertial measurement unit were used to extract data regarding the timing of unloading/loading phases, regulation of grip forces, and object orientation throughout the task. Results: Grip forces were greatest when using a palmar-digital grasp and lowest when using a top grasp. The time delay between peak acceleration and maximum grip force was also greatest for palmar-digital grasp and lowest for the top grasp. Use of the hemiparetic arm was associated with increased duration of the unloading phase and greater difficulty with maintaining the vertical orientation of the object at the transitions to object lifting and object placement. The occurrence of touch and push errors at the onset of grasp varied according to both grasp configuration and use of the hemiparetic arm. Conclusion: Stroke patients exhibit impairments in the scale and temporal precision of grip force adjustments and reduced ability to maintain object orientation with various grasp configurations using the hemiparetic arm. Nonetheless, the timing and magnitude of grip force adjustments may be facilitated using a top grasp configuration. Conversely, whole hand prehension strategies compound difficulties with grip force scaling and inhibit the synchrony of grasp onset and object release.
Collapse
Affiliation(s)
- Ross Parry
- Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, Paris, France.,Centre de Recherche sur le Sport et le Mouvement, EA 2931, Université Paris Nanterre, Nanterre, France
| | - Sandra Macias Soria
- Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, Paris, France
| | - Pascale Pradat-Diehl
- Service de Médecine Physique et de Réadaptation, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France.,AP-HP, GRC n°18 Handicap cognitif et réadaptation (HanCRe), Sorbonne Université, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France
| | | | - Nathanaël Jarrassé
- Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, Paris, France
| | - Agnès Roby-Brami
- Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, Paris, France
| |
Collapse
|
79
|
The unsolved role of heightened connectivity from the unaffected hemisphere to paretic arm muscles in chronic stroke. Clin Neurophysiol 2019; 130:781-788. [PMID: 30925310 DOI: 10.1016/j.clinph.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/06/2019] [Accepted: 02/27/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Ipsilateral connectivity from the non-stroke hemisphere to paretic arm muscles appears to play little role in functional recovery, which instead depends on contralateral connectivity from the stroke hemisphere. Yet the incidence of ipsilateral projections in stroke survivors is often reported to be higher than normal. We tested this directly using a sensitive measure of connectivity to proximal arm muscles. METHOD TMS of the stroke and non-stroke motor cortex evoked responses in pre-activated triceps and deltoid muscles of 17 stroke survivors attending reaching training. Connectivity was defined as a clear MEP or a short-latency silent period in ongoing EMG in ≥ 50% of stimulations. We measured reaching accuracy at baseline, improvement after training and upper limb Fugl-Meyer (F-M) score. RESULTS Incidence of ipsilateral connections to triceps (47%) and deltoid (58%) was high, but unrelated to baseline reaching accuracy and F-M scores. Instead, these were related to contralateral connectivity from the stroke hemisphere. Absolute but not proportional improvement after training was greater in patients with ipsilateral responses. CONCLUSIONS Despite enhanced ipsilateral connectivity, arm function and learning was related most strongly to contralateral pathway integrity from the stroke hemisphere. SIGNIFICANCE Further work is needed to decipher the role of ipsilateral connections.
Collapse
|
80
|
Charalambous CC, Liang JN, Kautz SA, George MS, Bowden MG. Bilateral Assessment of the Corticospinal Pathways of the Ankle Muscles Using Navigated Transcranial Magnetic Stimulation. J Vis Exp 2019. [PMID: 30855569 DOI: 10.3791/58944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Distal leg muscles receive neural input from motor cortical areas via the corticospinal tract, which is one of the main motor descending pathway in humans and can be assessed using transcranial magnetic stimulation (TMS). Given the role of distal leg muscles in upright postural and dynamic tasks, such as walking, a growing research interest in the assessment and modulation of the corticospinal tracts relative to the function of these muscles has emerged in the last decade. However, methodological parameters used in previous work have varied across studies making the interpretation of results from cross-sectional and longitudinal studies less robust. Therefore, use of a standardized TMS protocol specific to the assessment of leg muscles' corticomotor response (CMR) will allow for direct comparison of results across studies and cohorts. The objective of this paper is to present a protocol that provides the flexibility to simultaneously assess the bilateral CMR of two main ankle antagonistic muscles, the tibialis anterior and soleus, using single pulse TMS with a neuronavigation system. The present protocol is applicable while the examined muscle is either fully relaxed or isometrically contracted at a defined percentage of maximum isometric voluntary contraction. Using each subject's structural MRI with the neuronavigation system ensures accurate and precise positioning of the coil over the leg cortical representations during assessment. Given the inconsistency in CMR derived measures, this protocol also describes a standardized calculation of these measures using automated algorithms. Though this protocol is not conducted during upright postural or dynamic tasks, it can be used to assess bilaterally any pair of leg muscles, either antagonistic or synergistic, in both neurologically intact and impaired subjects.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, New York University School of Medicine; Department of Health Sciences and Research, Medical University of South Carolina;
| | - Jing Nong Liang
- Department of Physical Therapy, University of Nevada Las Vegas; Department of Health Professions, Medical University of South Carolina
| | - Steve A Kautz
- Department of Health Sciences and Research, Medical University of South Carolina; Ralph H. Johnson VA Medical Center
| | - Mark S George
- Ralph H. Johnson VA Medical Center; Department of Psychiatry, Medical University of South Carolina
| | - Mark G Bowden
- Department of Health Sciences and Research, Medical University of South Carolina; Ralph H. Johnson VA Medical Center; Division of Physical Therapy, Medical University of South Carolina
| |
Collapse
|
81
|
Nardone R, Langthaler PB, Orioli A, Versace V, Scarano GI, Brigo F, Saltuari L, Carnicelli L, Trinka E, Sebastianelli L. Ipsilateral motor evoked potentials in a patient with unihemispheric cortical atrophy due to Rasmussen encephalitis. Neural Regen Res 2019; 14:1025-1028. [PMID: 30762014 PMCID: PMC6404490 DOI: 10.4103/1673-5374.250581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of the ipsilaterally descending motor pathways in the recovery mechanisms after unilateral hemispheric damage is still poorly understood. Motor output reorganization was investigated in a 56-year-old male patient with acquired unilateral hemispheric atrophy due to Rasmussen encephalitis. In particular, the ipsilateral corticospinal pathways were explored using focal transcranial magnetic stimulation. In the first dorsal interosseous and wrist extensors muscles, the median amplitudes of the ipsilateral motor evoked potentials induced by transcranial magnetic stimulation in the patient were higher than those of 10 age-matched healthy control subjects. In the biceps brachii muscle, the median amplitudes of the ipsilateral motor evoked potentials were the second largest in the patient compared to the controls. This study demonstrated a reinforcement of ipsilateral motor projections from the unaffected motor cortex to the hemiparetic hand in a subject with acquired unihemispheric cortical damage.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Patrick B Langthaler
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University; Department of Mathematics, Paris Lodron University of Salzburg, Austria
| | - Andrea Orioli
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| | | | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Merano; Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy; Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Luca Carnicelli
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University; Centre for Cognitive Neurosciences Salzburg, Salzburg; University for Medical Informatics and Health Technology, UMIT, Hall in Tirol, Austria
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno; Research Unit for Neurorehabilitation South Tyrol, Bolzano, Italy
| |
Collapse
|
82
|
Adank P, Kennedy-Higgins D, Maegherman G, Hannah R, Nuttall HE. Effects of Coil Orientation on Motor Evoked Potentials From Orbicularis Oris. Front Neurosci 2018; 12:683. [PMID: 30483044 PMCID: PMC6243052 DOI: 10.3389/fnins.2018.00683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
This study aimed to characterize effects of coil orientation on the size of Motor Evoked Potentials (MEPs) from both sides of Orbicularis Oris (OO) and both First Dorsal Interosseous (FDI) muscles, following stimulation to left lip and left hand Primary Motor Cortex. Using a 70 mm figure-of-eight coil, we collected MEPs from eight different orientations while recording from contralateral and ipsilateral OO and FDI using a monophasic pulse delivered at 120% active motor threshold. MEPs from OO were evoked consistently for six orientations for contralateral and ipsilateral sites. Contralateral orientations 0°, 45°, 90°, and 315° were found to best elicit OO MEPs with a likely cortical origin. The largest FDI MEPs were recorded for contralateral 45°, invoking a posterior-anterior (PA) current flow. Orientations traditionally used for FDI were also found to be suitable for eliciting OO MEPs. Individuals vary more in their optimal orientation for OO than for FDI. It is recommended that researchers iteratively probe several orientations when eliciting MEPs from OO. Several orientations likely induced direct activation of facial muscles.
Collapse
Affiliation(s)
- Patti Adank
- Department of Speech, Hearing and Phonetic Sciences, University College London, London, United Kingdom
| | - Dan Kennedy-Higgins
- Department of Speech, Hearing and Phonetic Sciences, University College London, London, United Kingdom
| | - Gwijde Maegherman
- Department of Speech, Hearing and Phonetic Sciences, University College London, London, United Kingdom
| | - Ricci Hannah
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Helen E. Nuttall
- Department of Speech, Hearing and Phonetic Sciences, University College London, London, United Kingdom
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
83
|
Mayer NH. New Treatment Approaches on the Horizon for Spastic Hemiparesis. PM R 2018; 10:S144-S150. [PMID: 30269800 DOI: 10.1016/j.pmrj.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 01/23/2023]
Abstract
This article presents 2 recent articles that propose novel interventions for treating spastic hemiparesis by changing biological infrastructure. In 18 patients with unilateral spastic arm paralysis due to chronic cerebral injury greater than 5 years' duration, Zheng et al transferred the C7 nerve from the nonparalyzed side to the side of the arm that was paralyzed. Over a follow-up period of 12 months, they found greater improvement in function and a reduction of spasticity compared to rehabilitation alone. Using functional magnetic resonance imaging, they also found evidence for physiological connectivity between the ipsilateral cerebral hemisphere and the paralyzed hand. In the second article, Raghavan et al examine the concept of stiffness, a common symptom in patients with spastic hemiparesis, as a physical change in the infrastructure of muscle. Raghavan's non-neural hyaluronan hypothesis postulates that an accumulation of hyaluronan within spastic muscles promotes the development of muscle stiffness in patients with an upper motor neuron syndrome (UMNS). In a case series of 20 patients with spastic hemiparesis, Raghavan et al report that upper limb intramuscular injections of hyaluronidase increased passive and active joint movement and reduced muscle stiffness. Interventions that change biological infrastructure in UMNS is a paradigm on the horizon that bears watching.
Collapse
Affiliation(s)
- Nathaniel H Mayer
- Emeritus Professor, Dept PM&R, Temple University School of Medicine & Dept PM&R, MossRehab, 60 Township Line Road, Elkins Park, PA 19027(∗).
| |
Collapse
|
84
|
Smith AT, Gorassini MA. Hyperexcitability of brain stem pathways in cerebral palsy. J Neurophysiol 2018; 120:1428-1437. [DOI: 10.1152/jn.00185.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Individuals with cerebral palsy (CP) experience impairments in the control of head and neck movements, suggesting dysfunction in brain stem circuitry. To examine if brain stem circuitry is altered in CP, we compared reflexes evoked in the sternocleidomastoid (SCM) muscle by trigeminal nerve stimulation in adults with CP and in age/sex-matched controls. Increasing the intensity of trigeminal nerve stimulation produced progressive increases in the long-latency suppression of ongoing SCM electromyography in controls. In contrast, participants with CP showed progressively increased facilitation around the same reflex window, suggesting heightened excitability of brain stem pathways. We also examined if there was altered activation of cortico-brain stem pathways in response to prenatal injury of the brain. Motor-evoked potentials (MEPs) in the SCM that were conditioned by a prior trigeminal afferent stimulation were more facilitated in CP compared with controls, especially in ipsilateral MEPs that are likely mediated by corticoreticulospinal pathways. In some participants with CP, but not in controls, a combined trigeminal nerve and cortical stimulation near threshold intensities produced large, long-lasting responses in both the SCM and biceps brachii muscles. We propose that the enhanced excitatory responses evoked from trigeminal and cortical inputs in CP are produced by heightened excitability of brain stem circuits, resulting in the augmented activation of reticulospinal pathways. Enhanced activation of reticulospinal pathways in response to early injury of the corticospinal tract may provide a compensated activation of the spinal cord or, alternatively, contribute to impairments in the precise control of head and neck functions. NEW & NOTEWORTHY This is the first study to show that in adults with spastic cerebral palsy, activation of brain stem circuits by cortical and/or trigeminal afferents produces excitatory responses in anterior neck muscles compared with inhibitory responses in age/sex-matched controls. This may reflect a more excitable reticulospinal tract in response to early brain injury to provide a compensated activation of postural muscles. On the other hand, a hyperexcitable brain stem may contribute to impairments in the precise control of head and neck functions.
Collapse
Affiliation(s)
- A. T. Smith
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - M. A. Gorassini
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
85
|
Chiou SY, Strutton PH, Perez MA. Crossed corticospinal facilitation between arm and trunk muscles in humans. J Neurophysiol 2018; 120:2595-2602. [PMID: 29847230 DOI: 10.1152/jn.00178.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A voluntary contraction of muscles with one arm increases the excitability of corticospinal projections to the contralateral resting arm, a phenomenon known as crossed facilitation. Although many motor tasks engage simultaneous activation of the arm and trunk, interactions between corticospinal projections targeting these segments remain largely unknown. Using transcranial magnetic stimulation over the trunk representation of the primary motor cortex, we examined motor-evoked potentials (MEPs) in the resting erector spinae (ES) muscle when the contralateral arm remained at rest or performed 20% of isometric maximal voluntary contraction (MVC) into index finger abduction, thumb abduction, elbow flexion, and elbow extension. We found that MEP size in the ES increased during all voluntary contractions, with greater facilitation occurring during elbow flexion and index finger abduction. To further examine the origin of changes in MEP size, we measured short-interval intracortical inhibition (SICI) and cervicomedullary MEPs (CMEPs) in the ES muscle during elbow flexion and index finger abduction and when the arm remained at rest. Notably, SICI decreased and CMEPs remained unchanged in the ES during both voluntary contractions compared with rest, suggesting a cortical origin for the effects. Our findings reveal crossed facilitatory interactions between trunk extensor and proximal and distal arm muscles, particularly for elbow flexor and index finger muscles, likely involving cortical mechanisms. These interactions might reflect the different role of these muscles during functionally relevant arm and trunk movements. NEW & NOTEWORTHY Many of the tasks of daily life involve simultaneous activation of the arm and trunk. We found that responses in the erector spinae muscles evoked by motor cortical stimulation increased in size during elbow flexion and extension and during index finger abduction and thumb abduction. Crossed facilitation with the trunk was more pronounced during elbow flexion and index finger abduction. These results might reflect the different role of these muscles during arm and trunk movements.
Collapse
Affiliation(s)
- Shin-Yi Chiou
- Faculty of Medicine, The Nick Davey Laboratory, Division of Surgery, Department of Surgery and Cancer, Imperial College London , London , United Kingdom.,Department of Physical Medicine and Rehabilitation, Systems Neuroscience Institute, University of Pittsburgh, Pennsylvania
| | - Paul H Strutton
- Faculty of Medicine, The Nick Davey Laboratory, Division of Surgery, Department of Surgery and Cancer, Imperial College London , London , United Kingdom
| | - Monica A Perez
- Department of Physical Medicine and Rehabilitation, Systems Neuroscience Institute, University of Pittsburgh, Pennsylvania.,Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami , Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| |
Collapse
|
86
|
Aguiar SA, Baker SN. Descending Inputs to Spinal Circuits Facilitating and Inhibiting Human Wrist Flexors. Front Hum Neurosci 2018; 12:147. [PMID: 29719504 PMCID: PMC5913321 DOI: 10.3389/fnhum.2018.00147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Abstract
Recently we reported in humans that electrical stimulation of the wrist extensor muscle extensor carpi radialis (ECR) could facilitate or suppress the H reflex elicited in flexor carpi radialis (FCR), for inter-stimulus intervals (ISIs) of 30 ms or 70 ms, respectively. The facilitation at 30 ms may be produced by both flexor afferents and extensor Ib afferents acting on a spinal circuit; the origin of the suppression at 70 ms is less certain. In this study, we investigated possible descending inputs to these systems. We used magnetic stimulation of the contralateral primary motor cortex, and click sound stimulation, to activate the corticospinal and the reticulospinal tracts respectively, and measured the effects on the H reflex conditioned by ECR stimulation. Corticospinal inputs reduced both the 30 ms facilitation and 70 ms suppression, indicating corticospinal inhibition of both circuits. By contrast, we failed to show any effect of clicks, either on the H reflex or on its modulation by ECR stimulation. This suggests that click-activated reticulospinal inputs to these circuits may be weak or absent.
Collapse
Affiliation(s)
- Stefane A Aguiar
- Institute of Neuroscience, Newcastle University Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Institute of Neuroscience, Newcastle University Newcastle upon Tyne, United Kingdom
| |
Collapse
|
87
|
Marneweck M, Kuo HC, Smorenburg ARP, Ferre CL, Flamand VH, Gupta D, Carmel JB, Bleyenheuft Y, Gordon AM, Friel KM. The Relationship Between Hand Function and Overlapping Motor Representations of the Hands in the Contralesional Hemisphere in Unilateral Spastic Cerebral Palsy. Neurorehabil Neural Repair 2018; 32:62-72. [PMID: 29303031 DOI: 10.1177/1545968317745991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND In many children with unilateral spastic cerebral palsy (USCP), the corticospinal tract to the affected hand atypically originates in the hemisphere ipsilateral to the affected hand. Such ipsilateral connectivity is on average a predictor of poor hand function. However, there is high variability in hand function in these children, which might be explained by the complexity of motor representations of both hands in the contralesional hemisphere. OBJECTIVE To measure the link between hand function and the size and excitability of motor representations of both hands, and their overlap, in the contralesional hemisphere of children with USCP. METHODS We used single-pulse transcranial magnetic stimulation to measure the size and excitability of motor representations of both hands, and their overlap, in the contralesional hemisphere of 50 children with USCP. We correlated these measures with manual dexterity of the affected hand, bimanual performance, and mirror movement strength. RESULTS The main and novel findings were (1) the large overlap in contralesional motor representations of the 2 hands and (2) the moderate positive associations of the size and excitability of such shared-site representations with hand function. Such functional associations were not present for overall size and excitability of representations of the affected hand. CONCLUSIONS Greater relative overlap of the affected hand representation with the less-affected hand representation within the contralesional hemisphere was associated with better hand function. This association suggests that overlapping representations might be adaptively "yoked," such that cortical control of the child's less-affected hand supports that of the affected hand.
Collapse
Affiliation(s)
| | - Hsing-Ching Kuo
- 2 University of Calgary, Calgary, Alberta, Canada.,3 Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Ana R P Smorenburg
- 4 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA
| | - Claudio L Ferre
- 4 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA
| | | | - Disha Gupta
- 4 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA
| | - Jason B Carmel
- 4 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA.,7 Blythedale Children's Hospital, Valhalla, NY, USA
| | | | - Andrew M Gordon
- 9 Teachers College of Columbia University, New York, NY, USA
| | - Kathleen M Friel
- 4 Burke-Cornell Medical Research Institute, White Plains, NY, USA.,5 Weill Cornell Medical College, New York, NY, USA.,7 Blythedale Children's Hospital, Valhalla, NY, USA
| |
Collapse
|
88
|
McGregor KM, Crosson B, Mammino K, Omar J, García PS, Nocera JR. Influences of 12-Week Physical Activity Interventions on TMS Measures of Cortical Network Inhibition and Upper Extremity Motor Performance in Older Adults-A Feasibility Study. Front Aging Neurosci 2018; 9:422. [PMID: 29354049 PMCID: PMC5758495 DOI: 10.3389/fnagi.2017.00422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Objective: Data from previous cross-sectional studies have shown that an increased level of physical fitness is associated with improved motor dexterity across the lifespan. In addition, physical fitness is positively associated with increased laterality of cortical function during unimanual tasks; indicating that sedentary aging is associated with a loss of interhemispheric inhibition affecting motor performance. The present study employed exercise interventions in previously sedentary older adults to compare motor dexterity and measure of interhemispheric inhibition using transcranial magnetic stimulation (TMS) after the interventions. Methods: Twenty-one community-dwelling, reportedly sedentary older adults were recruited, randomized and enrolled to a 12-week aerobic exercise group or a 12-week non-aerobic exercise balance condition. The aerobic condition was comprised of an interval-based cycling "spin" activity, while the non-aerobic "balance" exercise condition involved balance and stretching activities. Participants completed upper extremity dexterity batteries and estimates of VO2max in addition to undergoing single (ipsilateral silent period-iSP) and paired-pulse interhemispheric inhibition (ppIHI) in separate assessment sessions before and after study interventions. After each intervention during which heart rate was continuously recorded to measure exertion level (load), participants crossed over into the alternate arm of the study for an additional 12-week intervention period in an AB/BA design with no washout period. Results: After the interventions, regardless of intervention order, participants in the aerobic spin condition showed higher estimated VO2max levels after the 12-week intervention as compared to estimated VO2max in the non-aerobic balance intervention. After controlling for carryover effects due to the study design, participants in the spin condition showed longer iSP duration than the balance condition. Heart rate load was more strongly correlated with silent period duration after the Spin condition than estimated VO2. Conclusions: Aging-related changes in cortical inhibition may be influenced by 12-week physical activity interventions when assessed with the iSP. Although inhibitory signaling is mediates both ppIHI and iSP measures each TMS modality likely employs distinct inhibitory networks, potentially differentially affected by aging. Changes in inhibitory function after physical activity interventions may be associated with improved dexterity and motor control at least as evidence from this feasibility study show.
Collapse
Affiliation(s)
- Keith M. McGregor
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bruce Crosson
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Kevin Mammino
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
| | - Javier Omar
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
| | - Paul S. García
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joe R. Nocera
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
89
|
Zheng MX, Hua XY, Feng JT, Li T, Lu YC, Shen YD, Cao XH, Zhao NQ, Lyu JY, Xu JG, Gu YD, Xu WD. Trial of Contralateral Seventh Cervical Nerve Transfer for Spastic Arm Paralysis. N Engl J Med 2018; 378:22-34. [PMID: 29262271 DOI: 10.1056/nejmoa1615208] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Spastic limb paralysis due to injury to a cerebral hemisphere can cause long-term disability. We investigated the effect of grafting the contralateral C7 nerve from the nonparalyzed side to the paralyzed side in patients with spastic arm paralysis due to chronic cerebral injury. METHODS We randomly assigned 36 patients who had had unilateral arm paralysis for more than 5 years to undergo C7 nerve transfer plus rehabilitation (18 patients) or to undergo rehabilitation alone (18 patients). The primary outcome was the change from baseline to month 12 in the total score on the Fugl-Meyer upper-extremity scale (scores range from 0 to 66, with higher scores indicating better function). Results The mean increase in Fugl-Meyer score in the paralyzed arm was 17.7 in the surgery group and 2.6 in the control group (difference, 15.1; 95% confidence interval, 12.2 to 17.9; P<0.001). With regard to improvements in spasticity as measured on the Modified Ashworth Scale (an assessment of five joints, each scored from 0 to 5, with higher scores indicating more spasticity), the smallest between-group difference was in the thumb, with 6, 9, and 3 patients in the surgery group having a 2-unit improvement, a 1-unit improvement, or no change, respectively, as compared with 1, 6, and 7 patients in the control group (P=0.02). Transcranial magnetic stimulation and functional imaging showed connectivity between the ipsilateral hemisphere and the paralyzed arm. There were no significant differences from baseline to month 12 in power, tactile threshold, or two-point discrimination in the hand on the side of the donor graft. RESULTS The mean increase in Fugl-Meyer score in the paralyzed arm was 17.7 in the surgery group and 2.6 in the control group (difference, 15.1; 95% confidence interval, 12.2 to 17.9; P<0.001). With regard to improvements in spasticity as measured on the Modified Ashworth Scale (an assessment of five joints, each scored from 0 to 5, with higher scores indicating more spasticity), the smallest between-group difference was in the thumb, with 6, 9, and 3 patients in the surgery group having a 2-unit improvement, a 1-unit improvement, or no change, respectively, as compared with 1, 6, and 7 patients in the control group (P=0.02). Transcranial magnetic stimulation and functional imaging showed connectivity between the ipsilateral hemisphere and the paralyzed arm. There were no significant differences from baseline to month 12 in power, tactile threshold, or two-point discrimination in the hand on the side of the donor graft. CONCLUSIONS In this single-center trial involving patients who had had unilateral arm paralysis due to chronic cerebral injury for more than 5 years, transfer of the C7 nerve from the nonparalyzed side to the side of the arm that was paralyzed was associated with a greater improvement in function and reduction of spasticity than rehabilitation alone over a period of 12 months. Physiological connectivity developed between the ipsilateral cerebral hemisphere and the paralyzed hand. (Funded by the National Natural Science Foundation of China and others; Chinese Clinical Trial Registry number, 13004466 .).
Collapse
Affiliation(s)
- Mou-Xiong Zheng
- From the Department of Hand Surgery, Huashan Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the National Clinical Research Center for Aging and Medicine (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), Department of Biostatistics, School of Public Health (N.-Q.Z., J.-Y.L.), and State Key Laboratory of Medical Neurobiology (W.-D.X.), Fudan University, the Key Laboratory of Hand Reconstruction, Ministry of Health (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., W.-D.X.), and the Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University (X.-H.C.) - all in Shanghai, China
| | - Xu-Yun Hua
- From the Department of Hand Surgery, Huashan Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the National Clinical Research Center for Aging and Medicine (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), Department of Biostatistics, School of Public Health (N.-Q.Z., J.-Y.L.), and State Key Laboratory of Medical Neurobiology (W.-D.X.), Fudan University, the Key Laboratory of Hand Reconstruction, Ministry of Health (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., W.-D.X.), and the Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University (X.-H.C.) - all in Shanghai, China
| | - Jun-Tao Feng
- From the Department of Hand Surgery, Huashan Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the National Clinical Research Center for Aging and Medicine (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), Department of Biostatistics, School of Public Health (N.-Q.Z., J.-Y.L.), and State Key Laboratory of Medical Neurobiology (W.-D.X.), Fudan University, the Key Laboratory of Hand Reconstruction, Ministry of Health (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., W.-D.X.), and the Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University (X.-H.C.) - all in Shanghai, China
| | - Tie Li
- From the Department of Hand Surgery, Huashan Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the National Clinical Research Center for Aging and Medicine (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), Department of Biostatistics, School of Public Health (N.-Q.Z., J.-Y.L.), and State Key Laboratory of Medical Neurobiology (W.-D.X.), Fudan University, the Key Laboratory of Hand Reconstruction, Ministry of Health (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., W.-D.X.), and the Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University (X.-H.C.) - all in Shanghai, China
| | - Ye-Chen Lu
- From the Department of Hand Surgery, Huashan Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the National Clinical Research Center for Aging and Medicine (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), Department of Biostatistics, School of Public Health (N.-Q.Z., J.-Y.L.), and State Key Laboratory of Medical Neurobiology (W.-D.X.), Fudan University, the Key Laboratory of Hand Reconstruction, Ministry of Health (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., W.-D.X.), and the Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University (X.-H.C.) - all in Shanghai, China
| | - Yun-Dong Shen
- From the Department of Hand Surgery, Huashan Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the National Clinical Research Center for Aging and Medicine (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), Department of Biostatistics, School of Public Health (N.-Q.Z., J.-Y.L.), and State Key Laboratory of Medical Neurobiology (W.-D.X.), Fudan University, the Key Laboratory of Hand Reconstruction, Ministry of Health (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., W.-D.X.), and the Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University (X.-H.C.) - all in Shanghai, China
| | - Xiao-Hua Cao
- From the Department of Hand Surgery, Huashan Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the National Clinical Research Center for Aging and Medicine (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), Department of Biostatistics, School of Public Health (N.-Q.Z., J.-Y.L.), and State Key Laboratory of Medical Neurobiology (W.-D.X.), Fudan University, the Key Laboratory of Hand Reconstruction, Ministry of Health (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., W.-D.X.), and the Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University (X.-H.C.) - all in Shanghai, China
| | - Nai-Qing Zhao
- From the Department of Hand Surgery, Huashan Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the National Clinical Research Center for Aging and Medicine (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), Department of Biostatistics, School of Public Health (N.-Q.Z., J.-Y.L.), and State Key Laboratory of Medical Neurobiology (W.-D.X.), Fudan University, the Key Laboratory of Hand Reconstruction, Ministry of Health (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., W.-D.X.), and the Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University (X.-H.C.) - all in Shanghai, China
| | - Jia-Ying Lyu
- From the Department of Hand Surgery, Huashan Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the National Clinical Research Center for Aging and Medicine (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), Department of Biostatistics, School of Public Health (N.-Q.Z., J.-Y.L.), and State Key Laboratory of Medical Neurobiology (W.-D.X.), Fudan University, the Key Laboratory of Hand Reconstruction, Ministry of Health (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., W.-D.X.), and the Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University (X.-H.C.) - all in Shanghai, China
| | - Jian-Guang Xu
- From the Department of Hand Surgery, Huashan Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the National Clinical Research Center for Aging and Medicine (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), Department of Biostatistics, School of Public Health (N.-Q.Z., J.-Y.L.), and State Key Laboratory of Medical Neurobiology (W.-D.X.), Fudan University, the Key Laboratory of Hand Reconstruction, Ministry of Health (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., W.-D.X.), and the Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University (X.-H.C.) - all in Shanghai, China
| | - Yu-Dong Gu
- From the Department of Hand Surgery, Huashan Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the National Clinical Research Center for Aging and Medicine (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), Department of Biostatistics, School of Public Health (N.-Q.Z., J.-Y.L.), and State Key Laboratory of Medical Neurobiology (W.-D.X.), Fudan University, the Key Laboratory of Hand Reconstruction, Ministry of Health (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., W.-D.X.), and the Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University (X.-H.C.) - all in Shanghai, China
| | - Wen-Dong Xu
- From the Department of Hand Surgery, Huashan Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the National Clinical Research Center for Aging and Medicine (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), Department of Biostatistics, School of Public Health (N.-Q.Z., J.-Y.L.), and State Key Laboratory of Medical Neurobiology (W.-D.X.), Fudan University, the Key Laboratory of Hand Reconstruction, Ministry of Health (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Shanghai Key Laboratory of Peripheral Nerve and Microsurgery (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., J.-G.X., Y.-D.G., W.-D.X.), the Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital (M.-X.Z., X.-Y.H., J.-T.F., T.L., Y.-C.L., Y.-D.S., W.-D.X.), and the Key Laboratory of Brain Functional Genomics (Ministry of Education) and Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University (X.-H.C.) - all in Shanghai, China
| |
Collapse
|
90
|
Hodgson JC, Hudson JM. Speech lateralization and motor control. PROGRESS IN BRAIN RESEARCH 2018; 238:145-178. [DOI: 10.1016/bs.pbr.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
91
|
Sebastianelli L, Saltuari L, Nardone R. How the brain can rewire itself after an injury: the lesson from hemispherectomy. Neural Regen Res 2017; 12:1426-1427. [PMID: 29089981 PMCID: PMC5649456 DOI: 10.4103/1673-5374.215247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Sterzing, Sterzing, Italy; Research Unit for Neurorehabilitation of South Tyrol, Bozen, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Sterzing, Sterzing, Italy; Research Unit for Neurorehabilitation of South Tyrol, Bozen, Italy.,Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Meran, Italy; Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
92
|
McCambridge AB, Stinear JW, Byblow WD. Revisiting interhemispheric imbalance in chronic stroke: A tDCS study. Clin Neurophysiol 2017; 129:42-50. [PMID: 29145166 DOI: 10.1016/j.clinph.2017.10.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/25/2017] [Accepted: 10/01/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Chronic stroke patients with moderate-severe motor impairment may have an increased reliance on contralesional vs ipsilesional motor areas to control the paretic arm. We hypothesised that increasing contralesional excitability with anodal transcranial direct current stimulation (a-tDCS) would benefit motor performance in patients with moderate-severe impairment. METHODS Ten patients with motor impairment at the chronic stage after stroke received a-tDCS, cathodal (c-tDCS) and sham with the target electrode over contralesional motor cortex (M1). Motor performance was quantified from the circularity and size of planar movements made with the paretic arm. Contralateral and ipsilateral corticospinal excitability was inferred using transcranial magnetic stimulation. Corticospinal tract integrity and basal GABA concentration were assessed with magnetic resonance imaging and spectroscopy. RESULTS Anodal tDCS increased contralesional corticomotor excitability evident from motor evoked potentials in both wrist extensors (both P<0.043). Cathodal tDCS did not affect corticomotor excitability (P>0.37). The effect of tDCS on motor performance with the paretic limb was negatively associated with ipsilesional GABA concentration after c-tDCS (P=0.001). CONCLUSIONS Further investigation of noninvasive brain stimulation protocols that facilitate contralesional M1 is warranted. SIGNIFICANCE The inter-hemispheric imbalance model of stroke recovery may not apply to patients with more severe impairment.
Collapse
Affiliation(s)
- Alana B McCambridge
- Department of Exercise Sciences, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand; Graduate School of Health, University of Technology Sydney, Australia
| | - James W Stinear
- Department of Exercise Sciences, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
93
|
Hendy AM, Chye L, Teo WP. Cross-Activation of the Motor Cortex during Unilateral Contractions of the Quadriceps. Front Hum Neurosci 2017; 11:397. [PMID: 28824401 PMCID: PMC5541022 DOI: 10.3389/fnhum.2017.00397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/18/2017] [Indexed: 01/24/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) studies have demonstrated that unilateral muscle contractions in the upper limb produce motor cortical activity in both the contralateral and ipsilateral motor cortices. The increase in excitability of the corticomotor pathway activating the resting limb has been termed “cross-activation”, and is of importance due to its involvement in cross-education and rehabilitation. To date, very few studies have investigated cross-activation in the lower limb. Sixteen healthy participants (mean age 29 ± 9 years) took part in this study. To determine the effect of varying contraction intensities in the lower limb, we investigated corticomotor excitability and intracortical inhibition of the right rectus femoris (RF) while the left leg performed isometric extension at 0%, 25%, 50%, 75% and 100% of maximum force output. Contraction intensities of 50% maximal force output and greater produced significant cross-activation of the corticomotor pathway. A reduction in silent period duration was observed during 75% and 100% contractions, while the release of short-interval intracortical inhibition (SICI) was only observed during maximal (100%) contractions. We conclude that increasing isometric contraction intensities produce a monotonic increase in cross-activation, which was greatest during 100% force output. Unilateral training programs designed to induce cross-education of strength in the lower limb should therefore be prescribed at the maximal intensity tolerable.
Collapse
Affiliation(s)
- Ashlee M Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin UniversityBurwood, VIC, Australia
| | - Lilian Chye
- Frailty Research Programme, Geriatric Education and Research InstituteYishun Central, Singapore
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Science, Deakin UniversityBurwood, VIC, Australia
| |
Collapse
|
94
|
Preclinical and Clinical Evidence on Ipsilateral Corticospinal Projections: Implication for Motor Recovery. Transl Stroke Res 2017; 8:529-540. [PMID: 28691140 DOI: 10.1007/s12975-017-0551-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/31/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Motor impairment is the most common complication after stroke, and recovery of motor function has been shown to be dependent on the extent of lesion in the ipsilesional corticospinal tract (iCST) and activity within ipsilesional primary and secondary motor cortices. However, work from neuroimaging research has suggested a role of the contralesional hemisphere in promoting recovery after stroke potentially through the ipsilateral uncrossed CST fibers descending to ipsilateral spinal segments. These ipsilateral fibers, sometimes referred to as "latent" projections, are thought to contribute to motor recovery independent of the crossed CST. The aim of this paper is to evaluate using cumulative evidence from animal models and human patients on whether an uncrossed CST component is present in mammals and conserved through primates and humans, and whether iCST fibers have a functional role in hemiparetic/hemiplegic human conditions. This review highlights that an ipsilateral uncrossed CST exists in human during development, but the evidence on a functionally relevant iCST component in adult humans is still elusive. In addition, this review argues that whereas activity within the ipsilesional cortex is essential for enhancing motor recovery after stroke, the role of iCST projections specifically is still controversial. Finally, conclusions from current literature emphasize the importance of activity in the ipsilesional cortex and the integrity of crossed CST fibers as major determinants of motor recovery after brain injury.
Collapse
|
95
|
Jean-Charles L, Nepveu JF, Deffeyes JE, Elgbeili G, Dancause N, Barthélemy D. Interhemispheric interactions between trunk muscle representations of the primary motor cortex. J Neurophysiol 2017; 118:1488-1500. [PMID: 28615339 DOI: 10.1152/jn.00778.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 11/22/2022] Open
Abstract
Unilateral arm movements require trunk stabilization through bilateral contraction of axial muscles. Interhemispheric interactions between primary motor cortices (M1) could enable such coordinated contractions, but these mechanisms are largely unknown. Using transcranial magnetic stimulation (TMS), we characterized interhemispheric interactions between M1 representations of the trunk-stabilizing muscles erector spinae at the first lumbar vertebra (ES L1) during a right isometric shoulder flexion. These interactions were compared with those of the anterior deltoid (AD), the main agonist in this task, and the first dorsal interosseous (FDI). TMS over the right M1 elicited ipsilateral silent periods (iSP) in all three muscles on the right side. In ES L1, but not in AD or FDI, ipsilateral motor evoked potential (iMEP) could precede the iSP or replace it. iMEP amplitude was not significantly different whether ES L1 was used to stabilize the trunk or was voluntarily contracted. TMS at the cervicomedullary junction showed that the size of cervicomedullary evoked potential was unchanged during the iSP but increased during iMEP, suggesting that the iSP, but not the iMEP, is due to intracortical mechanisms. Using a dual-coil paradigm with two coils over the left and right M1, interhemispheric inhibition could be evoked at interstimulus intervals of 6 ms in ES L1 and 8 ms in AD and FDI. Together, these results suggest that interhemispheric inhibition is dominant when axial muscles are involved in a stabilizing task. The ipsilateral facilitation could be evoked by ipsilateral or subcortical pathways and could be used depending on the role axial muscles play in the task.NEW & NOTEWORTHY The mechanisms involved in the bilateral coordination of axial muscles during unilateral arm movement are poorly understood. We thus investigated the nature of interhemispheric interactions in axial muscles during arm motor tasks in healthy subjects. By combining different methodologies, we showed that trunk muscles receive both inhibitory and facilitatory cortical outputs during activation of arm muscles. We propose that inhibition may be conveyed mainly through interhemispheric mechanisms and facilitation by subcortical mechanisms or ipsilateral pathways.
Collapse
Affiliation(s)
- Loyda Jean-Charles
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, site de l'Institut de réadaptation Gingras-Lindsay-de-Montréal, Montreal, Quebec, Canada
| | - Jean-Francois Nepveu
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, site de l'Institut de réadaptation Gingras-Lindsay-de-Montréal, Montreal, Quebec, Canada
| | - Joan E Deffeyes
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, site de l'Institut de réadaptation Gingras-Lindsay-de-Montréal, Montreal, Quebec, Canada
| | - Guillaume Elgbeili
- Recherche en Schizophrénie et troubles neurodéveloppementaux, Institut universitaire en santé mentale Douglas, Montreal, Quebec, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Dorothy Barthélemy
- Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, site de l'Institut de réadaptation Gingras-Lindsay-de-Montréal, Montreal, Quebec, Canada; .,Ecole de réadaptation, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada; and
| |
Collapse
|
96
|
Sebastianelli L, Versace V, Taylor A, Brigo F, Nothdurfter W, Saltuari L, Trinka E, Nardone R. Functional reorganization after hemispherectomy in humans and animal models: What can we learn about the brain's resilience to extensive unilateral lesions? Brain Res Bull 2017; 131:156-167. [PMID: 28414105 DOI: 10.1016/j.brainresbull.2017.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 01/18/2023]
Abstract
Hemispherectomy (HS) is an effective surgical procedure aimed at managing otherwise intractable epilepsy in cases of diffuse unihemispheric pathologies. Neurological recovery in subjects treated with HS is not limited to seizure reduction, rather, sensory-motor and behavioral improvement is often observed. This outcome highlights the considerable capability of the brain to react to such an extensive lesion, by functionally reorganizing and rewiring the cerebral cortex, especially early in life. In this narrative review, we summarize the animal studies as well as the human neurophysiological and neuroimaging studies dealing with the reorganizational processes that occur after HS. These topics are of particular interest in understanding mechanisms of functional recovery after brain injury. HS offers the chance to investigate contralesional hemisphere activity in controlling ipsilateral limb movements, and the role of transcallosal interactions, before and after the surgical procedure. These post-injury neuroplastic phenomena actually differ from those observed after less extensive brain damage. Therefore, they illustrate how different lesions could lead the contralesional hemisphere to play the "good" or "bad" role in functional recovery. These issues may have clinical implications and could inform rehabilitation strategies aiming to improve functional recovery following unilateral hemispheric lesions. Future studies, involving large cohorts of hemispherectomized patients, will be necessary in order to obtain a greater understanding of how cerebral reorganization can contribute to residual sensorimotor, visual and auditory functions.
Collapse
Affiliation(s)
- Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Italy, and Research Unit for Neurorehabilitation of South Tyrol, Bolzano, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno, Italy, and Research Unit for Neurorehabilitation of South Tyrol, Bolzano, Italy
| | - Alexandra Taylor
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Wolfgang Nothdurfter
- Department of Neurorehabilitation, Hospital of Vipiteno, Italy, and Research Unit for Neurorehabilitation of South Tyrol, Bolzano, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno, Italy, and Research Unit for Neurorehabilitation of South Tyrol, Bolzano, Italy
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Centre of Cognitive Neuroscience, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Raffaele Nardone
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Franz Tappeiner Hospital, Merano, Italy.
| |
Collapse
|
97
|
Paired Stimulation to Promote Lasting Augmentation of Corticospinal Circuits. Neural Plast 2016; 2016:7043767. [PMID: 27800189 PMCID: PMC5075312 DOI: 10.1155/2016/7043767] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/11/2016] [Indexed: 01/22/2023] Open
Abstract
After injury, electrical stimulation of the nervous system can augment plasticity of spared or latent circuits through focal modulation. Pairing stimulation of two parts of a spared circuit can target modulation more specifically to the intended circuit. We discuss 3 kinds of paired stimulation in the context of the corticospinal system, because of its importance in clinical neurorehabilitation. The first uses principles of Hebbian plasticity: by altering the stimulation timing of presynaptic neurons and their postsynaptic targets, synapse function can be modulated up or down. The second form uses synchronized presynaptic inputs onto a common synaptic target. We dub this a “convergent” mechanism, because stimuli have to converge on a common target with coordinated timing. The third form induces focal modulation by tonic excitation of one region (e.g., the spinal cord) during phasic stimulation of another (e.g., motor cortex). Additionally, endogenous neural activity may be paired with exogenous electrical stimulation. This review addresses what is known about paired stimulation of the corticospinal system of both humans and animal models, emphasizes how it qualitatively differs from single-site stimulation, and discusses the gaps in knowledge that must be addressed to maximize its use and efficacy in neurorehabilitation.
Collapse
|
98
|
Corticospinal and transcallosal modulation of unilateral and bilateral contractions of lower limbs. Eur J Appl Physiol 2016; 116:2197-2214. [DOI: 10.1007/s00421-016-3475-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/11/2016] [Indexed: 10/21/2022]
|
99
|
Arias P, Corral-Bergantiños Y, Robles-García V, Madrid A, Oliviero A, Cudeiro J. Bilateral tDCS on Primary Motor Cortex: Effects on Fast Arm Reaching Tasks. PLoS One 2016; 11:e0160063. [PMID: 27490752 PMCID: PMC4973905 DOI: 10.1371/journal.pone.0160063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/13/2016] [Indexed: 11/18/2022] Open
Abstract
Background The effects produced by transcranial direct current stimulation (tDCS) applied to the motor system have been widely studied in the past, chiefly focused on primary motor cortex (M1) excitability. However, the effects on functional tasks are less well documented. Objective This study aims to evaluate the effect of tDCS-M1 on goal-oriented actions (i.e., arm-reaching movements; ARM), in a reaction-time protocol. Methods 13 healthy subjects executed dominant ARM as fast as possible to one of two targets in front of them while surface EMG was recorded. Participants performed three different sessions. In each session they first executed ARM (Pre), then received tDCS, and finally executed Post, similar to Pre. Subjects received three different types of tDCS, one per session: In one session the anode was on right-M1 (AR), and the cathode on the left-M1 (CL), thus termed AR-CL; AL-CR reversed the montage; and Sham session was applied likewise. Real stimulation was 1mA-10min while subjects at rest. Three different variables and their coefficients of variation (CV) were analyzed: Premotor times (PMT), reaction-times (RT) and movement-times (MT). Results triceps-PMT were significantly increased at Post-Sham, suggesting fatigue. Results obtained with real tDCS were not different depending on the montage used, in both cases PMT were significantly reduced in all recorded muscles. RT and MT did not change for real or sham stimulation. RT-CV and PMT-CV were reduced after all stimulation protocols. Conclusion tDCS reduces premotor time and fatigability during the execution of fast motor tasks. Possible underlying mechanisms are discussed.
Collapse
Affiliation(s)
- Pablo Arias
- Neuroscience and Motor Control Group (NEUROcom), Department of Medicine, INEF Galicia and Biomedical Research Institute of A Coruña (INIBIC), University of A Coruña, A Coruña, Spain
- * E-mail: )
| | - Yoanna Corral-Bergantiños
- Neuroscience and Motor Control Group (NEUROcom), Department of Medicine, INEF Galicia and Biomedical Research Institute of A Coruña (INIBIC), University of A Coruña, A Coruña, Spain
| | - Verónica Robles-García
- Neuroscience and Motor Control Group (NEUROcom), Department of Medicine, INEF Galicia and Biomedical Research Institute of A Coruña (INIBIC), University of A Coruña, A Coruña, Spain
| | - Antonio Madrid
- Neuroscience and Motor Control Group (NEUROcom), Department of Medicine, INEF Galicia and Biomedical Research Institute of A Coruña (INIBIC), University of A Coruña, A Coruña, Spain
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Javier Cudeiro
- Neuroscience and Motor Control Group (NEUROcom), Department of Medicine, INEF Galicia and Biomedical Research Institute of A Coruña (INIBIC), University of A Coruña, A Coruña, Spain
- Centro de Estimulación Cerebral de Galicia, A Coruña, Spain
| |
Collapse
|
100
|
Tan AQ, Shemmell J, Dhaher YY. Downregulating Aberrant Motor Evoked Potential Synergies of the Lower Extremity Post Stroke During TMS of the Contralesional Hemisphere. Brain Stimul 2016; 9:396-405. [PMID: 26927733 DOI: 10.1016/j.brs.2015.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Growing evidence demonstrates unique synergistic signatures in the lower limb (LL) post-stroke, with specific across-plane and across-joint representations. While the inhibitory role of the ipsilateral hemisphere in the upper limb (UL) has been widely reported, examination of the contralesional hemisphere (CON-H) in modulating LL expressions of synergies following stroke is lacking. OBJECTIVE We hypothesize that stimulation of lesioned and contralesional motor cortices will differentially regulate paretic LL motor outflow. We propose a novel TMS paradigm to identify synergistic motor evoked potential (MEP) patterns across multiple muscles. METHODS Amplitude and background activation matched adductor MEPs were elicited using single pulse TMS of L-H and CON-H (control ipsilateral) during an adductor torque matching task from 11 stroke and 10 control participants. Associated MEPs of key synergistic muscles were simultaneously observed. RESULTS By quantifying CON-H/L-H MEP ratios, we characterized a significant targeted inhibition of aberrant MEP coupling between ADD and VM (p = 0.0078) and VL (p = 0.047) exclusive to the stroke group (p = 0.028) that was muscle dependent (p = 0.039). We find TA inhibition in both groups following ipsilateral hemisphere stimulation (p = 0.0014; p = 0.015). CONCLUSION We argue that ipsilaterally mediated attenuation of abnormal synergistic activations post stroke may reflect an adaptive intracortical inhibition. The predominance of sub 3ms interhemispheric MEP latency differences implicates LL ipsilateral corticomotor projections. These findings provide insight into the association between CON-H reorganization and post-stroke LL recovery. While a prevailing view of driving L-H disinhibition for UL recovery seems expedient, presuming analogous LL neuromodulation may require further examination for rehabilitation. This study provides a step toward this goal.
Collapse
Affiliation(s)
- Andrew Q Tan
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA.
| | - Jon Shemmell
- School of Physical Education, Sport and Exercise Science, University of Otago, Dunedin, New Zealand
| | - Yasin Y Dhaher
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA; Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| |
Collapse
|