51
|
Abnormal Intrinsic Functional Hubs in Severe Male Obstructive Sleep Apnea: Evidence from a Voxel-Wise Degree Centrality Analysis. PLoS One 2016; 11:e0164031. [PMID: 27723821 PMCID: PMC5056709 DOI: 10.1371/journal.pone.0164031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023] Open
Abstract
Purpose Obstructive sleep apnea (OSA) has been associated with changes in brain structure and regional function in certain brain areas. However, the functional features of network organization in the whole brain remain largely uncertain. The purpose of this study was to identify the OSA-related spatial centrality distribution of the whole brain functional network and to investigate the potential altered intrinsic functional hubs. Methods Forty male patients with newly confirmed severe OSA on polysomnography, and well-matched good sleepers, participated in this study. All participants underwent a resting-state functional MRI scan and clinical and cognitive evaluation. Voxel-wise degree centrality (DC) was measured across the whole brain, and group difference in DC was compared. The relationship between the abnormal DC value and clinical variables was assessed using a linear correlation analysis. Results Remarkably similar spatial distributions of the functional hubs (high DC) were found in both groups. However, OSA patients exhibited a pattern of significantly reduced regional DC in the left middle occipital gyrus, posterior cingulate cortex, left superior frontal gyrus, and bilateral inferior parietal lobule, and DC was increased in the right orbital frontal cortex, bilateral cerebellum posterior lobes, and bilateral lentiform nucleus, including the putamen, extending to the hippocampus, and the inferior temporal gyrus, which overlapped with the functional hubs. Furthermore, a linear correlation analysis revealed that the DC value in the posterior cingulate cortex and left superior frontal gyrus were positively correlated with Montreal cognitive assessment scores, The DC value in the left middle occipital gyrus and bilateral inferior parietal lobule were negatively correlated with apnea-hypopnea index and arousal index in OSA patients. Conclusion Our findings suggest that OSA patients exhibited specific abnormal intrinsic functional hubs including relatively reduced and increased DC. This expands our understanding of the functional characteristics of OSA, which may provide new insights into understanding the dysfunction and pathophysiology of OSA patients.
Collapse
|
52
|
Sarma MK, Macey PM, Nagarajan R, Aysola R, Harper RM, Thomas MA. Accelerated Echo Planer J-resolved Spectroscopic Imaging of Putamen and Thalamus in Obstructive Sleep Apnea. Sci Rep 2016; 6:31747. [PMID: 27596614 PMCID: PMC5011642 DOI: 10.1038/srep31747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) leads to neurocognitive and autonomic deficits that are partially mediated by thalamic and putamen pathology. We examined the underlying neurochemistry of those structures using compressed sensing-based 4D echo-planar J-resolved spectroscopic imaging (JRESI), and quantified values with prior knowledge fitting. Bilaterally increased thalamic mI/Cr, putamen Glx/Cr, and Glu/Cr, and bilaterally decreased thalamic and putamen tCho/Cr and GABA/Cr occurred in OSAS vs healthy subjects (p < 0.05). Increased right thalamic Glx/Cr, Glu/Cr, Gln/Cr, Asc/Cr, and decreased GPC/Cr and decreased left thalamic tNAA/Cr, NAA/Cr were detected. The right putamen showed increased mI/Cr and decreased tCho/Cr, and the left, decreased PE/Cr ratio. ROC curve analyses demonstrated 60–100% sensitivity and specificity for the metabolite ratios in differentiating OSAS vs. controls. Positive correlations were found between: left thalamus mI/Cr and baseline oxygen saturation (SaO2); right putamen tCho/Cr and apnea hypopnea index; right putamen GABA/Cr and baseline SaO2; left putamen PE/Cr and baseline SaO2; and left putamen NAA/Cr and SaO2 nadir (all p < 0.05). Negative correlations were found between left putamen PE/Cr and SaO2 nadir. These findings suggest underlying inflammation or glial activation, with greater alterations accompanying lower oxygen saturation. These metabolite levels may provide biomarkers for future neurochemical interventions by pharmacologic or other means.
Collapse
Affiliation(s)
- Manoj K Sarma
- Department of Radiological Sciences, UCLA Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Paul M Macey
- UCLA School of Nursing, UCLA Geffen School of Medicine, Los Angeles, CA 90095, USA.,Brain Research Institute, UCLA Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Rajakumar Nagarajan
- Department of Radiological Sciences, UCLA Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Ravi Aysola
- Division of Pulmonary and Critical Care Medicine, UCLA Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Ronald M Harper
- Brain Research Institute, UCLA Geffen School of Medicine, Los Angeles, CA 90095, USA.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - M Albert Thomas
- Department of Radiological Sciences, UCLA Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
53
|
Hippocampal neurogenesis response: What can we expect from two different models of hypertension? Brain Res 2016; 1646:199-206. [DOI: 10.1016/j.brainres.2016.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 01/17/2023]
|
54
|
Obstructive Sleep Apnoea and Hypertension: the Role of the Central Nervous System. Curr Hypertens Rep 2016; 18:59. [DOI: 10.1007/s11906-016-0665-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
55
|
Villarreal A, Rosciszewski G, Murta V, Cadena V, Usach V, Dodes-Traian MM, Setton-Avruj P, Barbeito LH, Ramos AJ. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes. Front Cell Neurosci 2016; 10:139. [PMID: 27313509 PMCID: PMC4888624 DOI: 10.3389/fncel.2016.00139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022] Open
Abstract
Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDAs) were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis. Main Points: Ischemia-derived astrocytes (IDA) were isolated from brain ischemic tissue IDA show reduced replicative senescence, increased cell division and spontaneous migration IDA potentiate death of oxygen-glucose deprived cortical neurons IDA propagate reactive gliosis on quiescent astrocytes in vitro and in vivo Inhibition of gamma secretases facilitates IDA differentiation to astrocytes
Collapse
Affiliation(s)
- Alejandro Villarreal
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", CONICET, Facultad de Medicina, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Gerardo Rosciszewski
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", CONICET, Facultad de Medicina, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Veronica Murta
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", CONICET, Facultad de Medicina, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Vanesa Cadena
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", CONICET, Facultad de Medicina, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Vanina Usach
- Instituto de Química y Fisicoquímica Biológica, CONICET and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Martin M Dodes-Traian
- Instituto de Química y Fisicoquímica Biológica, CONICET and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Patricia Setton-Avruj
- Instituto de Química y Fisicoquímica Biológica, CONICET and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Buenos Aires, Argentina
| | | | - Alberto J Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", CONICET, Facultad de Medicina, Universidad de Buenos Aires Buenos Aires, Argentina
| |
Collapse
|
56
|
Effect of acute hypoxic shock on the rat brain morphology and tripeptidyl peptidase I activity. Acta Histochem 2016; 118:496-504. [PMID: 27263093 DOI: 10.1016/j.acthis.2016.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 11/21/2022]
Abstract
Hypoxic events are known to cause substantial damage to the hippocampus, cerebellum and striatum. The impact of hypoxic shock on other brain parts is not sufficiently studied. Recent studies show that tripeptidyl peptidase I (TPPI) activity in fish is altered after a hypoxic stress pointing out at a possible enzyme involvement in response to hypoxia. Similar studies are not performed in mammals. In this work, the effect of sodium nitrite-induced acute hypoxic shock on the rat brain was studied at different post-treatment periods. Morphological changes in cerebral cortex, cerebellum, medulla oblongata, thalamus, mesencephalon and pons were assessed using silver-copper impregnation for neurodegeneration. TPPI activity was biochemically assayed and localized by enzyme histochemistry. Although less vulnerable to oxidative stress, the studied brain areas showed different histopathological changes, such as neuronal loss and tissue vacuolization, dilatation of the smallest capillaries and impairment of neuronal processes. TPPI activity was strictly regulated following the hypoxic stress. It was found to increase 12-24h post-treatment, then decreased followed by a slow process of recovery. The enzyme histochemistry revealed a temporary enzyme deficiency in all types of neurons. These findings indicate a possible involvement of the enzyme in rat brain response to hypoxic stress.
Collapse
|
57
|
Henderson LA, Fatouleh RH, Lundblad LC, McKenzie DK, Macefield VG. Effects of 12 Months Continuous Positive Airway Pressure on Sympathetic Activity Related Brainstem Function and Structure in Obstructive Sleep Apnea. Front Neurosci 2016; 10:90. [PMID: 27013952 PMCID: PMC4785184 DOI: 10.3389/fnins.2016.00090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
Muscle sympathetic nerve activity (MSNA) is greatly elevated in patients with obstructive sleep apnea (OSA) during normoxic daytime wakefulness. Increased MSNA is a precursor to hypertension and elevated cardiovascular morbidity and mortality. However, the mechanisms underlying the high MSNA in OSA are not well understood. In this study we used concurrent microneurography and magnetic resonance imaging to explore MSNA-related brainstem activity changes and anatomical changes in 15 control and 15 OSA subjects before and after 6 and 12 months of continuous positive airway pressure (CPAP) treatment. We found that following 6 and 12 months of CPAP treatment, resting MSNA levels were significantly reduced in individuals with OSA. Furthermore, this MSNA reduction was associated with restoration of MSNA-related brainstem activity and structural changes in the medullary raphe, rostral ventrolateral medulla, dorsolateral pons, and ventral midbrain. This restoration occurred after 6 months of CPAP treatment and was maintained following 12 months CPAP. These findings show that continual CPAP treatment is an effective long-term treatment for elevated MSNA likely due to its effects on restoring brainstem structure and function.
Collapse
Affiliation(s)
- Luke A Henderson
- Neural Imaging Laboratory, Discipline of Anatomy and Histology, The University of Sydney Sydney, NSW, Australia
| | - Rania H Fatouleh
- School of Medicine, Western Sydney University Sydney, NSW, Australia
| | - Linda C Lundblad
- Neural Imaging Laboratory, Discipline of Anatomy and Histology, The University of SydneySydney, NSW, Australia; School of Medicine, Western Sydney UniversitySydney, NSW, Australia
| | - David K McKenzie
- Department of Respiratory Medicine, Prince of Wales Private Hospital Sydney, NSW, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| |
Collapse
|
58
|
Sapin E, Peyron C, Roche F, Gay N, Carcenac C, Savasta M, Levy P, Dematteis M. Chronic Intermittent Hypoxia Induces Chronic Low-Grade Neuroinflammation in the Dorsal Hippocampus of Mice. Sleep 2015; 38:1537-46. [PMID: 26085297 DOI: 10.5665/sleep.5042] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) induces cognitive impairment that involves intermittent hypoxia (IH). Because OSA is recognized as a low-grade systemic inflammatory disease and only some patients develop cognitive deficits, we investigated whether IH-related brain consequences shared similar pathophysiology and required additional factors such as systemic inflammation to develop. DESIGN Nine-week-old male C57BL/6J mice were exposed to 1 day, 6 or 24 w of IH (alternating 21-5% FiO2 every 30 sec, 8 h/day) or normoxia. Microglial changes were assessed in the functionally distinct dorsal (dH) and ventral (vH) regions of the hippocampus using Iba1 immunolabeling. Then the study concerned dH, as vH only tended to be lately affected. Seven proinflammatory and anti-inflammatory cytokine messenger RNA (mRNA) were assessed at all time points using semiquantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Similar mRNA analysis was performed after 6 w IH or normoxia associated for the past 3 w with repeated intraperitoneal low-dose lipopolysaccharide or saline. MEASUREMENTS AND RESULTS Chronic (6, 24 w) but not acute IH induced significant microglial changes in dH only, including increased density and morphological features of microglia priming. In dH, acute but not chronic IH increased IL-1β and RANTES/CCL5 mRNA, whereas the other cytokines remained unchanged. In contrast, chronic IH plus lipopolysaccharide increased interleukin (IL)-6 and IL10 mRNA whereas lipopolysaccharide alone did not affect these cytokines. CONCLUSION The obstructive sleep apnea component intermittent hypoxia (IH) causes low-grade neuroinflammation in the dorsal hippocampus of mice, including early but transient cytokine elevations, delayed but long-term microglial changes, and cytokine response alterations to lipopolysaccharide inflammatory challenge. These changes may contribute to IH-induced cognitive impairment and pathological brain aging.
Collapse
Affiliation(s)
- Emilie Sapin
- Université Grenoble Alpes, Grenoble, F-38042, France.,INSERM U1042, Laboratoire HP2, Grenoble, F-38042, France
| | - Christelle Peyron
- INSERM U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Team SLEEP, F-69372, France.,Université Claude Bernard Lyon 1, Lyon, F-69372, France
| | - Frédéric Roche
- CHU, Hôpital Nord, Service de Physiologie Clinique et de l'Exercice, Saint-Etienne, F-42270, France.,Université Jean Monnet, Saint-Etienne, F-42023, France
| | - Nadine Gay
- INSERM U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Team SLEEP, F-69372, France.,Université Claude Bernard Lyon 1, Lyon, F-69372, France
| | - Carole Carcenac
- Université Grenoble Alpes, Grenoble, F-38042, France.,INSERM U836, Grenoble Institut des Neurosciences, équipe 10, Grenoble, F-38042, France
| | - Marc Savasta
- Université Grenoble Alpes, Grenoble, F-38042, France.,INSERM U836, Grenoble Institut des Neurosciences, équipe 10, Grenoble, F-38042, France
| | - Patrick Levy
- Université Grenoble Alpes, Grenoble, F-38042, France.,INSERM U1042, Laboratoire HP2, Grenoble, F-38042, France.,CHU, Hôpital Michallon, Laboratoires du Sommeil et EFCR, Grenoble F-38043, France
| | - Maurice Dematteis
- Université Grenoble Alpes, Grenoble, F-38042, France.,INSERM U1042, Laboratoire HP2, Grenoble, F-38042, France.,CHU, Hôpital Michallon, Addictologie, Pôle Pluridisciplinaire de Médecine, Grenoble F-38043, France
| |
Collapse
|
59
|
Baril AA, Gagnon K, Arbour C, Soucy JP, Montplaisir J, Gagnon JF, Gosselin N. Regional Cerebral Blood Flow during Wakeful Rest in Older Subjects with Mild to Severe Obstructive Sleep Apnea. Sleep 2015; 38:1439-49. [PMID: 25761981 DOI: 10.5665/sleep.4986] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/31/2015] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES To evaluate changes in regional cerebral blood flow (rCBF) during wakeful rest in older subjects with mild to severe obstructive sleep apnea (OSA) and healthy controls, and to identify markers of OSA severity that predict altered rCBF. DESIGN High-resolution (99m)Tc-HMPAO SPECT imaging during wakeful rest. SETTING Research sleep laboratory affiliated with a University hospital. PARTICIPANTS Fifty untreated OSA patients aged between 55 and 85 years, divided into mild, moderate, and severe OSA, and 20 age-matched healthy controls. INTERVENTIONS N/A. MEASUREMENTS Using statistical parametric mapping, rCBF was compared between groups and correlated with clinical, respiratory, and sleep variables. RESULTS Whereas no rCBF change was observed in mild and moderate groups, participants with severe OSA had reduced rCBF compared to controls in the left parietal lobules, left precentral gyrus, bilateral postcentral gyri, and right precuneus. Reduced rCBF in these regions and in areas of the bilateral frontal and left temporal cortex was associated with more hypopneas, snoring, hypoxemia, and sleepiness. Higher apnea, microarousal, and body mass indexes were correlated to increased rCBF in the basal ganglia, insula, and limbic system. CONCLUSIONS While older individuals with severe obstructive sleep apnea (OSA) had hypoperfusion in the sensorimotor and parietal areas, respiratory variables and subjective sleepiness were correlated with extended regions of hypoperfusion in the lateral cortex. Interestingly, OSA severity, sleep fragmentation, and obesity correlated with increased perfusion in subcortical and medial cortical regions. Anomalies with such a distribution could result in cognitive deficits and reflect impaired vascular regulation, altered neuronal integrity, and/or undergoing neurodegenerative processes.
Collapse
Affiliation(s)
- Andrée-Ann Baril
- Center for Advanced Research in Sleep Medicine (CARSM), Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Université de Montréal, Department of Psychiatry, Montreal, Quebec, Canada
| | - Katia Gagnon
- Center for Advanced Research in Sleep Medicine (CARSM), Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Université du Québec à Montréal, Department of Psychology, Montreal, Quebec, Canada
| | - Caroline Arbour
- Center for Advanced Research in Sleep Medicine (CARSM), Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Université de Montréal, Department of Psychology, Montreal, Quebec, Canada
| | - Jean-Paul Soucy
- McGill University, McConnell Brain Imaging Centre, Montreal, Quebec, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine (CARSM), Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Université de Montréal, Department of Psychiatry, Montreal, Quebec, Canada
| | - Jean-François Gagnon
- Center for Advanced Research in Sleep Medicine (CARSM), Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Université du Québec à Montréal, Department of Psychology, Montreal, Quebec, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine (CARSM), Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.,Université de Montréal, Department of Psychology, Montreal, Quebec, Canada
| |
Collapse
|
60
|
Daulatzai MA. Evidence of neurodegeneration in obstructive sleep apnea: Relationship between obstructive sleep apnea and cognitive dysfunction in the elderly. J Neurosci Res 2015; 93:1778-94. [DOI: 10.1002/jnr.23634] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE/Melbourne School of Engineering, The University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
61
|
The impact of sleep and hypoxia on the brain: potential mechanisms for the effects of obstructive sleep apnea. Curr Opin Pulm Med 2015; 20:565-71. [PMID: 25188719 DOI: 10.1097/mcp.0000000000000099] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Obstructive sleep apnea (OSA) is a chronic, highly prevalent, multisystem disease, which is still largely underdiagnosed. Its most prominent risk factors, obesity and older age, are on the rise, and its prevalence is expected to grow further. The last few years have seen an exponential increase in studies to determine the impact of OSA on the central nervous system. OSA-induced brain injury is now a recognized clinical entity, although its possible dual relationship with several other neuropsychiatric and neurodegenerative disorders is debated. The putative neuromechanisms behind some of the effects of OSA on the central nervous system are discussed in this review, focusing on the nocturnal intermittent hypoxia and sleep fragmentation. RECENT FINDINGS Recent preclinical and clinical findings suggest that neurogenic ischemic preconditioning occurs in some OSA patients, and that it may partly explain variability in clinical findings to date. However, the distinct parameters of the interplay between ischemic preconditioning, neuroinflammation, sleep fragmentation and cerebrovascular changes in OSA-induced brain injury are still largely unclear, and more research is required. SUMMARY Early diagnosis and intervention in patients with OSA is of paramount importance. Future clinical studies should utilize multimodal investigative approaches to enable more reliable referencing for the acuity of the pathological process, as well as its reversibility following the treatment.
Collapse
|
62
|
Torabi-Nami M, Mehrabi S, Borhani-Haghighi A, Derman S. Withstanding the obstructive sleep apnea syndrome at the expense of arousal instability, altered cerebral autoregulation and neurocognitive decline. J Integr Neurosci 2015; 14:169-93. [DOI: 10.1142/s0219635215500144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
63
|
Sleep apnoea and the brain: a complex relationship. THE LANCET RESPIRATORY MEDICINE 2015; 3:404-14. [DOI: 10.1016/s2213-2600(15)00090-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 01/23/2023]
|
64
|
Codagnone MG, Podestá MF, Uccelli NA, Reinés A. Differential Local Connectivity and Neuroinflammation Profiles in the Medial Prefrontal Cortex and Hippocampus in the Valproic Acid Rat Model of Autism. Dev Neurosci 2015; 37:215-31. [DOI: 10.1159/000375489] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of developmental disabilities characterized by impaired social interaction, communication deficit and repetitive and stereotyped behaviors. Neuroinflammation and synaptic alterations in several brain areas have been suggested to contribute to the physiopathology of ASD. Although the limbic system plays an important role in the functions found impaired in ASD, reports on these areas are scarce and results controversial. In the present study we searched in the medial prefrontal cortex (mPFC) and hippocampus of rats exposed to the valproic acid (VPA) model of ASD for early structural and molecular changes, coincident in time with the behavioral alterations. After confirming delayed growth and maturation in VPA rats, we were able to detect decreased exploratory activity and social interaction at an early time point (postnatal day 35). In mPFC, although typical cortical column organization was preserved in VPA animals, we found that interneuronal space was wider than in controls. Hippocampal CA3 (cornu ammonis 3) pyramidal layer and the granular layer of the dentate gyrus both showed a disorganized spatial arrangement in VPA animals. Neuronal alterations were accompanied with increased tomato lectin and glial fibrillary acidic protein (GFAP) immunostainings both in the mPFC and hippocampus. In the latter region, the increased GFAP immunoreactivity was CA3 specific. At the synaptic level, while mPFC from VPA animals showed increased synaptophysin (SYN) immunostaining, a SYN deficit was found in all hippocampal subfields. Additionally, both the mPFC and the hippocampus of VPA rats showed increased neuronal cell adhesion molecule (NCAM) immunostaining together with decreased levels of its polysialylated form (PSA-NCAM). Interestingly, these changes were more robust in the CA3 hippocampal subfield. Our results indicate that exploratory and social deficits correlate with region-dependent neuronal disorganization and reactive gliosis in the mPFC and hippocampus of VPA rats. While microgliosis is spread in these two limbic areas, astrogliosis, although extended in the mPFC, is circumscribed to the CA3 hippocampal subfield. Our work indicates that neuroinflammation and synaptic alterations do coexist in VPA rats, making this model suitable for studying novel aspects of neuron-glia interactions. Moreover, it suggests that the mPFC and hippocampus might behave differently in the context of the local hyperconnectivity and synaptic hypotheses of autism.
Collapse
|
65
|
Lam CS, Tipoe GL, So KF, Fung ML. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea. PLoS One 2015; 10:e0117990. [PMID: 25714473 PMCID: PMC4340928 DOI: 10.1371/journal.pone.0117990] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/03/2015] [Indexed: 01/01/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is a hallmark of obstructive sleep apnea (OSA), which induces hippocampal injuries mediated by oxidative stress. This study aims to examine the neuroprotective mechanism of Lycium barbarum polysaccharides (LBP) against CIH-induced spatial memory deficits. Adult Sprague–Dawley rats were exposed to hypoxic treatment resembling a severe OSA condition for a week. The animals were orally fed with LBP solution (1mg/kg) daily 2 hours prior to hypoxia or in air for the control. The effect of LBP on the spatial memory and levels of oxidative stress, inflammation, endoplasmic reticulum (ER) stress, apoptosis and neurogenesis in the hippocampus was examined. There was a significant deficit in the spatial memory and an elevated level of malondialdehyde with a decreased expression of antioxidant enzymes (SOD, GPx-1) in the hypoxic group when compared with the normoxic control. In addition, redox-sensitive nuclear factor kappa B (NFКB) canonical pathway was activated with a translocation of NFКB members (p65, p50) and increased expression levels of NFКB-dependent inflammatory cytokines and mediator (TNFα, IL-1β, COX-2); also, a significantly elevated level of ER stress (GRP78/Bip, PERK, CHOP) and autophagic flux in the hypoxic group, leading to neuronal apoptosis in hippocampal subfields (DG, CA1, CA3). Remarkably, LBP administration normalized the elevated level of oxidative stress, neuroinflammation, ER stress, autophagic flux and apoptosis induced by hypoxia. Moreover, LBP significantly mitigated both the caspase-dependent intrinsic (Bax, Bcl2, cytochrome C, cleaved caspase-3) and extrinsic (FADD, cleaved caspase-8, Bid) signaling apoptotic cascades. Furthermore, LBP administration prevented the spatial memory deficit and enhanced the hippocampal neurogenesis induced by hypoxia. Our results suggest that LBP is neuroprotective against CIH-induced hippocampal-dependent spatial memory deficits by promoting hippocampal neurogenesis and negatively modulating the apoptotic signaling cascades activated by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Chun-Sing Lam
- Department of Physiology, University of Hong Kong, Hong Kong, PR China
| | - George Lim Tipoe
- Department of Anatomy, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Kwok-Fai So
- Department of Anatomy, University of Hong Kong, Hong Kong, PR China
- Department of Ophthalmology, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China
- Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Man-Lung Fung
- Department of Physiology, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
- * E-mail:
| |
Collapse
|
66
|
Abstract
Transactive response DNA-binding protein 43 (TDP-43) mislocalization and aggregation are hallmark features of amyotrophic lateral sclerosis and frontotemporal dementia (FTD). We have previously shown in mice that inducible overexpression of a cytoplasmically localized form of TDP-43 (TDP-43-ΔNLS) in forebrain neurons evokes neuropathological changes that recapitulate several features of TDP-43 proteinopathies. Detailed behavioral phenotyping could provide further validation for its usage as a model for FTD. In the present study, we performed a battery of behavioral tests to evaluate motor, cognitive, and social phenotypes in this model. We found that transgene (Tg) induction by doxycycline removal at weaning led to motor abnormalities including hyperlocomotion in the open field test, impaired coordination and balance in the rotarod test, and increased spasticity as shown by a clasping phenotype. Cognitive assessment demonstrated impaired recognition and spatial memory, measured by novel object recognition and Y-maze tests. Remarkably, TDP-43-ΔNLS mice displayed deficits in social behavior, mimicking a key aspect of FTD. To determine whether these symptoms were reversible, we suppressed Tg expression for 14 d in 1.5-month-old mice showing an established behavioral phenotype but modest neurodegeneration and found that motor and cognitive deficits were ameliorated; however, social performance remained altered. When Tg expression was suppressed in 6.5-month-old mice showing overt neurodegeneration, motor deficits were irreversible. These results indicate that TDP-43-ΔNLS mice display several core behavioral features of FTD with motor neuron disease, possibly due to functional changes in surviving neurons, and might serve as a valuable tool to unveil the underlying mechanisms of this and other TDP-43 proteinopathies.
Collapse
|
67
|
Angelo MF, Aguirre A, Avilés Reyes RX, Villarreal A, Lukin J, Melendez M, Vanasco V, Barker P, Alvarez S, Epstein A, Jerusalinsky D, Ramos AJ. The proinflammatory RAGE/NF-κB pathway is involved in neuronal damage and reactive gliosis in a model of sleep apnea by intermittent hypoxia. PLoS One 2014; 9:e107901. [PMID: 25265561 PMCID: PMC4180086 DOI: 10.1371/journal.pone.0107901] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/17/2014] [Indexed: 11/18/2022] Open
Abstract
Sleep apnea (SA) causes long-lasting changes in neuronal circuitry, which persist even in patients successfully treated for the acute effects of the disease. Evidence obtained from the intermittent hypoxia (IH) experimental model of SA has shown neuronal death, impairment in learning and memory and reactive gliosis that may account for cognitive and structural alterations observed in human patients. However, little is known about the mechanism controlling these deleterious effects that may be useful as therapeutic targets in SA. The Receptor for Advanced Glycation End products (RAGE) and its downstream effector Nuclear Factor Kappa B (NF-κB) have been related to neuronal death and astroglial conversion to the pro-inflammatory neurodegenerative phenotype. RAGE expression and its ligand S100B were shown to be increased in experimental models of SA. We here used dissociated mixed hippocampal cell cultures and male Wistar rats exposed to IH cycles and observed that NF-κB is activated in glial cells and neurons after IH. To disclose the relative contribution of the S100B/RAGE/NF-κB pathway to neuronal damage and reactive gliosis after IH we performed sequential loss of function studies using RAGE or S100B neutralizing antibodies, a herpes simplex virus (HSV)-derived amplicon vector that induces the expression of RAGEΔcyto (dominant negative RAGE) and a chemical blocker of NF-κB. Our results show that NF-κB activation peaks 3 days after IH exposure, and that RAGE or NF-κB blockage during this critical period significantly improves neuronal survival and reduces reactive gliosis. Both in vitro and in vivo, S100B blockage altered reactive gliosis but did not have significant effects on neuronal survival. We conclude that both RAGE and downstream NF-κB signaling are centrally involved in the neuronal alterations found in SA models, and that blockage of these pathways is a tempting strategy for preventing neuronal degeneration and reactive gliosis in SA.
Collapse
Affiliation(s)
- Maria Florencia Angelo
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alejandra Aguirre
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Rolando X. Avilés Reyes
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alejandro Villarreal
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Jerónimo Lukin
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Matías Melendez
- Centre Internationale de Recherche en Infectiologie, INSERM U1111, CNRS UMR5038, Ecole Normale Supérieure, Université Lyon 1, Lyon, France
| | - Virginia Vanasco
- Instituto de Bioquímica y Medicina Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Phil Barker
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Silvia Alvarez
- Instituto de Bioquímica y Medicina Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alberto Epstein
- Centre Internationale de Recherche en Infectiologie, INSERM U1111, CNRS UMR5038, Ecole Normale Supérieure, Université Lyon 1, Lyon, France
| | - Diana Jerusalinsky
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
68
|
Villarreal A, Seoane R, González Torres A, Rosciszewski G, Angelo MF, Rossi A, Barker PA, Ramos AJ. S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem 2014; 131:190-205. [DOI: 10.1111/jnc.12790] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/09/2014] [Accepted: 06/10/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Alejandro Villarreal
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Rocío Seoane
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Agustina González Torres
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Gerardo Rosciszewski
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Maria Florencia Angelo
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Alicia Rossi
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| | - Philip A. Barker
- Montreal Neurological Institute; Center for Neuronal Survival; McGill University; Montreal Québec Canada
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular; Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
69
|
Yadav SK, Kumar R, Macey PM, Woo MA, Yan-Go FL, Harper RM. Insular cortex metabolite changes in obstructive sleep apnea. Sleep 2014; 37:951-8. [PMID: 24790274 DOI: 10.5665/sleep.3668] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
STUDY OBJECTIVE Adults with obstructive sleep apnea (OSA) show significant autonomic and neuropsychologic deficits, which may derive from damage to insular regions that serve those functions. The aim was to assess glial and neuronal status from anterior insular metabolites in OSA versus controls, using proton magnetic resonance spectroscopy (PMRS), and thus to provide insights for neuroprotection against tissue changes, and to reduce injury consequences. DESIGN Cross-sectional study. SETTING University-based medical center. PARTICIPANTS Thirty-six patients with OSA, 53 controls. INTERVENTIONS None. MEASUREMENTS AND RESULTS We performed PMRS in bilateral anterior insulae using a 3.0-Tesla magnetic resonance imaging scanner, calculated N-acetylaspartate/creatine (NAA/Cr), choline/creatine (Cho/Cr), myo-inositol/creatine (MI/Cr), and MI/NAA metabolite ratios, and examined daytime sleepiness (Epworth Sleepiness Scale, ESS), sleep quality (Pittsburgh Sleep Quality Index, PSQI), and neuropsychologic status (Beck Depression Inventory II [BDI-II] and Beck Anxiety Inventory [BAI]). Body mass index, BAI, BDI-II, PSQI, and ESS significantly differed between groups. NAA/ Cr ratios were significantly reduced bilaterally, and left-sided MI/Cr and MI/NAA ratios were increased in OSA over controls. Significant positive correlations emerged between left insular MI/Cr ratios and apnea-hypopnea index values, right insular Cho/Cr ratios and BDI-II and BAI scores, and negative correlations appeared between left insular NAA/Cr ratios and PSQI scores and between right-side MI/Cr ratios and baseline and nadir change in O2 saturation. CONCLUSIONS Adults with obstructive sleep apnea showed bilaterally reduced N-acetylaspartate and left-side increased myo-inositol anterior insular metabolites, indicating neuronal damage and increased glial activation, respectively, which may contribute to abnormal autonomic and neuropsychologic functions in the condition. The activated glial status likely indicates increased inflammatory action that may induce more neuronal injury, and suggests separate approaches for glial and neuronal protection.
Collapse
Affiliation(s)
- Santosh K Yadav
- Department of Anesthesiology, David Geffen School of Medicine at UCLA
| | - Rajesh Kumar
- Department of Anesthesiology, David Geffen School of Medicine at UCLA ; Department of Radiological Sciences, David Geffen School of Medicine at UCLA ; the Brain Research Institute, University of California at Los Angeles, Los Angeles, CA
| | - Paul M Macey
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA ; the Brain Research Institute, University of California at Los Angeles, Los Angeles, CA
| | - Mary A Woo
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA
| | - Frisca L Yan-Go
- Department of Neurology, David Geffen School of Medicine at UCLA
| | - Ronald M Harper
- the Brain Research Institute, University of California at Los Angeles, Los Angeles, CA ; Department of Neurobiology, David Geffen School of Medicine at UCLA
| |
Collapse
|
70
|
Jackman KA, Zhou P, Faraco G, Peixoto PM, Coleman C, Voss HU, Pickel V, Manfredi G, Iadecola C. Dichotomous effects of chronic intermittent hypoxia on focal cerebral ischemic injury. Stroke 2014; 45:1460-7. [PMID: 24713530 DOI: 10.1161/strokeaha.114.004816] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND PURPOSE Obstructive sleep apnea, a condition associated with chronic intermittent hypoxia (CIH), carries an increased risk of stroke. However, CIH has been reported to either increase or decrease brain injury in models of focal cerebral ischemia. The factors determining the differential effects of CIH on ischemic injury and their mechanisms remain unclear. Here, we tested the hypothesis that the intensity of the hypoxic challenge determines the protective or destructive nature of CIH by modulating mitochondrial resistance to injury. METHODS Male C57Bl/6J mice were exposed to CIH with 10% or 6% O2 for ≤35 days and subjected to transient middle cerebral artery occlusion. Motor deficits and infarct volume were assessed 3 days later. Intraischemic cerebral blood flow was measured by laser-Doppler flowmetry and resting cerebral blood flow by arterial spin labeling MRI. Ca2+-induced mitochondrial depolarization and reactive oxygen species production were evaluated in isolated brain mitochondria. RESULTS We found that 10% CIH is neuroprotective, whereas 6% CIH exacerbates tissue damage. No differences in resting or intraischemic cerebral blood flow were observed between 6% and 10% CIH. However, 10% CIH reduced, whereas 6% CIH increased, mitochondrial reactive oxygen species production and susceptibility to Ca2+-induced depolarizations. CONCLUSIONS The influence of CIH on the ischemic brain is dichotomous and can be attributed, in part, to changes in the mitochondrial susceptibility to injury. The findings highlight a previously unappreciated complexity in the effect of CIH on the brain, which needs to be considered in evaluating the neurological effect of conditions associated with cyclic hypoxia.
Collapse
Affiliation(s)
- Katherine A Jackman
- From the Feil Family Brain and Mind Research Institute (K.A.J., P.Z., G.F., P.M.P., C.C., V.P., G.M., C.I.) and Department of Radiology (H.U.V.), Weill Cornell Medical College, New York; and Department of Natural Sciences, Baruch College, City University of New York (P.M.P.)
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Rosenzweig I, Kempton MJ, Crum WR, Glasser M, Milosevic M, Beniczky S, Corfield DR, Williams SC, Morrell MJ. Hippocampal hypertrophy and sleep apnea: a role for the ischemic preconditioning? PLoS One 2013; 8:e83173. [PMID: 24349453 PMCID: PMC3862721 DOI: 10.1371/journal.pone.0083173] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 10/30/2013] [Indexed: 11/25/2022] Open
Abstract
The full impact of multisystem disease such as obstructive sleep apnoea (OSA) on regions of the central nervous system is debated, as the subsequent neurocognitive sequelae are unclear. Several preclinical studies suggest that its purported major culprits, intermittent hypoxia and sleep fragmentation, can differentially affect adult hippocampal neurogenesis. Although the prospective biphasic nature of chronic intermittent hypoxia in animal models of OSA has been acknowledged, so far the evidence for increased ‘compensatory’ neurogenesis in humans is uncertain. In a cross-sectional study of 32 patients with mixed severity OSA and 32 non-apnoeic matched controls inferential analysis showed bilateral enlargement of hippocampi in the OSA group. Conversely, a trend for smaller thalami in the OSA group was noted. Furthermore, aberrant connectivity between the hippocampus and the cerebellum in the OSA group was also suggested by the correlation analysis. The role for the ischemia/hypoxia preconditioning in the neuropathology of OSA is herein indicated, with possible further reaching clinical implications.
Collapse
Affiliation(s)
- Ivana Rosenzweig
- Department of Neuroimaging, Institute of Psychiatry, King's College, London, United Kingdom
- Danish Epilepsy Centre, Dianalund, Denmark
- * E-mail:
| | - Matthew J. Kempton
- Department of Neuroimaging, Institute of Psychiatry, King's College, London, United Kingdom
| | - William R. Crum
- Department of Neuroimaging, Institute of Psychiatry, King's College, London, United Kingdom
| | - Martin Glasser
- Academic Unit of Sleep and Breathing, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Respiratory Disease Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Milan Milosevic
- Department for Environmental and Occupational Health, University of Zagreb, School of Medicine, Andrija Štampar School of Public Health, Zagreb, Croatia
| | - Sandor Beniczky
- Danish Epilepsy Centre, Dianalund, Denmark
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Douglas R. Corfield
- Manchester Medical School, University of Manchester, Manchester, United Kingdom
| | - Steven C. Williams
- Department of Neuroimaging, Institute of Psychiatry, King's College, London, United Kingdom
| | - Mary J. Morrell
- Academic Unit of Sleep and Breathing, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Respiratory Disease Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom
| |
Collapse
|
72
|
Zhang SXL, Wang Y, Gozal D. Pathological consequences of intermittent hypoxia in the central nervous system. Compr Physiol 2013; 2:1767-77. [PMID: 23723023 DOI: 10.1002/cphy.c100060] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intermittent hypoxia (IH) is a frequent occurrence in clinical settings. In the last decades, evidence has emerged implicating the gas exchange alterations and sleep disruption associated with those disorders in the high prevalence of cognitive and behavioral deficits afflicting these patients. In an effort to better characterize the role of IH, and to identify potential mechanisms of IH-induced central nervous system (CNS) dysfunction, a large number of rodent models have been recently developed. The cumulative evidence confirms that IH indeed induces a heterotopic pattern of injury in the brain, particularly affecting cortical, subcortical, and hippocampal regions, ultimately leading to neuronal apoptosis and activation of microglia. These IH-induced deleterious processes exhibit substantial variability across the lifespan, are under substantial modulatory influences of diet, physical or intellectual activity, and genetic factors, and preferentially recruit oxidative stress and inflammatory pathways.
Collapse
Affiliation(s)
- Shelley X L Zhang
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
73
|
Smith SMC, Friedle SA, Watters JJ. Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression. PLoS One 2013; 8:e81584. [PMID: 24324707 PMCID: PMC3852519 DOI: 10.1371/journal.pone.0081584] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022] Open
Abstract
Intermittent hypoxia (IH) during sleep is a hallmark of sleep apnea, causing significant neuronal apoptosis, and cognitive and behavioral deficits in CNS regions underlying memory processing and executive functions. IH-induced neuroinflammation is thought to contribute to cognitive deficits after IH. In the present studies, we tested the hypothesis that IH would differentially induce inflammatory factor gene expression in microglia in a CNS region-dependent manner, and that the effects of IH would differ temporally. To test this hypothesis, adult rats were exposed to intermittent hypoxia (2 min intervals of 10.5% O2) for 8 hours/day during their respective sleep cycles for 1, 3 or 14 days. Cortex, medulla and spinal cord tissues were dissected, microglia were immunomagnetically isolated and mRNA levels of the inflammatory genes iNOS, COX-2, TNFα, IL-1β and IL-6 and the innate immune receptor TLR4 were compared to levels in normoxia. Inflammatory gene expression was also assessed in tissue homogenates (containing all CNS cells). We found that microglia from different CNS regions responded to IH differently. Cortical microglia had longer lasting inflammatory gene expression whereas spinal microglial gene expression was rapid and transient. We also observed that inflammatory gene expression in microglia frequently differed from that in tissue homogenates from the same region, indicating that cells other than microglia also contribute to IH-induced neuroinflammation. Lastly, microglial TLR4 mRNA levels were strongly upregulated by IH in a region- and time-dependent manner, and the increase in TLR4 expression appeared to coincide with timing of peak inflammatory gene expression, suggesting that TLR4 may play a role in IH-induced neuroinflammation. Together, these data indicate that microglial-specific neuroinflammation may play distinct roles in the effects of intermittent hypoxia in different CNS regions.
Collapse
Affiliation(s)
- Stephanie M. C. Smith
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Scott A. Friedle
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jyoti J. Watters
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
74
|
Rossi AR, Angelo MF, Villarreal A, Lukin J, Ramos AJ. Gabapentin administration reduces reactive gliosis and neurodegeneration after pilocarpine-induced status epilepticus. PLoS One 2013; 8:e78516. [PMID: 24250797 PMCID: PMC3826740 DOI: 10.1371/journal.pone.0078516] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/18/2013] [Indexed: 01/22/2023] Open
Abstract
The lithium-pilocarpine model of epilepsy reproduces in rodents several features of human temporal lobe epilepsy, by inducing an acute status epilepticus (SE) followed by a latency period. It has been proposed that the neuronal network reorganization that occurs during latency determines the subsequent appearance of spontaneous recurrent seizures. The aim of this study was to evaluate neuronal and glial responses during the latency period that follows SE. Given the potential role of astrocytes in the post-SE network reorganization, through the secretion of synaptogenic molecules such as thrombospondins, we also studied the effect of treatment with the α2δ1 thrombospondin receptor antagonist gabapentin. Adult male Wistar rats received 3 mEq/kg LiCl, and 20 h later 30 mg/kg pilocarpine. Once SE was achieved, seizures were stopped with 20 mg/kg diazepam. Animals then received 400 mg/kg/day gabapentin or saline for either 4 or 14 days. In vitro experiments were performed in dissociated mixed hippocampal cell culture exposed to glutamate, and subsequently treated with gabapentin or vehicle. During the latency period, the hippocampus and pyriform cortex of SE-animals presented a profuse reactive astrogliosis, with increased GFAP and nestin expression. Gliosis intensity was dependent on the Racine stage attained by the animals and peaked 15 days after SE. Microglia was also reactive after SE, and followed the same pattern. Neuronal degeneration was present in SE-animals, and also depended on the Racine stage and the SE duration. Polysialic-acid NCAM (PSA-NCAM) expression was increased in hippocampal CA-1 and dentate gyrus of SE-animals. Gabapentin treatment was able to reduce reactive gliosis, decrease neuronal loss and normalize PSA-NCAM staining in hippocampal CA-1. In vitro, gabapentin treatment partially prevented the dendritic loss and reactive gliosis caused by glutamate excitotoxicity. Our results show that gabapentin treatment during the latency period after SE protects neurons and normalizes PSA-NCAM probably by direct interaction with neurons and glia.
Collapse
Affiliation(s)
- Alicia Raquel Rossi
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Maria Florencia Angelo
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alejandro Villarreal
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Jerónimo Lukin
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
75
|
Nathaniel TI, Otukonyong EE, Okon M, Chaves J, Cochran T, Nathaniel AI. Metabolic regulatory clues from the naked mole rat: toward brain regulatory functions during stroke. Brain Res Bull 2013; 98:44-52. [PMID: 23886571 DOI: 10.1016/j.brainresbull.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 12/30/2022]
Abstract
Resistance to tissue hypoxia is a robust fundamental adaptation to low oxygen supply, and represents a novel neuroscience problem with significance to mammalian physiology as well as human health. With the underlying mechanisms strongly conserved in evolution, the ability to resist tissue hypoxia in natural systems has recently emerged as an interesting model in mammalian physiology research to understand mechanisms that can be manipulated for the clinical management of stroke. The extraordinary ability to resist tissue hypoxia by the naked mole rat (NMR) indicates the presence of a unique mechanism that underlies the remarkable healthy life span and exceptional hypoxia resistance. This opens an interesting line of research into understanding the mechanisms employed by the naked mole rat (Heterocephalus glaber) to protect the brain during hypoxia. In a series of studies, we first examined the presence of neuroprotection in the brain cells of naked mole rats (NMRs) subjected to hypoxic insults, and then characterized the expression of such neuroprotection in a wide range of time intervals. We used oxygen nutrient deprivation (OND), an in vitro model of resistance to tissue hypoxia to determine whether there is evidence of neuronal survival in the hippocampal (CA1) slices of NMRs that are subjected to chronic hypoxia. Hippocampus neurons of NMRs that were kept in hypoxic condition consistently tolerated OND right from the onset time of 5h. This tolerance was maintained for 24h. This finding indicates that there is evidence of resistance to tissue hypoxia by CA1 neurons of NMRs. We further examined the effect of hypoxia on metabolic rate in the NMR. Repeated measurement of metabolic rates during exposure of naked mole rats to hypoxia over a constant ambient temperature indicates that hypoxia significantly decreased metabolic rates in the NMR, suggesting that the observed decline in metabolic rate during hypoxia may contribute to the adaptive mechanism used by the NMR to resist tissue hypoxia. This work is aimed to contribute to the understanding of mechanisms of resistance to tissue hypoxia in the NMR as an important life-sustaining process, which can be translated into therapeutic interventions during stroke.
Collapse
Affiliation(s)
- Thomas I Nathaniel
- University of South Carolina School of Medicine, HSEB, 607 Grove Road, Greenville, SC 29605, United States.
| | | | | | | | | | | |
Collapse
|
76
|
Nair D, Ramesh V, Li RC, Schally AV, Gozal D. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse. J Neurochem 2013; 127:531-40. [PMID: 23815362 DOI: 10.1111/jnc.12360] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 11/27/2022]
Abstract
Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep.
Collapse
Affiliation(s)
- Deepti Nair
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
77
|
Galeffi F, Turner DA. Exploiting metabolic differences in glioma therapy. Curr Drug Discov Technol 2013; 9:280-93. [PMID: 22339075 DOI: 10.2174/157016312803305906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/30/2011] [Accepted: 02/11/2012] [Indexed: 12/20/2022]
Abstract
Brain function depends upon complex metabolic interactions amongst only a few different cell types, with astrocytes providing critical support for neurons. Astrocyte functions include buffering the extracellular space, providing substrates to neurons, interchanging glutamate and glutamine for synaptic transmission with neurons, and facilitating access to blood vessels. Whereas neurons possess highly oxidative metabolism and easily succumb to ischemia, astrocytes rely more on glycolysis and metabolism associated with synthesis of critical intermediates, hence are less susceptible to lack of oxygen. Astrocytoma and higher grade glioma cells demonstrate both basic metabolic mechanisms of astrocytes as well as tumors in general, e.g. they show a high glycolytic rate, lactate extrusion, ability to proliferate even under hypoxia, and opportunistic use of mechanisms to enhance metabolism and blood vessel generation, and suppression of cell death pathways. There may be differences in metabolism between neurons, normal astrocytes and astrocytoma cells, providing therapeutic opportunities against astrocytomas, including a wide range of enzyme and transporter differences, regulation of hypoxia-inducible factor (HIF), glutamate uptake transporters and glutamine utilization, differential sensitivities of monocarboxylate transporters, presence of glycogen, high interlinking with gap junctions, use of NADPH for lipid synthesis, utilizing differential regulation of synthetic enzymes (e.g. isocitrate dehydrogenase, pyruvate carboxylase, pyruvate dehydrogenase, lactate dehydrogenase, malate-aspartate NADH shuttle) and different glucose uptake mechanisms. These unique metabolic susceptibilities may augment conventional therapeutic attacks based on cell division differences and surface receptors alone, and are starting to be implemented in clinical trials.
Collapse
|
78
|
Altered aquaporins in the brains of mice submitted to intermittent hypoxia model of sleep apnea. Respir Physiol Neurobiol 2013; 185:217-21. [DOI: 10.1016/j.resp.2012.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022]
|
79
|
Indicators for acute hypoxia—An immunohistochemical investigation in cerebellar Purkinje-cells. Forensic Sci Int 2012; 223:165-70. [DOI: 10.1016/j.forsciint.2012.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/31/2012] [Accepted: 08/22/2012] [Indexed: 11/21/2022]
|
80
|
Baez MV, Luchelli L, Maschi D, Habif M, Pascual M, Thomas MG, Boccaccio GL. Smaug1 mRNA-silencing foci respond to NMDA and modulate synapse formation. ACTA ACUST UNITED AC 2012; 195:1141-57. [PMID: 22201125 PMCID: PMC3246892 DOI: 10.1083/jcb.201108159] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S-foci, the first reported mRNA-silencing foci specific to neurons, may control local mRNA translation in response to NMDA receptor stimulation and synaptic plasticity. Mammalian Smaug1/Samd4A is a translational repressor. Here we show that Smaug1 forms mRNA-silencing foci located at postsynapses of hippocampal neurons. These structures, which we have named S-foci, are distinct from P-bodies, stress granules, or other neuronal RNA granules hitherto described, and are the first described mRNA-silencing foci specific to neurons. RNA binding was not required for aggregation, which indicates that S-foci formation is not a consequence of mRNA silencing. N-methyl-d-aspartic acid (NMDA) receptor stimulation provoked a rapid and reversible disassembly of S-foci, transiently releasing transcripts (the CaMKIIα mRNA among others) to allow their translation. Simultaneously, NMDA triggered global translational silencing, which suggests the specific activation of Smaug1-repressed transcripts. Smaug1 is expressed during synaptogenesis, and Smaug1 knockdown affected the number and size of synapses, and also provoked an impaired response to repetitive depolarizing stimuli, as indicated by a reduced induction of Arc/Arg3.1. Our results suggest that S-foci control local translation, specifically responding to NMDA receptor stimulation and affecting synaptic plasticity.
Collapse
|
81
|
Pathogenesis of cognitive dysfunction in patients with obstructive sleep apnea: a hypothesis with emphasis on the nucleus tractus solitarius. SLEEP DISORDERS 2012; 2012:251096. [PMID: 23470865 PMCID: PMC3581091 DOI: 10.1155/2012/251096] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/13/2011] [Accepted: 12/22/2011] [Indexed: 02/06/2023]
Abstract
OSA is characterized by the quintessential triad of intermittent apnea, hypoxia, and hypoxemia due to pharyngeal collapse. This paper highlights the upstream mechanisms that may trigger cognitive decline in OSA. Three interrelated steps underpin cognitive dysfunction in OSA patients. First, several risk factors upregulate peripheral inflammation; these crucial factors promote neuroinflammation, cerebrovascular endothelial dysfunction, and oxidative stress in OSA. Secondly, the neuroinflammation exerts negative impact globally on the CNS, and thirdly, important foci in the neocortex and brainstem are rendered inflamed and dysfunctional. A strong link is known to exist between neuroinflammation and neurodegeneration. A unique perspective delineated here underscores the importance of dysfunctional brainstem nuclei in etiopathogenesis of cognitive decline in OSA patients. Nucleus tractus solitarius (NTS) is the central integration hub for afferents from upper airway (somatosensory/gustatory), respiratory, gastrointestinal, cardiovascular (baroreceptor and chemoreceptor) and other systems. The NTS has an essential role in sympathetic and parasympathetic systems also; it projects to most key brain regions and modulates numerous physiological functions. Inflamed and dysfunctional NTS and other key brainstem nuclei may play a pivotal role in triggering memory and cognitive dysfunction in OSA. Attenuation of upstream factors and amelioration of the NTS dysfunction remain important challenges.
Collapse
|
82
|
Macey PM, Moiyadi AS, Kumar R, Woo MA, Harper RM. Decreased cortical thickness in central hypoventilation syndrome. Cereb Cortex 2011; 22:1728-37. [PMID: 21965438 DOI: 10.1093/cercor/bhr235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Central hypoventilation syndrome (CHS) is a rare condition characterized by hypoventilation during sleep, reduced ventilatory responsiveness to CO(2) and O(2), impaired perception of air hunger, and autonomic abnormalities. Neural impairments accompany the condition, including structural injury, impaired cerebral autoregulation, and dysfunctional autonomic control. The hypoventilation may induce cortical hypoxic injury, additional to consequences of maldevelopment from PHOX2B mutations present in most CHS subjects. We assessed cortical injury in clinically diagnosed CHS using high-resolution magnetic resonance imaging scans, collected from 14 CHS (mean age ± standard deviation [SD] 17.7 ± 5.0 years; 6 female) and 29 control (mean age ± SD, 17.9 ± 4.3 years; 12 female) subjects. We measured group differences in mean cortical thickness and age-thickness correlations using FreeSurfer software, accounting for age and sex (0.1 false discovery rate). Reduced thickness in CHS appeared in the dorsomedial frontal cortex and anterior cingulate; medial prefrontal, parietal, and posterior cingulate cortices; the insular cortex; anterior and lateral temporal lobes; and mid- and accessory motor strips. Normal age-related cortical thinning in multiple regions did not appear in CHS. The cortical thinning may contribute to CHS cardiovascular and memory deficits and may impair affect and perception of breathlessness. Extensive axonal injury in CHS is paralleled by reduced cortical tissue and absence of normal developmental patterns.
Collapse
Affiliation(s)
- Paul M Macey
- School of Nursing, Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
83
|
Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ. S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-κB signaling. J Neurochem 2011; 117:321-32. [DOI: 10.1111/j.1471-4159.2011.07207.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
84
|
Experimental evidence of the potential use of erythropoietin by intranasal administration as a neuroprotective agent in cerebral hypoxia. ACTA ACUST UNITED AC 2011; 26:65-9. [DOI: 10.1515/dmdi.2011.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
85
|
Merelli A, Caltana L, Girimonti P, Ramos AJ, Lazarowski A, Brusco A. Recovery of Motor Spontaneous Activity After Intranasal Delivery of Human Recombinant Erythropoietin in a Focal Brain Hypoxia Model Induced by CoCl2 in Rats. Neurotox Res 2010; 20:182-92. [DOI: 10.1007/s12640-010-9233-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 02/04/2023]
|
86
|
Clauss R. Neurotransmitters in Coma, Vegetative and Minimally Conscious States, pharmacological interventions. Med Hypotheses 2010; 75:287-90. [DOI: 10.1016/j.mehy.2010.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/06/2010] [Indexed: 12/25/2022]
|
87
|
Gozal D, Nair D, Goldbart AD. Physical activity attenuates intermittent hypoxia-induced spatial learning deficits and oxidative stress. Am J Respir Crit Care Med 2010; 182:104-12. [PMID: 20224062 DOI: 10.1164/rccm.201001-0108oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exposure to intermittent hypoxia (IH), such as occurs in sleep-disordered breathing, is associated with substantial cognitive impairments, oxidative stress and inflammation, and increased neuronal cell losses in brain regions underlying learning and memory in rats. Physical activity (PA) is now recognized as neuroprotective in models of neuronal injury and degeneration. OBJECTIVES To examine whether PA will ameliorate IH-induced deficits. METHODS Young adult Sprague-Dawley rats were randomly assigned to one of four treatment groups including normal activity (NA) or PA for 3 months and then subjected to either normoxia (RA) or exposure to IH during the light phase during the last 14 days. MEASUREMENTS AND MAIN RESULTS Significant impairments in IH-exposed rats emerged on both latency and pathlength to locate the hidden platform in a water maze and decreased spatial bias during the probe trials. These impairments were not observed in PA-IH rats. In addition, the PA-IH group, relative to NA-IH, conferred greater resistance to both lipid peroxidation and 8-hydroxy-2'-deoxyguanosine (DNA damage) in both the cortex and hippocampus. In support of a neuroprotective effect from PA, PA-IH versus NA-IH rats showed greater AKT activation and neuronal insulin growth factor-1 in these regions. CONCLUSIONS Behavioral modifications such as increased physical activity are associated with decreased susceptibility to IH-induced spatial task deficits and lead to reduced oxidative stress, possibly through improved preservation of insulin growth factor-1-Akt neuronal signaling. Considering the many advantages of PA, interventional strategies targeting behavioral modifications leading to increased PA should be pursued in patients with sleep-disordered breathing.
Collapse
Affiliation(s)
- David Gozal
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, 5721 South Maryland Avenue, MC 8000, Suite K-160, Chicago, IL 60637, USA.
| | | | | |
Collapse
|