51
|
Alldred MJ, Chao HM, Lee SH, Beilin J, Powers BE, Petkova E, Strupp BJ, Ginsberg SD. CA1 pyramidal neuron gene expression mosaics in the Ts65Dn murine model of Down syndrome and Alzheimer's disease following maternal choline supplementation. Hippocampus 2018; 28:251-268. [PMID: 29394516 PMCID: PMC5874173 DOI: 10.1002/hipo.22832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022]
Abstract
Although there are changes in gene expression and alterations in neuronal density and afferent inputs in the forebrain of trisomic mouse models of Down syndrome (DS) and Alzheimer's disease (AD), there is a lack of systematic assessments of gene expression and encoded proteins within individual vulnerable cell populations, precluding translational investigations at the molecular and cellular level. Further, no effective treatment exists to combat intellectual disability and basal forebrain cholinergic neurodegeneration seen in DS. To further our understanding of gene expression changes before and following cholinergic degeneration in a well-established mouse model of DS/AD, the Ts65Dn mouse, we assessed RNA expression levels from CA1 pyramidal neurons at two adult ages (∼6 months of age and ∼11 months of age) in both Ts65Dn and their normal disomic (2N) littermates. We further examined a therapeutic intervention, maternal choline supplementation (MCS), which has been previously shown to lessen dysfunction in spatial cognition and attention, and have protective effects on the survival of basal forebrain cholinergic neurons in the Ts65Dn mouse model. Results indicate that MCS normalized expression of several genes in key gene ontology categories, including synaptic plasticity, calcium signaling, and AD-associated neurodegeneration related to amyloid-beta peptide (Aβ) clearance. Specifically, normalized expression levels were found for endothelin converting enzyme-2 (Ece2), insulin degrading enzyme (Ide), Dyrk1a, and calcium/calmodulin-dependent protein kinase II (Camk2a), among other relevant genes. Single population expression profiling of vulnerable CA1 pyramidal neurons indicates that MCS is a viable therapeutic for long-term reprogramming of key transcripts involved in neuronal signaling that are dysregulated in the trisomic mouse brain which have translational potential for DS and AD.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
| | - Helen M. Chao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
| | - Sang Han Lee
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY
- Child Psychiatry, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
- Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY
| | - Judah Beilin
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
| | | | - Eva Petkova
- Child Psychiatry, Nathan Kline Institute, Orangeburg, NY
- Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY
| | - Barbara J. Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
- Department of Psychology, Cornell University, Ithaca, NY
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
- Neuroscience & Physiology, New York University Langone Medical Center, New York, NY
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY
| |
Collapse
|
52
|
Yang CN, Wu MF, Liu CC, Jung WH, Chang YC, Lee WP, Shiao YJ, Wu CL, Liou HH, Lin SK, Chan CC. Differential protective effects of connective tissue growth factor against Aβ neurotoxicity on neurons and glia. Hum Mol Genet 2018; 26:3909-3921. [PMID: 29016849 DOI: 10.1093/hmg/ddx278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
Impaired clearance of amyloid-β peptide (Aβ) leads to abnormal extracellular accumulation of this neurotoxic protein that drives neurodegeneration in sporadic Alzheimer's disease (AD). Connective tissue growth factor (CTGF/CCN2) expression is elevated in plaque-surrounding astrocytes in AD patients. However, the role of CTGF in AD pathogenesis remains unclear. Here we characterized the neuroprotective activity of CTGF. We found that CTGF facilitated Aβ uptake and subsequent degradation within primary glia and neuroblastoma cells. CTGF enhanced extracellular Aβ degradation via membrane-bound matrix metalloproteinase-14 (MMP14) in glia and extracellular MMP13 in neurons. In the brain of a Drosophila AD model, glial-expression of CTGF reduced Aβ deposits, improved locomotor function, and rescued memory deficits. Neuroprotective potential of CTGF against Aβ42-induced photoreceptor degeneration was disrupted through silencing MMPs. Therefore, CTGF may represent a node for potential AD therapeutics as it intervenes in glia-neuron communication via specific MMPs to alleviate Aβ neurotoxicity in the central nervous system.
Collapse
Affiliation(s)
- Cheng-Ning Yang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Fang Wu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Chung-Chih Liu
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Wei-Hung Jung
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chin Chang
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Wang-Pao Lee
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Young-Ji Shiao
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sze-Kwan Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, College of Medicine, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
53
|
The antioxidant xanthorrhizol prevents amyloid-β-induced oxidative modification and inactivation of neprilysin. Biosci Rep 2018; 38:BSR20171611. [PMID: 29330223 PMCID: PMC5794500 DOI: 10.1042/bsr20171611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
Activity of neprilysin (NEP), the major protease which cleaves amyloid-β peptide (Aβ), is reportedly reduced in the brains of patients with Alzheimer's disease (AD). Accumulation of Aβ generates reactive oxygen species (ROS) such as 4-hydroxynonenal (HNE), and then reduces activities of Aβ-degrading enzymes including NEP. Xanthorrhizol (Xan), a natural sesquiterpenoid, has been reported to possess antioxidant and anti-inflammatory properties. The present study examined the effects of Xan on HNE- or oligomeric Aβ42-induced oxidative modification of NEP protein. Xan was added to the HNE- or oligomeric Aβ42-treated SK-N-SH human neuroblastoma cells and then levels, oxidative modification and enzymatic activities of NEP protein were measured. Increased HNE levels on NEP proteins and reduced enzymatic activities of NEP were observed in the HNE- or oligomeric Aβ42-treated cells. Xan reduced HNE levels on NEP proteins and preserved enzymatic activities of NEP in HNE- or oligomeric Aβ42-treated cells. Xan reduced Aβ42 accumulation and protected neurones against oligomeric Aβ42-induced neurotoxicity through preservation of NEP activities. These findings indicate that Xan possesses therapeutic potential for the treatment of neurodegenerative diseases, including AD, and suggest a potential mechanism for the neuroprotective effects of antioxidants for the prevention of AD.
Collapse
|
54
|
Nagata K, Mano T, Murayama S, Saido TC, Iwata A. DNA methylation level of the neprilysin promoter in Alzheimer's disease brains. Neurosci Lett 2018; 670:8-13. [PMID: 29339171 DOI: 10.1016/j.neulet.2018.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022]
Abstract
Neprilysin (NEP), a membrane-bound metalloprotease, has been shown to play an essential role in the clearance of amyloid beta (Aβ) peptides. Previous studies have reported that NEP expression is downregulated in the normal aging brain as well as in the Alzheimer's disease (AD) brain, providing evidence that the downregulation of NEP expression contributes to the age-dependent deposition of Aβ-containing plaques, a pathological hallmark of AD. However, the mechanisms underlying the downregulation remain unclear. In this study, we explored the relationship between DNA methylation status of CpG islands in the NEP promoter and its expression level in AD brains. We performed pyrosequencing analyses to detect the DNA methylation level in 31 postmortem AD brains and 40 normal control brains. All 30 CpG sites showed no clear difference in methylation level. To further focus on methylation changes specific to neuronal cells, we performed methylation array experiments using neuronal nuclei from postmortem brains and found no clear difference in the methylation level between AD and normal control samples. Our detailed analyses, with a substantial number of brain samples, provide the first convincing evidence that DNA methylation of the NEP promoter is not involved in AD development and progression.
Collapse
Affiliation(s)
- Kenichi Nagata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shigeo Murayama
- Neuropathology, The Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakaecho, Itabashi, Tokyo, 173-0015, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Atsushi Iwata
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
55
|
Yamamoto N, Shibata M, Ishikuro R, Tanida M, Taniguchi Y, Ikeda-Matsuo Y, Sobue K. Epigallocatechin gallate induces extracellular degradation of amyloid β-protein by increasing neprilysin secretion from astrocytes through activation of ERK and PI3K pathways. Neuroscience 2017; 362:70-78. [DOI: 10.1016/j.neuroscience.2017.08.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 01/29/2023]
|
56
|
Drosophila Neprilysin 1 Rescues Memory Deficits Caused by Amyloid-β Peptide. J Neurosci 2017; 37:10334-10345. [PMID: 28931572 DOI: 10.1523/jneurosci.1634-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 02/02/2023] Open
Abstract
Neprilysins are Type II metalloproteinases known to degrade and inactivate a number of small peptides, in particular the mammalian amyloid-β peptide (Aβ). In Drosophila, several neprilysins expressed in the brain are required for middle-term (MTM) and long-term memory (LTM) in the dorsal paired medial (DPM) neurons, a pair of large neurons that broadly innervate the mushroom bodies (MB), the center of olfactory memory. These data indicate that one or several peptides need to be degraded for MTM and LTM. We have previously shown that the fly amyloid precursor protein (APPL) is required for memory in the MB. We show here that APPL is also required in adult DPM neurons for MTM and LTM formation. This finding prompted us to search for an interaction between neprilysins and Drosophila Aβ (dAβ), a cleavage product of APPL. To find out whether dAβ was a neprilysin's target, we used inducible drivers to modulate neprilysin 1 (Nep1) and dAβ expression in adult DPM neurons. Experiments were conducted either in both sexes or in females. We show that Nep1 inhibition makes dAβ expression detrimental to both MTM and LTM. Conversely, memory deficits displayed by dAβ-expressing flies are rescued by Nep1 overexpression. Consistent with behavioral data, biochemical analyses confirmed that Nep1 degrades dAβ. Together, our findings establish that Nep1 and dAβ expressed in DPM neurons are functionally linked for memory processes, suggesting that dAβ is a physiological target for Nep1.SIGNIFICANCE STATEMENT Neprilysins are endopeptidases known to degrade a number of small peptides and in particular the amyloid peptide. We previously showed that all four neprilysins expressed in the Drosophila brain are involved in specific phases of olfactory memory. Here we show that an increase in the level of the neprilysin 1 peptidase overcomes memory deficits induced by amyloid peptide in young flies. Together, the data reveal a functional interaction between neprilysin 1 and amyloid peptide, suggesting that neprilysin 1 degrades amyloid peptide. These findings raise the possibility that, under nonpathological conditions, mammalian neprilysins degrade amyloid peptide to ensure memory formation.
Collapse
|
57
|
Drosophila Neprilysins Are Involved in Middle-Term and Long-Term Memory. J Neurosci 2017; 36:9535-46. [PMID: 27629706 DOI: 10.1523/jneurosci.3730-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 07/25/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Neprilysins are type II metalloproteinases known to degrade and inactivate a number of small peptides. Neprilysins in particular are the major amyloid-β peptide-degrading enzymes. In mouse models of Alzheimer's disease, neprilysin overexpression improves learning and memory deficits, whereas neprilysin deficiency aggravates the behavioral phenotypes. However, whether these enzymes are involved in memory in nonpathological conditions is an open question. Drosophila melanogaster is a well suited model system with which to address this issue. Several memory phases have been characterized in this organism and the neuronal circuits involved are well described. The fly genome contains five neprilysin-encoding genes, four of which are expressed in the adult. Using conditional RNA interference, we show here that all four neprilysins are involved in middle-term and long-term memory. Strikingly, all four are required in a single pair of neurons, the dorsal paired medial (DPM) neurons that broadly innervate the mushroom bodies (MBs), the center of olfactory memory. Neprilysins are also required in the MB, reflecting the functional relationship between the DPM neurons and the MB, a circuit believed to stabilize memories. Together, our data establish a role for neprilysins in two specific memory phases and further show that DPM neurons play a critical role in the proper targeting of neuropeptides involved in these processes. SIGNIFICANCE STATEMENT Neprilysins are endopeptidases known to degrade a number of small peptides. Neprilysin research has essentially focused on their role in Alzheimer's disease and heart failure. Here, we use Drosophila melanogaster to study whether neprilysins are involved in memory. Drosophila can form several types of olfactory memory and the neuronal structures involved are well described. Four neprilysin genes are expressed in adult Drosophila Using conditional RNA interference, we show that all four are specifically involved in middle-term memory (MTM) and long-term memory (LTM) and that their expression is required in the mushroom bodies and also in a single pair of closely connected neurons. The data show that these two neurons play a critical role in targeting neuropeptides essential for MTM and LTM.
Collapse
|
58
|
Zhang H, Liu D, Wang Y, Huang H, Zhao Y, Zhou H. Meta-analysis of expression and function of neprilysin in Alzheimer's disease. Neurosci Lett 2017; 657:69-76. [PMID: 28778804 DOI: 10.1016/j.neulet.2017.07.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 01/25/2023]
Abstract
Neprilysin (NEP) is one of the most important Aβ-degrading enzymes, and its expression and activity in Alzheimer's brain have been widely reported, but the results remain debatable. Thus, the meta-analysis was performed to elucidate the role of NEP in Alzheimer's disease (AD). The relevant case-control or cohort studies were retrieved according to our inclusion/exclusion criteria. Six studies with 123 controls and 141 AD cases, seven studies with 102 controls and 90 AD cases, and four studies with 93 controls and 132 AD cases were included in meta-analysis of NEP's protein, mRNA, and enzyme activity respectively. We conducted Meta regression to detect the sources of heterogeneity and further performed cumulative meta-analysis or subgroup analysis. Our meta-analysis revealed a significantly lower level of NEP mRNA (SMD=-0.44, 95%CI: -0.87, -0.00, p=0.049) in AD cases than in non-AD cases, and such pattern was not altered over time in the cumulative meta-analysis. However, the decrease of NEP protein (SMD=-0.18, 95%CI: -0.62, 0.25) and enzyme activity (SMD=-0.35, 95%CI: -1.03, 0.32) in AD cases did not pass the significance check, while the cumulative meta-analysis by average age showed the pooled effect became insignificant as adding the studies with younger subjects, which indicates that the protein expression and enzyme activity of NEP in the cortex are affected by age. Therefore, the present meta-analysis suggests the need of further investigation of roles of NEP in AD pathogenesis and treatment.
Collapse
Affiliation(s)
- Huifeng Zhang
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Dan Liu
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Yixing Wang
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Huanhuan Huang
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Yujia Zhao
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Hui Zhou
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
59
|
Ebrahimi K, Majdi A, Baghaiee B, Hosseini SH, Sadigh-Eteghad S. Physical activity and beta-amyloid pathology in Alzheimer's disease: A sound mind in a sound body. EXCLI JOURNAL 2017; 16:959-972. [PMID: 28900376 PMCID: PMC5579405 DOI: 10.17179/excli2017-475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/17/2017] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. Since curative treatment has not been established for AD yet and due to heavy financial and psychological costs of patients' care, special attention has been paid to preventive interventions such as physical activity. Evidence shows that physical activity has protective effects on cognitive function and memory in AD patients. Several pathologic factors are involved in AD-associated cognitive impairment some of which are preventable by physical activity. Also, various experimental and clinical studies are in progress to prove exercise role in the beta-amyloid (Aβ) pathology as a most prevailing hypothesis explaining AD pathogenesis. This study aims to review the role of physical activity in Aβ-related pathophysiology in AD.
Collapse
Affiliation(s)
- Khadije Ebrahimi
- Department of Sports Science and Physical Education, Marand Branch, Islamic Azad University, Marand, Iran
| | - Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Baghaiee
- Department of Sports Science and Physical Education, Jolfa Branch, Islamic Azad University, Jolfa, Iran
| | - Seyed Hojjat Hosseini
- Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
60
|
Fukui K, Yachi K, Yoshida H, Tanji K, Matsumiya T, Hayakari R, Tsuruga K, Tanaka H, Imaizumi T. Rebamipide reduces amyloid-β 1-42 (Aβ42) production and ameliorates Aβ43-lowered cell viability in cultured SH-SY5Y human neuroblastoma cells. Neurosci Res 2017; 124:40-50. [PMID: 28587858 DOI: 10.1016/j.neures.2017.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/24/2017] [Accepted: 05/24/2017] [Indexed: 01/17/2023]
Abstract
Amyloid-beta (Aβ) peptides, Aβ 1-42 (Aβ42) and Aβ43, in particular, have been implicated in the pathophysiology of neurodegenerative disease such as Alzheimer's disease (AD). Rebamipide (REB), a gastrointestinal protective drug, can cross the blood-brain barrier after oral administration; however, the effects of REB on neuronal cells have not yet been reported. In this study, we investigated the effects of REB on Aβ43-induced cytotoxicity (monomers, 10μM) in cultured SH-SY5Y human neuroblastoma cells. Addition of REB (10-1000nM) into the media partially ameliorated the reduced cell viability observed after Aβ43 treatment, which was determined by the MTT assay. REB reduced the levels of intracellular Aβ oligomers (100-150kDa) that were formed from the exogenous addition of Aβ43 monomers. In addition, REB (30nM) reduced endogenous Aβ42 secretion, which was analyzed by the enzyme-linked immunosorbent assay. Furthermore, REB enhanced the expression of tumor necrosis factor-α-converting enzyme/a disintegrin and metalloproteinase-17, neprilysin, matrix-metalloproteinase-14 (MMP-14)/membrane type-1 MMP, cyclooxygenase-2, and sirtuin 1, even in cells challenged with Aβ43. These results suggest that REB improves the cell viability by inducing genes that regulate Aβ levels and also genes that are cytoprotective. The secondary use of REB may have potential in the prevention of Aβ-mediated diseases, particularly AD.
Collapse
Affiliation(s)
- Kenta Fukui
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kazuma Yachi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ryo Hayakari
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kazushi Tsuruga
- Department of Pediatrics, Hirosaki University School of Medicine and Hospital, Hirosaki 036-8563, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University School of Medicine and Hospital, Hirosaki 036-8563, Japan; Department of School Health Science, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
61
|
Sorial ME, El Sayed NSED. Protective effect of valproic acid in streptozotocin-induced sporadic Alzheimer's disease mouse model: possible involvement of the cholinergic system. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:581-593. [PMID: 28188358 DOI: 10.1007/s00210-017-1357-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
Abstract
Sporadic Alzheimer's disease (SAD) is a slowly progressive neurological disorder that is the most common form of dementia. Cholinergic system dysfunction and amyloid beta formation are the two main underlying pathological mechanisms for the disease development. In recent studies, insulin receptor desensitization and disturbances in the downstream effects of insulin receptor signaling were observed in the brains of Alzheimer's patients. Currently, intracereberoventricular (ICV) injection of streptozotocin (STZ) is found to induce behavioral, neurochemical, and structural alterations in animals resembling those found in SAD patients. Valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was recently shown to regulate the transcription of several genes in both in vivo and in vitro models of Alzheimer's disease. The aim of the current study is to investigate the potential effect of different doses of valproic acid, in an ICV-STZ-induced animal model of SAD. Streptozotocin-injected mice showed cognitive and spatial memory dysfunction in the Y-maze, object recognition test, and Morris water maze (MWM) neurobehavioral tests. The mice also exhibited a decrease in acetylcholine (ACh) and neprilysin (NEP) levels accompanied by an increase in acetylcholinesterase (AChE) activity. For the first time to our knowledge, our findings have shown that VPA is capable of restoring ACh levels in ICV-STZ-injected mice, as well as normalizing both NEP levels and AChE activity. Via this mechanism, an enhancement of cognitive functions is observed. Thus, VPA is suggested to be a promising therapeutic approach against SAD.
Collapse
Affiliation(s)
- Mirna Ezzat Sorial
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo City, 11835, Egypt
| | - Nesrine Salah El Dine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo City, 11835, Egypt. .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
62
|
Zhou L, Liu J, Dong D, Wei C, Wang R. Dynamic alteration of neprilysin and endothelin-converting enzyme in age-dependent APPswe/PS1dE9 mouse model of Alzheimer's disease. Am J Transl Res 2017; 9:184-196. [PMID: 28123645 PMCID: PMC5250715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Imbalance of Aβ production and Aβ removal leads to Aβ accumulation. Aβ degrading enzyme (including neprilysin-NEP, endothelin converting enzyme-ECE) as a therapeutic strategy for lowering brain Aβ deposition has attracted increasing attention. In this study, we investigated alteration of age and region-dependent in APP/PS1 double transgenic mice (3, 6, 9, 12 months) and their age-matched wild type mice including the ability of spatial memory, Aβ deposits, the protein expression, location and activity of NEP and ECE. Our data demonstrated that, as compared with wild type mice, APP/PS1 mice displayed significant cognitive deficit at 9 month revealed by obviously longer in the latency and distance to find the platform and shorter in time spent and swimming distance in the target quadrant. Aβ40 and Aβ42 levels exhibited a significant increase with age in the cerebral cortex and hippocampus of APP/PS1 mice after 6 month, compared with their age-matched wild type mice. And Aβ42 levels were significantly higher than Aβ40 levels in the same age of APP/PS1 mice. Furthermore, NEP protein and activity displayed a marked decrease with age in the cerebral cortex and hippocampus of APP/PS1 mice older than 6 month. Slightly different from NEP, ECE protein was up-regulated with age, while ECE activity showed a significantly decrease with age in cortex and hippocampus of APP/PS1 mice older than 6 month. Double immunofluorescence staining also demonstrated that ECE and NEP highly colocalized in cytoplasmic and membrane, and ECE immunoreactivity tended to increase with age in APP/PS1 mice, especially 12 month APP/PS1 mice. Correlation analysis showed the negative correlation between enzyme (NEP or ECE) activity and Aβ levels in the cerebral cortex and hippocampus of APP/PS1 mice, which was correlated with Aβ accumulation. These results indicate NEP rather than ECE plays more important role in resisting Aβ accumulation. The compensatory upregulation of NEP and ECE could balance Aβ metabolism and protect neuronal functions in infant and juvenile mice. These evidence might provide some clues for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Li Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Jianxu Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Dong Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Chunsheng Wei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
63
|
Abstract
Neprilysin has a major role in both the generation and degradation of bioactive peptides. LCZ696 (valsartan/sacubitril, Entresto), the first of the new ARNI (dual-acting angiotensin-receptor-neprilysin inhibitor) drug class, contains equimolar amounts of valsartan, an angiotensin-receptor blocker, and sacubitril, a prodrug for the neprilysin inhibitor LBQ657. LCZ696 reduced blood pressure more than valsartan alone in patients with hypertension. In the PARADIGM-HF study, LCZ696 was superior to the angiotensin-converting enzyme inhibitor enalapril for the treatment of heart failure with reduced ejection fraction, and LCZ696 was approved by the FDA for this purpose in 2015. This approval was the first for chronic neprilysin inhibition. The many peptides metabolized by neprilysin suggest many potential consequences of chronic neprilysin inhibitor therapy, both beneficial and adverse. Moreover, LBQ657 might inhibit enzymes other than neprilysin. Chronic neprilysin inhibition might have an effect on angio-oedema, bronchial reactivity, inflammation, and cancer, and might predispose to polyneuropathy. Additionally, inhibition of neprilysin metabolism of amyloid-β peptides might have an effect on Alzheimer disease, age-related macular degeneration, and cerebral amyloid angiopathy. Much of the evidence for possible adverse consequences of chronic neprilysin inhibition comes from studies in animal models, and the relevance of this evidence to humans is unknown. This Review summarizes current knowledge of neprilysin function and possible consequences of chronic neprilysin inhibition that indicate a need for vigilance in the use of neprilysin inhibitor therapy.
Collapse
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.,University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
64
|
Brain-Wide Insulin Resistance, Tau Phosphorylation Changes, and Hippocampal Neprilysin and Amyloid-β Alterations in a Monkey Model of Type 1 Diabetes. J Neurosci 2016; 36:4248-58. [PMID: 27076423 DOI: 10.1523/jneurosci.4640-14.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/02/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Epidemiological findings suggest that diabetic individuals are at a greater risk for developing Alzheimer's disease (AD). To examine the mechanisms by which diabetes mellitus (DM) may contribute to AD pathology in humans, we examined brain tissue from streptozotocin-treated type 1 diabetic adult male vervet monkeys receiving twice-daily exogenous insulin injections for 8-20 weeks. We found greater inhibitory phosphorylation of insulin receptor substrate 1 in each brain region examined of the diabetic monkeys when compared with controls, consistent with a pattern of brain insulin resistance that is similar to that reported in the human AD brain. Additionally, a widespread increase in phosphorylated tau was seen, including brain areas vulnerable in AD, as well as relatively spared structures, such as the cerebellum. An increase in active ERK1/2 was also detected, consistent with DM leading to changes in tau-kinase activity broadly within the brain. In contrast to these widespread changes, we found an increase in soluble amyloid-β (Aβ) levels that was restricted to the temporal lobe, with the greatest increase seen in the hippocampus. Consistent with this localized Aβ increase, a hippocampus-restricted decrease in the protein and mRNA for the Aβ-degrading enzyme neprilysin (NEP) was found, whereas various Aβ-clearing and -degrading proteins were unchanged. Thus, we document multiple biochemical changes in the insulin-controlled DM monkey brain that can link DM with the risk of developing AD, including dysregulation of the insulin-signaling pathway, changes in tau phosphorylation, and a decrease in NEP expression in the hippocampus that is coupled with a localized increase in Aβ. SIGNIFICANCE STATEMENT Given that diabetes mellitus (DM) appears to increase the risk of developing Alzheimer's disease (AD), understanding the mechanisms by which DM promotes AD is important. We report that DM in a nonhuman primate brain leads to changes in the levels or posttranslational processing of proteins central to AD pathobiology, including tau, amyloid-β (Aβ), and the Aβ-degrading protease neprilysin. Additional evidence from this model suggests that alterations in brain insulin signaling occurred that are reminiscent of insulin signaling pathway changes seen in human AD. Thus, in an in vivo model highly relevant to humans, we show multiple alterations in the brain resulting from DM that are mechanistically linked to AD risk.
Collapse
|
65
|
Ries M, Sastre M. Mechanisms of Aβ Clearance and Degradation by Glial Cells. Front Aging Neurosci 2016; 8:160. [PMID: 27458370 PMCID: PMC4932097 DOI: 10.3389/fnagi.2016.00160] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/17/2016] [Indexed: 12/24/2022] Open
Abstract
Glial cells have a variety of functions in the brain, ranging from immune defense against external and endogenous hazardous stimuli, regulation of synaptic formation, calcium homeostasis, and metabolic support for neurons. Their dysregulation can contribute to the development of neurodegenerative disorders, including Alzheimer’s disease (AD). One of the most important functions of glial cells in AD is the regulation of Amyloid-β (Aβ) levels in the brain. Microglia and astrocytes have been reported to play a central role as moderators of Aβ clearance and degradation. The mechanisms of Aβ degradation by glial cells include the production of proteases, including neprilysin, the insulin degrading enzyme, and the endothelin-converting enzymes, able to hydrolyse Aβ at different cleavage sites. Besides these enzymes, other proteases have been described to have some role in Aβ elimination, such as plasminogen activators, angiotensin-converting enzyme, and matrix metalloproteinases. Other relevant mediators that are released by glial cells are extracellular chaperones, involved in the clearance of Aβ alone or in association with receptors/transporters that facilitate their exit to the blood circulation. These include apolipoproteins, α2macroglobulin, and α1-antichymotrypsin. Finally, astrocytes and microglia have an essential role in phagocytosing Aβ, in many cases via a number of receptors that are expressed on their surface. In this review, we examine all of these mechanisms, providing an update on the latest research in this field.
Collapse
Affiliation(s)
- Miriam Ries
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital London, UK
| | - Magdalena Sastre
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital London, UK
| |
Collapse
|
66
|
Therapeutic Potential of Dental Pulp Stem Cell Secretome for Alzheimer's Disease Treatment: An In Vitro Study. Stem Cells Int 2016; 2016:8102478. [PMID: 27403169 PMCID: PMC4923581 DOI: 10.1155/2016/8102478] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/25/2016] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
The secretome obtained from stem cell cultures contains an array of neurotrophic factors and cytokines that might have the potential to treat neurodegenerative conditions. Alzheimer's disease (AD) is one of the most common human late onset and sporadic neurodegenerative disorders. Here, we investigated the therapeutic potential of secretome derived from dental pulp stem cells (DPSCs) to reduce cytotoxicity and apoptosis caused by amyloid beta (Aβ) peptide. We determined whether DPSCs can secrete the Aβ-degrading enzyme, neprilysin (NEP), and evaluated the effects of NEP expression in vitro by quantitating Aβ-degrading activity. The results showed that DPSC secretome contains higher concentrations of VEGF, Fractalkine, RANTES, MCP-1, and GM-CSF compared to those of bone marrow and adipose stem cells. Moreover, treatment with DPSC secretome significantly decreased the cytotoxicity of Aβ peptide by increasing cell viability compared to nontreated cells. In addition, DPSC secretome stimulated the endogenous survival factor Bcl-2 and decreased the apoptotic regulator Bax. Furthermore, neprilysin enzyme was detected in DPSC secretome and succeeded in degrading Aβ 1-42 in vitro in 12 hours. In conclusion, our study demonstrates that DPSCs may serve as a promising source for secretome-based treatment of Alzheimer's disease.
Collapse
|
67
|
Li X, Bao X, Wang R. Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review). Mol Med Rep 2016; 14:1043-53. [DOI: 10.3892/mmr.2016.5390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/14/2016] [Indexed: 11/06/2022] Open
|
68
|
Zhang JX, Zhang J, Li Y. Liver X receptor-β improves autism symptoms via downregulation of β-amyloid expression in cortical neurons. Ital J Pediatr 2016; 42:46. [PMID: 27154582 PMCID: PMC4859958 DOI: 10.1186/s13052-016-0249-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/03/2016] [Indexed: 11/10/2022] Open
Abstract
Background We study the effect of liver X receptor β (LXRβ) on β-amyloid (Aβ) peptide generation and autism behaviors by conducting an animal experiment. Methods In autistic mice treated with LXRβ agonist T0901317, enzyme linked immunosorbent assay was used to measure Aβ in brain tissue homogenates. Western blot was used to detect Aβ precursors, Aβ degradation and secretase enzymes, and expression of autophagy-related proteins and Ras/Raf/Erkl/2 signaling pathway proteins in brain tissue. Changes in autism spectrum disorder syndromes of the BTBR mice were compared before and after T0901317 treatment. Results Compared with the control group, autistic mice treated with LXRβ agonist T0901317 showed significantly lower Aβ level in brain tissue (P < 0.05), significantly higher Aβ degradation enzyme (NEP, IDE proteins) levels (all P < 0.05), significantly lower Aβ secretase enzyme BACE1 protein level (P < 0.05), and significantly lower Ras, P-C-Raf, C-Raf, P-Mekl/2, P-Erkl/2 protein levels (all P < 0.05). BTBR mice treated with T0901317 showed improvements in repetitive stereotyped behavior, inactivity, wall-facing standing time, self-combing time and center stay time, stayed longer in platform quadrant, and crossed the platform more frequently (all P < 0.05). Conclusions LXRβ could potentially reduce brain Aβ generation by inhibiting Aβ production and promoting Aβ degradation, thereby increasing the expression of autophagy-related proteins, reducing Ras/Raf/Erkl/2 signaling pathway proteins, and improving autism behaviors.
Collapse
Affiliation(s)
- Ji-Xiang Zhang
- Department of Clinical Psychology, Linyi People's Hospital, Linyi, 276000, China
| | - Jun Zhang
- Department of Children's Rehabilitation, Linyi People's Hospital, No.27 East Jiefang Road, Linyi, 276000, China.
| | - Ye Li
- Department of Outpatient Operation Room, Linyi People's Hospital, Linyi, 276000, China
| |
Collapse
|
69
|
Ohno M. Alzheimer's therapy targeting the β-secretase enzyme BACE1: Benefits and potential limitations from the perspective of animal model studies. Brain Res Bull 2016; 126:183-198. [PMID: 27093940 DOI: 10.1016/j.brainresbull.2016.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 01/18/2023]
Abstract
Accumulating evidence points to the amyloid-β (Aβ) peptide as the culprit in the pathogenesis of Alzheimer's disease (AD). β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a protease that is responsible for initiating Aβ production. Although precise mechanisms that trigger Aβ accumulation remain unclear, BACE1 inhibition undoubtedly represents an important intervention that may prevent and/or cure AD. Remarkably, animal model studies with knockouts, virus-delivered small interfering RNAs, immunization and bioavailable small-molecule agents that specifically inhibit BACE1 activity strongly support the idea for the therapeutic BACE1 inhibition. Meanwhile, a growing number of BACE1 substrates besides APP uncover new physiological roles of this protease, raising some concern regarding the safety of BACE1 inhibition. Here, I review recent progress in preclinical studies that have evaluated the efficacies and potential limitations of genetic/pharmacological inhibition of BACE1, with special focus on AD-associated phenotypes including synaptic dysfunction, neuron loss and memory deficits in animal models.
Collapse
Affiliation(s)
- Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Departments of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
70
|
Neural stem/progenitor cells in Alzheimer's disease. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:23-35. [PMID: 27505014 PMCID: PMC4797833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and a worldwide health challenge. Different therapeutic approaches are being developed to reverse or slow the loss of affected neurons. Another plausible therapeutic way that may complement the studies is to increase the survival of existing neurons by mobilizing the existing neural stem/progenitor cells (NSPCs) - i.e. "induce their plasticity" - to regenerate lost neurons despite the existing pathology and unfavorable environment. However, there is controversy about how NSPCs are affected by the unfavorable toxic environment during AD. In this review, we will discuss the use of stem cells in neurodegenerative diseases and in particular how NSPCs affect the AD pathology and how neurodegeneration affects NSPCs. In the end of this review, we will discuss how zebrafish as a useful model organism with extensive regenerative ability in the brain might help to address the molecular programs needed for NSPCs to respond to neurodegeneration by enhanced neurogenesis.
Collapse
|
71
|
Yamamoto N, Fujii Y, Kasahara R, Tanida M, Ohora K, Ono Y, Suzuki K, Sobue K. Simvastatin and atorvastatin facilitates amyloid β-protein degradation in extracellular spaces by increasing neprilysin secretion from astrocytes through activation of MAPK/Erk1/2 pathways. Glia 2016; 64:952-62. [PMID: 26875818 DOI: 10.1002/glia.22974] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/19/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
Abstract
One of the major neuropathological hallmarks of Alzheimer's disease (AD) is the deposition of amyloid β-protein (Aβ) in the brain. Aβ accumulation seems to arise from an imbalance between Aβ production and clearance. Neprilysin (NEP) and insulin-degrading enzyme (IDE) are the important Aβ-degrading enzymes in the brain, and deficits in their expression may promote Aβ deposition in patients with sporadic late-onset AD. Statins, which are used clinically for reducing cholesterol levels, can exert beneficial effects on AD. Therefore, we examined whether various statins are associated with Aβ degradation by inducing NEP and IDE expression, and then evaluating the relation between activation of intracellular signaling transduction, inhibition of cholesterol production, and morphological changes to astrocytes. Treating cultured rat astrocytes with simvastatin and atorvastatin significantly decreased the expression of NEP but not IDE in a concentration- and time-dependent manner. The decrease in NEP expression was a result of activation of extracellular signal-regulated kinase (ERK) but not the reduction of cholesterol synthesis pathway. This NEP reduction was achieved by the release to the extracellular space of cultured astrocytes. Furthermore, the cultured medium prepared from simvastatin- and atorvastatin-treated astrocytes significantly induced the degradation of exogenous Aβ. These results suggest that simvastatin and atorvastatin induce the increase of Aβ degradation of NEP on the extracellular of astrocytes by inducing ERK-mediated pathway activity and that these reagents regulate the differential mechanisms between the secretion of NEP, the induction of cholesterol reduction, and the morphological changes in the cultured astrocytes.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Ishikawa, 920-1181, Japan.,Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yoko Fujii
- Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Rika Kasahara
- Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Kentaro Ohora
- Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yoko Ono
- Laboratory of Neurochemistry, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Kenji Suzuki
- Laboratory of Molecular Medicinal Science, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Kazuya Sobue
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya City, Aichi, 467-8622, Japan
| |
Collapse
|
72
|
Cervera-Carles L, Clarimón J. Genetic and Epigenetic Architecture of Alzheimer’s Dementia. CURRENT GENETIC MEDICINE REPORTS 2016. [DOI: 10.1007/s40142-016-0086-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
73
|
Zhou L, Qian J, Liu J, Zhao R, Li B, Wang R. Identification of the sites of 4-hydroxy-2-nonenal and neprilysin adduction using a linear trap quadrapole Velos Pro-Orbitrap Elite mass spectrometer. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:133-139. [PMID: 27553735 DOI: 10.1255/ejms.1420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amyloid-βdegrading enzyme neprilysin (NEP) plays a pivotal role in eliminating Aβ The oxidized modification of NEP by 4-hydroxy-2-nonenal (HNE) may reduce the clearance of Aβ in cultured cells and Alzheimer's disease (AD) brains. The aim of this research is to study whether HNE could modify the NEP protein and identify the specific sites of HNE-NEP modification using a linear trap quadrapole (LTQ) Velos Pro-Orbitrap Elite mass spectrometer. NEP activity was determined after SH-SY5Y cells had incubated with HNE (20 μM) for 24 hours. To identify the sites of NEP modification, samples of both native and HNE-modified NEP digested by trypsin were analyzed using a LTQ Velos Pro-Orbitrap Elite mass spectrometer. The NEP peptide sequence information from the fragment ion masses was used to search for the sites of NEP adduction. HNE-treated cells showed a 60% loss of NEP activity. NEP was covalently adducted at Lys 93, Lys 472 by HNE via Michael addition. Compared to the control group, the sites of modified peptide in NEP showed a consistent 156 Da increased in m/z, which provides sequence information and might contribute to further studies on drug design and the therapeutics of AD.
Collapse
Affiliation(s)
- Li Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiao Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jianxu Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ruimin Zhao
- The Department of Emergency, the Fourth People's Hospital of Shenzhen, Shenzhen, Guangdong 518033, China
| | - Bowei Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
74
|
Chatterjee G, Roy D, Khemka VK, Chattopadhyay M, Chakrabarti S. Genistein, the Isoflavone in Soybean, Causes Amyloid Beta Peptide Accumulation in Human Neuroblastoma Cell Line: Implications in Alzheimer's Disease. Aging Dis 2015; 6:456-65. [PMID: 26618047 DOI: 10.14336/ad.2015.0327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/27/2015] [Indexed: 12/19/2022] Open
Abstract
The isoflavone, genistein, present in soybean is being actively investigated for its potential beneficial effect against Alzheimer's disease. Our data, however, show that in SHSY5Y cells genistein causes increased expression (mRNA and protein) of amyloid precursor protein (APP), increased mRNA expression and activity of β-secretase and diminished level of insulin degrading enzyme (IDE) which also degrades amyloid beta peptide. These effects of genistein lead to enhanced accumulation of amyloid beta peptide (Aβ42) in SHSY5Y cells. The results do not support the view that genistein could be a putative drug against AD and instead strengthen the epidemiological study which implies that genistein content of soybean food product (Tofu) leads to cognitive impairment.
Collapse
Affiliation(s)
- Gargi Chatterjee
- Department of Biochemistry, Institute of Post Graduate Medical Education and Research, 244 AJC Bose Road, Kolkata-700020, India
| | - Debashree Roy
- Department of Biochemistry, Institute of Post Graduate Medical Education and Research, 244 AJC Bose Road, Kolkata-700020, India
| | - Vineet Kumar Khemka
- Department of Biochemistry, Institute of Post Graduate Medical Education and Research, 244 AJC Bose Road, Kolkata-700020, India
| | - Mrittika Chattopadhyay
- Department of Biochemistry, Institute of Post Graduate Medical Education and Research, 244 AJC Bose Road, Kolkata-700020, India
| | - Sasanka Chakrabarti
- Department of Biochemistry, Institute of Post Graduate Medical Education and Research, 244 AJC Bose Road, Kolkata-700020, India
| |
Collapse
|
75
|
New Insights into Epigenetic and Pharmacological Regulation of Amyloid-Degrading Enzymes. Neurochem Res 2015; 41:620-30. [PMID: 26376806 DOI: 10.1007/s11064-015-1703-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Currently, deficit of amyloid β-peptide (Aβ) clearance from the brain is considered as one of the possible causes of amyloid accumulation and neuronal death in the sporadic form of Alzheimer's disease (AD). Aβ clearance can involve either specific proteases present in the brain or Aβ-binding/transport proteins. Among amyloid-degrading enzymes the most intensively studied are neprilysin (NEP) and insulin-degrading enzyme (IDE). Since ageing and development of brain pathologies is often accompanied by a deficit in the levels of expression and activity of these enzymes in the brain, there is an urgent need to understand the mechanisms involved in their regulation. We have recently reported that NEP and also an Aβ-transport protein, transthyretin are epigenetically co-regulated by the APP intracellular domain (AICD) and this regulation depends on the cell type and APP695 isoform expression in a process that can be regulated by the tyrosine kinase inhibitor, Gleevec. We have now extended our work and shown that, unlike NEP, another amyloid-degrading enzyme, IDE, is not related to over-expression of APP695 in neuroblastoma SH-SY5Y cells but is up-regulated by APP751 and APP770 isoforms independently of AICD but correlating with reduced HDAC1 binding to its promoter. Studying the effect of the nuclear retinoid X receptor agonist, bexarotene, on NEP and IDE expression, we have found that both enzymes can be up-regulated by this compound but this mechanism is not APP-isoform specific and does not involve AICD but, on the contrary, affects HDAC1 occupancy on the NEP gene promoter. These new insights into the mechanisms of NEP and IDE regulation suggest possible pharmacological targets in developing AD therapies.
Collapse
|
76
|
Civitelli L, Marcocci ME, Celestino I, Piacentini R, Garaci E, Grassi C, De Chiara G, Palamara AT. Herpes simplex virus type 1 infection in neurons leads to production and nuclear localization of APP intracellular domain (AICD): implications for Alzheimer's disease pathogenesis. J Neurovirol 2015; 21:480-90. [PMID: 25925093 DOI: 10.1007/s13365-015-0344-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 11/28/2022]
Abstract
Several data indicate that neuronal infection with herpes simplex virus type 1 (HSV-1) causes biochemical alterations reminiscent of Alzheimer's disease (AD) phenotype. They include accumulation of amyloid-β (Aβ), which originates from the cleavage of amyloid precursor protein (APP), and hyperphosphorylation of tau protein, which leads to neurofibrillary tangle deposition. HSV-1 infection triggers APP processing and drives the production of several fragments including APP intracellular domain (AICD) that exerts transactivating properties. Herein, we analyzed the production and intracellular localization of AICD following HSV-1 infection in neurons. We also checked whether AICD induced the transcription of two target genes, neprilysin (nep) and glycogen synthase kinase 3β (gsk3β), whose products play a role in Aβ clearance and tau phosphorylation, respectively. Our data indicate that HSV-1 led to the accumulation and nuclear translocation of AICD in neurons. Moreover, results from chromatin immunoprecipitation assay showed that AICD binds the promoter region of both nep and gsk3β. Time course analysis of NEP and GSK3β expression at both mRNA and protein levels demonstrated that they are differently modulated during infection. NEP expression and enzymatic activity were initially stimulated but, with the progression of infection, they were down-regulated. In contrast, GSK3β expression remained nearly unchanged, but the analysis of its phosphorylation suggests that it was inactivated only at later stages of HSV-1 infection. Thus, our data demonstrate that HSV-1 infection induces early upstream events in the cell that may eventually lead to Aβ deposition and tau hyperphosphorylation and further suggest HSV-1 as a possible risk factor for AD.
Collapse
Affiliation(s)
- Livia Civitelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy. .,Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Ignacio Celestino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Roberto Piacentini
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enrico Garaci
- IRCCS San Raffaele Pisana, Telematic University, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Institute Pasteur Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
77
|
Jang SK, Yu JM, Kim ST, Kim GH, Park DW, Lee DI, Joo SS. An Aβ42 uptake and degradation via Rg3 requires an activation of caveolin, clathrin and Aβ-degrading enzymes in microglia. Eur J Pharmacol 2015; 758:1-10. [PMID: 25848967 DOI: 10.1016/j.ejphar.2015.03.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/04/2015] [Accepted: 03/24/2015] [Indexed: 01/08/2023]
Abstract
We demonstrated previously that ginsenoside Rg3 enhances the expression of macrophage scavenger receptor class A (SRA) and amyloid β peptide 1-42 (Aβ42) uptake in BV2 cells. In this study, we investigated the biochemical and mechanistic roles of Rg3 in human microglia and animal models to identify the determinants that participate in restoring memory and learning in brains disrupted by the Aβ42 peptide. SRA was expressed highly in Rg3-treated rats, and learning and memory functions were maintained at a normal level after the infusion of Aβ42. SRA-transfected HMO6 human microglial cells (HMO6.hSRA) overexpressed SRA and took up a remarkable amount of Aβ42. Rg3-treated HMO6 cells showed highly enhanced SRA expression and dramatically promoted Aβ42 uptake. Moreover, high levels of clathrin and caveolin1 supported the roles of Rg3 in endocytic biogenesis by activating p38 and extracellular signal-regulated protein kinase signaling. Notably, both neprilysin (NEP) and insulin-degrading enzyme (IDE) were significantly expressed by Rg3, suggesting independent and compensatory hydrolytic activity for the Aβ peptide. In conclusion, Rg3 successfully triggered Aβ42 uptake via SRA and clathrin-/caveolae-mediated endocytic mechanisms and further contributed to accelerate the degradation of Aβ peptide via the increase of intracellular NEP and IDE, which may be a promising Alzheimer׳s disease therapy.
Collapse
Affiliation(s)
- Su Kil Jang
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Jung Min Yu
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Seung Tae Kim
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Gwang Hoon Kim
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Da Woon Park
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea
| | - Do Ik Lee
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Seong Soo Joo
- College of Life Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
78
|
Devi L, Ohno M. A combination Alzheimer's therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice. Mol Brain 2015; 8:19. [PMID: 25884928 PMCID: PMC4397831 DOI: 10.1186/s13041-015-0110-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/11/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that partial inhibition of β-site APP-cleaving enzyme 1 (BACE1), which initiates amyloid-β (Aβ) production, mitigates Alzheimer's disease (AD)-like pathologies and memory deficits in a battery of transgenic mouse models. However, our previous investigations suggest that therapeutic BACE1 suppression may be beneficial only if targeted on earlier stages of AD and encounter dramatic reductions in efficacy during disease progression. This study was designed to test the possibility that a combination approach, aimed at inhibiting BACE1 and boosting neprilysin (a major Aβ-degrading enzyme) activities, may be able to mechanistically overcome the limited efficacy of anti-Aβ therapy in advanced AD. RESULTS After crossbreeding between BACE1 heterozygous knockout (BACE1(+/-)), neprilysin transgenic (NEP) and 5XFAD mice, we analyzed the resultant mice at 12 months of age when 5XFAD controls showed robust amyloid-β (Aβ) accumulation and elevation of BACE1 expression (~2 folds). Although haploinsufficiency lowered BACE1 expression by ~50% in concordance with reduction in gene copy number, profound β-amyloidosis, memory deficits and cholinergic neuron death were no longer rescued in BACE1(+/-) · 5XFAD mice concomitant with their persistently upregulated BACE1 (i.e., equivalent to wild-type control levels). Notably, neprilysin overexpression not only prevented Aβ accumulation but also suppressed the translation initiation factor eIF2α-associated elevation of BACE1 and lowered levels of the β-secretase-cleaved C-terminal fragment of APP (C99) in NEP · 5XFAD mice. Interestingly, these markers for β-amyloidogenesis in BACE1(+/-) · NEP · 5XFAD mice were further reduced to the levels reflecting a combination of single BACE1 allele ablation and the abolishment of translational BACE1 upregulation. However, since neprilysin overexpression was striking (~8-fold relative to wild-type controls), memory impairments, cholinergic neuronal loss and β-amyloidosis were similarly prevented in NEP · 5XFAD and BACE1(+/-) · NEP · 5XFAD mice. CONCLUSIONS Our findings indicate that robust overexpression of neprilysin is sufficient to ameliorate AD-like phenotypes in aged 5XFAD mice. We also found that Aβ-degrading effects of overexpressed neprilysin can block deleterious BACE1-elevating mechanisms that accelerate Aβ production, warranting further study to test whether interventions moderately activating neprilysin may be useful for boosting the limited efficacy of therapeutic BACE1 inhibition in treating AD with established Aβ pathology.
Collapse
Affiliation(s)
- Latha Devi
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
| | - Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA. .,Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
79
|
Mothapo KM, Stelma F, Janssen M, Kessels R, Miners S, Verbeek MM, Koopmans P, van der Ven A. Amyloid beta-42 (Aβ-42), neprilysin and cytokine levels. A pilot study in patients with HIV related cognitive impairments. J Neuroimmunol 2015; 282:73-9. [PMID: 25903731 DOI: 10.1016/j.jneuroim.2015.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 01/13/2023]
Abstract
HIV-associated dementia (HAD) is associated with amyloid-beta (Aβ) deposition. This study measured CSF and plasma amyloid beta-42 (Aβ-42), neprilysin (NEP) and cytokine levels in HIV-related cognitive impairments (HCI), HIV normal cognitive functioning (NF) and non-HIV controls. Our data showed a trend towards detectable plasma Aβ-42 levels more frequently in HCI (67%), when compared to NF (29%) and controls (10%). We showed elevated IL-8 levels in CSF of HCI compared to NF, although not significant values. The data from this pilot study indicates that CSF IL-8 and plasma Aβ-42 may be interesting biomarkers for the presence of HCI.
Collapse
Affiliation(s)
- K M Mothapo
- Department of Internal Medicine and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, The Netherlands.
| | - F Stelma
- Department of Virology, Radboud University Nijmegen Medical Center, The Netherlands
| | - M Janssen
- Department of Medical Psychology, Radboud University Nijmegen Medical Center, The Netherlands
| | - R Kessels
- Department of Medical Psychology, Radboud University Nijmegen Medical Center, The Netherlands
| | - S Miners
- Dementia Research Group, University of Bristol, Institute of Clinical Neurosciences, Level 1, Learning and Research, Southmead Hospital, Bristol, UK
| | - M M Verbeek
- Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands; Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - P Koopmans
- Department of Internal Medicine and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, The Netherlands
| | - A van der Ven
- Department of Internal Medicine and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, The Netherlands
| |
Collapse
|
80
|
Del Campo M, Stargardt A, Veerhuis R, Reits E, Teunissen CE. Accumulation of BRI2-BRICHOS ectodomain correlates with a decreased clearance of Aβ by insulin degrading enzyme (IDE) in Alzheimer's disease. Neurosci Lett 2015; 589:47-51. [PMID: 25597881 DOI: 10.1016/j.neulet.2015.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/22/2023]
Abstract
The precursor protein BRI2 that in its mutated form is associated with British and Danish dementia, can regulate critical processes involved in AD pathogenesis including not only the metabolism of amyloid precursor protein (APP) and formation of Aβ, but also the levels of secreted insulin degrading enzyme (IDE), an enzyme involved in Aβ clearance. We recently observed increased levels of a 45kDa BRI2 form as well as BRI2 ectodomain deposits in Aβ plaques in human AD hippocampus, which may affect BRI2 functional activity. Since BRI2 regulated the levels of secreted IDE and subsequent degradation of Aβ in human cell culture models, we explored if BRI2 changes could affect the Aβ degradation capacity of IDE in human hippocampus (n=28). We observed that IDE is the main enzyme involved in Aβ degradation, and both IDE levels as well as Aβ degradation tend to be decreased in AD. Interestingly, the levels of the 45kDa BRI2 form and BRI2 deposits in hippocampal tissue were inversely correlated with IDE protein levels (r=-0.52, p=0.005; r=-0.4, p=0.045) and IDE activity (r=-0.5935, p=0.0004; r=-0.4, p=0.03). Taken together, the current results suggest a relationship between BRI2 protein changes, IDE activity and Aβ levels in human hippocampus. Thus, the formation and accumulation high of molecular weight BRI2 forms observed in AD may impair IDE functioning and consequently lead to impaired Aβ clearance and to the accumulation of Aβ.
Collapse
Affiliation(s)
- M Del Campo
- Neurochemistry Laboratory of the Clinical Chemistry department, VU University Medical Center, 1081HV, Amsterdam, The Netherlands; Alzheimer Center, VU University Medical Center, 1081HV, Amsterdam, The Netherlands.
| | - A Stargardt
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands
| | - R Veerhuis
- Neurochemistry Laboratory of the Clinical Chemistry department, VU University Medical Center, 1081HV, Amsterdam, The Netherlands; Psychiatry department, VU University Medical Center, 1081HV, Amsterdam, The Netherlands
| | - E Reits
- Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, The Netherlands
| | - C E Teunissen
- Neurochemistry Laboratory of the Clinical Chemistry department, VU University Medical Center, 1081HV, Amsterdam, The Netherlands
| |
Collapse
|
81
|
Huang H, Wang L, Cao M, Marshall C, Gao J, Xiao N, Hu G, Xiao M. Isolation Housing Exacerbates Alzheimer's Disease-Like Pathophysiology in Aged APP/PS1 Mice. Int J Neuropsychopharmacol 2015; 18:pyu116. [PMID: 25568286 PMCID: PMC4540096 DOI: 10.1093/ijnp/pyu116] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/03/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative disease characterized by gradual declines in social, cognitive, and emotional functions, leading to a loss of expected social behavior. Social isolation has been shown to have adverse effects on individual development and growth as well as health and aging. Previous experiments have shown that social isolation causes an early onset of Alzheimer's disease-like phenotypes in young APP695/PS1-dE9 transgenic mice. However, the interactions between social isolation and Alzheimer's disease still remain unknown. METHODS Seventeen-month-old male APP695/PS1-dE9 transgenic mice were either singly housed or continued group housing for 3 months. Then, Alzheimer's disease-like pathophysiological changes were evaluated by using behavioral, biochemical, and pathological analyses. RESULTS Isolation housing further promoted cognitive dysfunction and Aβ plaque accumulation in the hippocampus of aged APP695/PS1-dE9 transgenic mice, associated with increased γ-secretase and decreased neprilysin expression. Furthermore, exacerbated hippocampal atrophy, synapse and myelin associated protein loss, and glial neuroinflammatory reactions were observed in the hippocampus of isolated aged APP695/PS1-dE9 transgenic mice. CONCLUSIONS The results demonstrate that social isolation exacerbates Alzheimer's disease-like pathophysiology in aged APP695/PS1-dE9 transgenic mice, highlighting the potential role of group life for delaying or counteracting the Alzheimer's disease process.
Collapse
Affiliation(s)
- Huang Huang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Linmei Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Min Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Charles Marshall
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Na Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD)
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China (Drs Huang MD, Wang MD, Cao Ms, Gao Ms, N. Xiao Ms, Hu MD, PhD, and M. Xiao MD, PhD); Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY (Dr Marshall PhD).
| |
Collapse
|
82
|
Huang CL, Hsiao IL, Lin HC, Wang CF, Huang YJ, Chuang CY. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. ENVIRONMENTAL RESEARCH 2015; 136:253-263. [PMID: 25460644 DOI: 10.1016/j.envres.2014.11.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Silver nanoparticles (AgNPs) have antibacterial characteristics, and currently are applied in Ag-containing products. This study found neural cells can uptake 3-5 nm AgNPs, and investigated the potential effects of AgNPs on gene expression of inflammation and neurodegenerative disorder in murine brain ALT astrocytes, microglial BV-2 cells and neuron N2a cells. After AgNPs (5, 10, 12.5 μg/ml) exposure, these neural cells had obviously increased IL-1β secretion, and induced gene expression of C-X-C motif chemokine 13 (CXCL13), macrophage receptor with collagenous structure (MARCO) and glutathione synthetase (GSS) for inflammatory response and oxidative stress neutralization. Additionally, this study found amyloid-β (Aβ) plaques for pathological feature of Alzheimer's disease (AD) deposited in neural cells after AgNPs treatment. After AgNPs exposure, the gene expression of amyloid precursor protein (APP) was induced, and otherwise, neprilysin (NEP) and low-density lipoprotein receptor (LDLR) were reduced in neural cells as well as protein level. These results suggested AgNPs could alter gene and protein expressions of Aβ deposition potentially to induce AD progress in neural cells. It's necessary to take notice of AgNPs distribution in the environment.
Collapse
Affiliation(s)
- Chin-Lin Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - I-Lun Hsiao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ho-Chen Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Chu-Fang Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yuh-Jeen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| |
Collapse
|
83
|
Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ. Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer's disease. Front Aging Neurosci 2014; 6:235. [PMID: 25278875 PMCID: PMC4166351 DOI: 10.3389/fnagi.2014.00235] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022] Open
Abstract
Abnormal elevation of amyloid β-peptide (Aβ) levels in the brain is the primary trigger for neuronal cell death specific to Alzheimer’s disease (AD). It is now evident that Aβ levels in the brain are manipulable due to a dynamic equilibrium between its production from the amyloid precursor protein (APP) and removal by amyloid clearance proteins. Clearance can be either enzymic or non-enzymic (binding/transport proteins). Intriguingly several of the main amyloid-degrading enzymes (ADEs) are members of the M13 peptidase family (neprilysin (NEP), NEP2 and the endothelin converting enzymes (ECE-1 and -2)). A distinct metallopeptidase, insulin-degrading enzyme (IDE), also contributes to Aβ degradation in the brain. The ADE family currently embraces more than 20 members, both membrane-bound and soluble, and of differing cellular locations. NEP plays an important role in brain function terminating neuropeptide signals. Its decrease in specific brain areas with age or after hypoxia, ischaemia or stroke contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP (and other genes) by the APP intracellular domain (AICD) and its dependence on the cell type and APP isoform expression suggest possibilities for selective manipulation of NEP gene expression in neuronal cells. We have also observed that another amyloid-clearing protein, namely transthyretin (TTR), is also regulated in the neuronal cell by a mechanism similar to NEP. Dependence of amyloid clearance proteins on histone deacetylases and the ability of HDAC inhibitors to up-regulate their expression in the brain opens new avenues for developing preventive strategies in AD.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK ; I.M.Sechenov Institute of Evolutionary Physiology and Biochemistry St. Petersburg, Russia
| | - Nikolai D Belyaev
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK
| | - Caroline Kerridge
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK ; Neurodegeneration DHT, Lilly, Erl Wood Manor Windlesham, Surrey, UK
| | - Anthony J Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leed, UK
| |
Collapse
|
84
|
Marr RA, Hafez DM. Amyloid-beta and Alzheimer's disease: the role of neprilysin-2 in amyloid-beta clearance. Front Aging Neurosci 2014; 6:187. [PMID: 25165447 PMCID: PMC4131500 DOI: 10.3389/fnagi.2014.00187] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/09/2014] [Indexed: 12/14/2022] Open
Abstract
Accumulation of the amyloid-beta (Aβ) peptide is a central factor in Alzheimer's disease (AD) pathogenesis as supported by continuing evidence. This review concisely summarizes this evidence supporting a critical role for Aβ in AD before discussing the clearance of this peptide. Mechanisms of clearance of Aβ are critical for preventing pathological elevations in Aβ concentration. Direct degradation of Aβ by endopeptidases has emerged as one important pathway for clearance. Of particular interest are endopeptidases that are sensitive to the neprilysin (NEP) inhibitors thiorphan and phosphoramidon (i.e., are "NEP-like") as these inhibitors induce a dramatic increase in Aβ levels in rodents. This review will focus on neprilysin-2 (NEP2), a NEP-like endopeptidase which cooperates with NEP to control Aβ levels in the brain. The evidence for the involvement of NEP2 in AD is discussed as well as the therapeutic relevance with regards to gene therapy and the development of molecular markers for the disease.
Collapse
Affiliation(s)
- Robert A Marr
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Daniel M Hafez
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| |
Collapse
|
85
|
Lim CS, Alkon DL. PKCε promotes HuD-mediated neprilysin mRNA stability and enhances neprilysin-induced Aβ degradation in brain neurons. PLoS One 2014; 9:e97756. [PMID: 24848988 PMCID: PMC4029802 DOI: 10.1371/journal.pone.0097756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/23/2014] [Indexed: 01/12/2023] Open
Abstract
Amyloid-beta (Aβ) peptide accumulation in the brain is a pathological hallmark of all forms of Alzheimer’s disease. An imbalance between Aβ production and clearance from the brain may contribute to accumulation of neurotoxic Aβ and subsequent synaptic loss, which is the strongest correlate of the extent of memory loss in AD. The activity of neprilysin (NEP), a potent Aβ-degrading enzyme, is decreased in the AD brain. Expression of HuD, an mRNA-binding protein important for synaptogenesis and neuronal plasticity, is also decreased in the AD brain. HuD is regulated by protein kinase Cε (PKCε), and we previously demonstrated that PKCε activation decreases Aβ levels. We hypothesized that PKCε acts through HuD to stabilize NEP mRNA, modulate its localization, and support NEP activity. Conversely, loss of PKCε-activated HuD in AD leads to decreased NEP activity and accumulation of Aβ. Here we show that HuD is associated with NEP mRNA in cultures of human SK-N-SH cells. Treatment with bryostatin, a PKCε-selective activator, enhanced NEP association with HuD and increased NEP mRNA stability. Activation of PKCε also increased NEP protein levels, increased NEP phosphorylation, and induced cell surface expression. In addition, specific PKCε activation directly stimulated NEP activity, leading to degradation of a monomeric form of Aβ peptide and decreased Aβ neuronal toxicity, as measured by cell viability. Bryostatin treatment also rescued Aβ-mediated inhibition of HuD-NEP mRNA binding, NEP protein expression, and NEP cell membrane translocation. These results suggest that PKCε activation reduces Aβ by up-regulating, via the mRNA-binding protein HuD, Aβ-degrading enzymes such as NEP. Thus, PKCε activation may have therapeutic efficacy for AD by reducing neurotoxic Aβ accumulation as well as having direct anti-apoptotic and synaptogenic effects.
Collapse
Affiliation(s)
- Chol Seung Lim
- Blanchette Rockefeller Neurosciences Institute at West Virginia University, Morgantown, West Virginia, United States of America
| | - Daniel L Alkon
- Blanchette Rockefeller Neurosciences Institute at West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
86
|
Devi L, Ohno M. PERK mediates eIF2α phosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer's disease. Neurobiol Aging 2014; 35:2272-81. [PMID: 24889041 DOI: 10.1016/j.neurobiolaging.2014.04.031] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/28/2014] [Accepted: 04/27/2014] [Indexed: 01/06/2023]
Abstract
Emerging evidence suggests that aberrant phosphorylation of eukaryotic initiation factor-2α (eIF2α) may induce synaptic failure and neurodegeneration through persistent translational inhibition of global protein synthesis. However, elevated phospho-eIF2α also paradoxically causes translational activation of a subset of messenger RNAs such as the β-secretase enzyme, β-site APP-cleaving enzyme 1 (BACE1) and cAMP response element binding protein (CREB) repressor, activating transcription factor 4 (ATF4). Therefore, we tested whether genetic reduction of the eIF2α kinase PERK may prevent these deleterious events and mitigate Alzheimer's disease (AD)-like neuropathology and cognitive impairments in the 5XFAD mouse model. PERK haploinsufficiency blocked overactivation of the PERK-eIF2α pathway, as evidenced by significant reductions in phosphorylation of PERK and eIF2α, in 5XFAD mice. PERK haploinsufficiency was sufficient to rescue memory deficits and cholinergic neurodegeneration in this AD model. Notably, PERK haploinsufficiency also prevented BACE1 elevations, resulting in reduced levels of amyloid-β peptides and plaque burden in 5XFAD mice. Moreover, CREB dysfunction was restored in PERK(+/-)·5XFAD mice concomitant with reversal of ATF4 upregulation. Together, these findings suggest that PERK may be a disease-modifying therapeutic target to prevent multiple memory-disrupting mechanisms associated with AD.
Collapse
Affiliation(s)
- Latha Devi
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
87
|
Blurton-Jones M, Spencer B, Michael S, Castello NA, Agazaryan AA, Davis JL, Müller FJ, Loring JF, Masliah E, LaFerla FM. Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res Ther 2014; 5:46. [PMID: 25022790 PMCID: PMC4055090 DOI: 10.1186/scrt440] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 02/13/2023] Open
Abstract
INTRODUCTION Short-term neural stem cell (NSC) transplantation improves cognition in Alzheimer's disease (AD) transgenic mice by enhancing endogenous synaptic connectivity. However, this approach has no effect on the underlying beta-amyloid (Aβ) and neurofibrillary tangle pathology. Long term efficacy of cell based approaches may therefore require combinatorial approaches. METHODS To begin to examine this question we genetically-modified NSCs to stably express and secrete the Aβ-degrading enzyme, neprilysin (sNEP). Next, we studied the effects of sNEP expression in vitro by quantifying Aβ-degrading activity, NSC multipotency markers, and Aβ-induced toxicity. To determine whether sNEP-expressing NSCs can also modulate AD-pathogenesis in vivo, control-modified and sNEP-NSCs were transplanted unilaterally into the hippocampus of two independent and well characterized transgenic models of AD: 3xTg-AD and Thy1-APP mice. After three months, stem cell engraftment, neprilysin expression, and AD pathology were examined. RESULTS Our findings reveal that stem cell-mediated delivery of NEP provides marked and significant reductions in Aβ pathology and increases synaptic density in both 3xTg-AD and Thy1-APP transgenic mice. Remarkably, Aβ plaque loads are reduced not only in the hippocampus and subiculum adjacent to engrafted NSCs, but also within the amygdala and medial septum, areas that receive afferent projections from the engrafted region. CONCLUSIONS Taken together, our data suggest that genetically-modified NSCs could provide a powerful combinatorial approach to not only enhance synaptic plasticity but to also target and modify underlying Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Mathew Blurton-Jones
- Department of Neurobiology and Behavior and Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sara Michael
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas A Castello
- Department of Neurobiology and Behavior and Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Andranik A Agazaryan
- Department of Neurobiology and Behavior and Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Joy L Davis
- Department of Neurobiology and Behavior and Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Franz-Josef Müller
- Center for Regenerative Medicine, the Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Psychiatry (ZIP Kiel), University Hospital Schleswig Holstein, Kiel 24105, Germany
| | - Jeanne F Loring
- Center for Regenerative Medicine, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Frank M LaFerla
- Department of Neurobiology and Behavior and Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
88
|
Pope D, Madura JD, Cascio M. β-Amyloid and neprilysin computational studies identify critical residues implicated in binding specificity. J Chem Inf Model 2014; 54:1157-65. [PMID: 24650257 DOI: 10.1021/ci500015m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The zinc metalloprotease neprilysin (NEP) promiscuously degrades small bioactive peptides. NEP is among a select group of metalloenzymes that degrade the amyloid beta-peptide (Aβ) in vivo and in situ. Since accumulation of neurotoxic Aβ aggregates in the brain appears to be a causative agent in the pathophysiology of Alzheimer's disease (AD), increased clearance of Aβ resulting from overexpression of NEP exhibits therapeutic potential for AD. However, higher NEP peptidase activity may be harmful without an increased specificity for Aβ over other competing substrates. Crystal structures of NEP-inhibitor complexes and their characterization have highlighted potential amino acid interactions involved in substrate binding and are used as templates to guide our methodology in docking Aβ in NEP. Results from protein-ligand docking calculations predict S2' subsite residues Arg 102 and Arg 110 of NEP participate in specific interactions with Aβ. These interactions provide insight into developing NEP specificity for Aβ.
Collapse
Affiliation(s)
- Darrick Pope
- Department of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University , 600 Forbes Avenue, 331 Mellon Hall, Pittsburgh, Pennsylvania 15282, United States
| | | | | |
Collapse
|
89
|
The impact of cholesterol, DHA, and sphingolipids on Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2013:814390. [PMID: 24575399 PMCID: PMC3929518 DOI: 10.1155/2013/814390] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/13/2013] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder currently affecting over 35 million people worldwide. Pathological hallmarks of AD are massive amyloidosis, extracellular senile plaques, and intracellular neurofibrillary tangles accompanied by an excessive loss of synapses. Major constituents of senile plaques are 40–42 amino acid long peptides termed β-amyloid (Aβ). Aβ is produced by sequential proteolytic processing of the amyloid precursor protein (APP). APP processing and Aβ production have been one of the central scopes in AD research in the past. In the last years, lipids and lipid-related issues are more frequently discussed to contribute to the AD pathogenesis. This review summarizes lipid alterations found in AD postmortem brains, AD transgenic mouse models, and the current understanding of how lipids influence the molecular mechanisms leading to AD and Aβ generation, focusing especially on cholesterol, docosahexaenoic acid (DHA), and sphingolipids/glycosphingolipids.
Collapse
|
90
|
Yoshida H, Meng P, Matsumiya T, Tanji K, Hayakari R, Xing F, Wang L, Tsuruga K, Tanaka H, Mimura J, Kosaka K, Itoh K, Takahashi I, Imaizumi T. Carnosic acid suppresses the production of amyloid-β 1-42 and 1-43 by inducing an α-secretase TACE/ADAM17 in U373MG human astrocytoma cells. Neurosci Res 2013; 79:83-93. [PMID: 24295810 DOI: 10.1016/j.neures.2013.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/19/2022]
Abstract
Amyloid beta (Aβ) peptides are key molecules in the pathogenesis of Alzheimer's disease (AD). The sequential cleavage of amyloid precursor protein (APP) by the β- and γ-secretases generates Aβ peptides; however, the alternate cleavage of APP by the α- and γ-secretases decreases Aβ production. We previously reported that carnosic acid (CA), a phenolic diterpene compound found in the labiate herbs rosemary and sage, suppresses Aβ (1-40 and 1-42) production by activating α-secretase in cultured SH-SY5Y human neuroblastoma cells (Neurosci. Res. 2013; 75: 94-102). Here, we investigated the effect of CA on the production of Aβ peptides (1-40, 1-42 and 1-43) in U373MG human astrocytoma cells. The treatment of cells with CA suppressed Aβ40/42/43 release (55-71% decrease at 50μM). CA treatment enhanced the mRNA expressions of an α-secretase TACE (tumor necrosis factor-α-converting enzyme, also called a disintegrin and metalloproteinase-17, ADAM17); however, the β-secretase BACE1 (β-site APP-cleaving enzyme-1) was not increased by CA. Knockdown of TACE by siRNA reduced soluble-APPα release enhanced by CA and partially recovered the CA-suppressed Aβ40/42/43 release. These results suggest that CA reduces Aβ production, at least partially, by activating TACE in human astroglial cells. The use of CA may have a potential in the prevention of Aβ-mediated diseases.
Collapse
Affiliation(s)
- Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Pengfei Meng
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Ryo Hayakari
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Fei Xing
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Liang Wang
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kazushi Tsuruga
- Department of Pediatrics, Hirosaki University School of Medicine and Hospital, Hirosaki 036-8563, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University School of Medicine and Hospital, Hirosaki 036-8563, Japan; Department of School Health Science, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan
| | - Junsei Mimura
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kunio Kosaka
- Research and Development Center, Nagase & Co. Ltd., 2-2-3, Kobe 651-2241, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Ippei Takahashi
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
91
|
Ito S, Matsumiya K, Ohtsuki S, Kamiie J, Terasaki T. Contributions of degradation and brain-to-blood elimination across the blood-brain barrier to cerebral clearance of human amyloid-β peptide(1-40) in mouse brain. J Cereb Blood Flow Metab 2013; 33:1770-7. [PMID: 23963369 PMCID: PMC3824175 DOI: 10.1038/jcbfm.2013.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/20/2013] [Accepted: 06/30/2013] [Indexed: 11/09/2022]
Abstract
The purpose of the present study was to estimate the relative contributions of degradation and brain-to-blood elimination processes to the clearance of microinjected human amyloid-β peptide(1-40) (hAβ(1-40)) from mouse cerebral cortex, using a solid-phase extraction method together with a newly developed ultraperformance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) quantitation method for intact hAβ(1-40). The clearance rate constant of hAβ(1-40) in mouse cerebral cortex was determined to be 3.21 × 10(-2)/min under conditions where the saturable brain-to-blood elimination process across the blood-brain barrier (BBB) was expected to be saturated. Thus, this clearance rate constant should mainly reflect degradation. The [(125)I]hAβ(1-40) elimination rate across the BBB under nonsaturating conditions was determined to be 1.48 × 10(-2)/min. Inhibition studies suggested that processes sensitive to insulin and phosphoramidon, which inhibit neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme, are involved not only in degradation, but also in elimination of hAβ(1-40). In conclusion, our results suggest a dominant contribution of degradation to cerebral hAβ(1-40) clearance, and also indicate that a sequential process of degradation and elimination of degradation products is involved in cerebral hAβ(1-40) clearance.
Collapse
Affiliation(s)
- Shingo Ito
- 1] Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan [2] SORST of the Japan Science and Technology Agency, Kawaguchi, Japan [3] Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
92
|
Zhou L, Wei C, Huang W, Bennett DA, Dickson DW, Wang R, Wang D. Distinct subcellular patterns of neprilysin protein and activity in the brains of Alzheimer's disease patients, transgenic mice and cultured human neuronal cells. Am J Transl Res 2013; 5:608-621. [PMID: 24093058 PMCID: PMC3786268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
We investigated the subcellular distribution of NEP protein and activity in brains of human individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI) and AD dementia, as well as double transgenic mice and human neuronal cell line treated with Aβ and 4-hydroxy-2-nonenal (HNE). Total cortical neuronal-related NEP was significantly increased in MCI compared to NCI brains. NeuN was decreased in both MCI and AD, consistent with neuronal loss occurring in MCI and AD. Negative relationship between NEP protein and NeuN in MCI brains, and positive correlation between NEP and pan-cadherin in NCI and MCI brains, suggesting the increased NEP expression in NCI and MCI might be due to membrane associated NEP in non-neuronal cells. In subcellular extracts, NEP protein decreased in cytoplasmic fractions in MCI and AD, but increased in membrane fractions, with a significant increase in the membrane/cytoplasmic ratio of NEP protein in AD brains. By contrast, NEP activity was decreased in AD. Similar results were observed in AD-mimic transgenic mice. Studies of SH-SY5Y neuroblastoma showed an up-regulation of NEP protein in the cytoplasmic compartment induced by HNE and Aβ; however, NEP activity decreased in cytoplasmic fractions. Activity of NEP in membrane fractions increased at 48 hours and then significantly decreased after treatment with HNE and Aβ. The cytoplasmic/membrane ratio of NEP protein increased at 24 hours and then decreased in both HNE and Aβ treated cells. Both HNE and Aβ up-regulate NEP expression, but NEP enzyme activity did not show the same increase, possibly indicating immature cytoplasmic NEP is less active than membrane associated NEP. These observations indicate that modulation of NEP protein levels and its subcellular location influence the net proteolytic activity and this complex association might participate in deficiency of Aβ degradation that is associated with amyloid deposition in AD.
Collapse
Affiliation(s)
- Li Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai 200237, China
| | - Chunsheng Wei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai 200237, China
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of WisconsinMadison, Wisconsin, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical CenterChicago, IL, USA
| | - Dennis W Dickson
- Department of Pathology (Neuropathology) and Neuroscience, Mayo Clinic College of MedicineJacksonville,FL 32224, USA
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai 200237, China
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of WisconsinMadison, Wisconsin, USA
| | - Dengshun Wang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of WisconsinMadison, Wisconsin, USA
| |
Collapse
|
93
|
Suppression of eIF2α kinases alleviates Alzheimer's disease-related plasticity and memory deficits. Nat Neurosci 2013; 16:1299-305. [PMID: 23933749 PMCID: PMC3756900 DOI: 10.1038/nn.3486] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/27/2013] [Indexed: 12/11/2022]
Abstract
Expression of long-lasting synaptic plasticity and long-term memory requires new protein synthesis, which can be repressed by phosphorylation of eukaryotic initiation factor 2α subunit (eIF2α). It was reported previously that eIF2α phosphorylation is elevated in the brains of Alzheimer’s disease (AD) patients and AD model mice. Therefore, we determined whether suppressing eIF2α kinases could alleviate synaptic plasticity and memory deficits in AD model mice. The genetic deletion of the eIF2α kinase PERK prevented enhanced eIF2α phosphorylation, as well as deficits in protein synthesis, synaptic plasticity, and spatial memory in APP/PS1 AD model mice. Similarly, deletion of another eIF2α kinase, GCN2, prevented impairments of synaptic plasticity and spatial memory defects displayed in the APP/PS1 mice. Our findings implicate aberrant eIF2α phosphorylation as a novel molecular mechanism underlying AD-related synaptic pathophysioloy and memory dysfunction and suggest that PERK and GCN2 are potential therapeutic targets for the treatment of individuals with AD.
Collapse
|
94
|
Saiz-Sanchez D, De La Rosa-Prieto C, Ubeda-Bañon I, Martinez-Marcos A. Interneurons and beta-amyloid in the olfactory bulb, anterior olfactory nucleus and olfactory tubercle in APPxPS1 transgenic mice model of Alzheimer's disease. Anat Rec (Hoboken) 2013; 296:1413-23. [PMID: 23904197 DOI: 10.1002/ar.22750] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/18/2013] [Indexed: 01/29/2023]
Abstract
Impaired olfaction has been described as an early symptom in Alzheimer's disease (AD). Neuroanatomical changes underlying this deficit in the olfactory system are largely unknown. Given that interneuron populations are crucial in olfactory information processing, we have quantitatively analyzed somatostatin- (SOM), parvalbumin- (PV), and calretinin-expressing (CR) cells in the olfactory bulb, anterior olfactory nucleus, and olfactory tubercle in PS1 x APP double transgenic mice model of AD. The experiments were performed in wild type and double transgenic homozygous animal groups of 2, 4, 6, and 8 months of age to analyze early stages of the pathology. In addition, beta-amyloid (Aβ) expression and its correlation with SOM cells have been quantified under confocal microscopy. The results indicate increasing expressions of Aβ with aging as well as an early fall of SOM and CR expression, whereas PV was decreased later in the disease progression. These observations evidence an early, preferential vulnerability of SOM and CR cells in rostral olfactory structures during AD that may be useful to unravel neural basis of olfactory deficits associated to this neurodegenerative disorder.
Collapse
Affiliation(s)
- Daniel Saiz-Sanchez
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Ciencias Médicas, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | | | | | | |
Collapse
|
95
|
Devi L, Ohno M. Mechanisms that lessen benefits of β-secretase reduction in a mouse model of Alzheimer's disease. Transl Psychiatry 2013; 3:e284. [PMID: 23880880 PMCID: PMC3731791 DOI: 10.1038/tp.2013.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/22/2013] [Accepted: 05/25/2013] [Indexed: 01/18/2023] Open
Abstract
The β-secretase enzyme BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which initiates amyloid-β (Aβ) production, is an excellent therapeutic target for Alzheimer's disease (AD). However, recent evidence raises concern that BACE1-inhibiting approaches may encounter dramatic declines in their abilities to ameliorate AD-like pathology and memory deficits during disease progression. Here, we used BACE1 haploinsufficiency as a therapeutic relevant model to evaluate the efficacy of partial inhibition of this enzyme. Specifically, we crossed BACE1(+/-) mice with 5XFAD transgenic mice and investigated the mechanisms by which Aβ accumulation and related memory impairments become less sensitive to rescue by BACE1(+/-) reduction. Haploinsufficiency lowered BACE1 expression by ∼50% in 5XFAD mice regardless of age in concordance with reduction in gene copy number. However, profound Aβ plaque pathology and memory deficits concomitant with BACE1 equivalent to wild-type control levels remained in BACE1(+/-)·5XFAD mice with advanced age (15-18 months old). Therefore, BACE1 haploinsufficiency is not sufficient to block the elevation of BACE1 expression (approximately twofold), which is also reported to occur during human AD progression, in 5XFAD mice. Our investigation revealed that PERK (PKR-endoplasmic reticulum-related kinase)-dependent activation of eIF2α (eukaryotic translation initiation factor-2α) accounts for the persistent BACE1 upregulation in BACE1(+/-)·5XFAD mouse brains at 15-18 months of age. Moreover, BACE1 haploinsufficiency was also no longer able to prevent reduction in the expression of neprilysin, a crucial Aβ-degrading enzyme, in 5XFAD mice with advanced age. These findings demonstrate that partial BACE1 suppression cannot attenuate deleterious BACE1-elevating or neprilysin-reducing mechanisms, limiting its capabilities to reduce cerebral Aβ accumulation and rescue memory defects during the course of AD development.
Collapse
Affiliation(s)
- L Devi
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - M Ohno
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
96
|
Stargardt A, Gillis J, Kamphuis W, Wiemhoefer A, Kooijman L, Raspe M, Benckhuijsen W, Drijfhout JW, M. Hol E, Reits E. Reduced amyloid-β degradation in early Alzheimer's disease but not in the APPswePS1dE9 and 3xTg-AD mouse models. Aging Cell 2013; 12:499-507. [PMID: 23534431 DOI: 10.1111/acel.12074] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2013] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is hallmarked by amyloid-β (Aβ) peptides accumulation and aggregation in extracellular plaques, preceded by intracellular accumulation. We examined whether intracellular Aβ can be cleared by cytosolic peptidases and whether this capacity is affected during progression of sporadic AD (sAD) in humans and in the commonly used APPswePS1dE9 and 3xTg-AD mouse models. A quenched Aβ peptide that becomes fluorescent upon degradation was used to screen for Aβ-degrading cytoplasmic peptidases cleaving the aggregation-prone KLVFF region of the peptide. In addition, this quenched peptide was used to analyze Aβ-degrading capacity in the hippocampus of sAD patients with different Braak stages as well as APPswePS1dE9 and 3xTg-AD mice. Insulin-degrading enzyme (IDE) was found to be the main peptidase that degrades cytoplasmic, monomeric Aβ. Oligomerization of Aβ prevents its clearance by IDE. Intriguingly, the Aβ-degrading capacity decreases already during the earliest Braak stages of sAD, and this decline correlates with IDE protein levels, but not with mRNA levels. This suggests that decreased IDE levels could contribute to early sAD. In contrast to the human data, the commonly used APPswePS1dE9 and 3xTg-AD mouse models do not show altered Aβ degradation and IDE levels with AD progression, raising doubts whether mouse models that overproduce Aβ peptides are representative for human sAD.
Collapse
Affiliation(s)
- Anita Stargardt
- Department of Cell Biology and Histology Academic Medical Center Meibergdreef 151105 AZ Amsterdam The Netherlands
| | - Judith Gillis
- Department of Cell Biology and Histology Academic Medical Center Meibergdreef 151105 AZ Amsterdam The Netherlands
| | - Willem Kamphuis
- Department of Astrocyte Biology and Neurodegeneration Netherlands Institute for Neuroscience – an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW) Meibergdreef 47, 1105 BA Amsterdam The Netherlands
| | - Anne Wiemhoefer
- Department of Cell Biology and Histology Academic Medical Center Meibergdreef 151105 AZ Amsterdam The Netherlands
| | - Lieneke Kooijman
- Department of Astrocyte Biology and Neurodegeneration Netherlands Institute for Neuroscience – an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW) Meibergdreef 47, 1105 BA Amsterdam The Netherlands
| | - Marcel Raspe
- Department of Cell Biology and Histology Academic Medical Center Meibergdreef 151105 AZ Amsterdam The Netherlands
| | - Willemien Benckhuijsen
- Department of Immunohematology and Blood Transfusion Leiden University Medical Center Albinusdreef 2, 2333 ZA Leiden The Netherlands
| | - Jan W. Drijfhout
- Department of Immunohematology and Blood Transfusion Leiden University Medical Center Albinusdreef 2, 2333 ZA Leiden The Netherlands
| | - Elly M. Hol
- Department of Astrocyte Biology and Neurodegeneration Netherlands Institute for Neuroscience – an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW) Meibergdreef 47, 1105 BA Amsterdam The Netherlands
- Swammerdam Institute for Life Sciences Center for Neuroscience University of Amsterdam Sciencepark 904 1098 XH AmsterdamThe Netherlands
| | - Eric Reits
- Department of Cell Biology and Histology Academic Medical Center Meibergdreef 151105 AZ Amsterdam The Netherlands
| |
Collapse
|
97
|
Carty N, Nash KR, Brownlow M, Cruite D, Wilcock D, Selenica MLB, Lee DC, Gordon MN, Morgan D. Intracranial injection of AAV expressing NEP but not IDE reduces amyloid pathology in APP+PS1 transgenic mice. PLoS One 2013; 8:e59626. [PMID: 23555730 PMCID: PMC3610740 DOI: 10.1371/journal.pone.0059626] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/15/2013] [Indexed: 11/19/2022] Open
Abstract
The accumulation of β-amyloid peptides in the brain has been recognized as an essential factor in Alzheimer's disease pathology. Several proteases, including Neprilysin (NEP), endothelin converting enzyme (ECE), and insulin degrading enzyme (IDE), have been shown to cleave β-amyloid peptides (Aβ). We have previously reported reductions in amyloid in APP+PS1 mice with increased expression of ECE. In this study we compared the vector-induced increased expression of NEP and IDE. We used recombinant adeno-associated viral vectors expressing either native forms of NEP (NEP-n) or IDE (IDE-n), or engineered secreted forms of NEP (NEP-s) or IDE (IDE-s). In a six-week study, immunohistochemistry staining for total Aβ was significantly decreased in animals receiving the NEP-n and NEP-s but not for IDE-n or IDE-s in either the hippocampus or cortex. Congo red staining followed a similar trend revealing significant decreases in the hippocampus and the cortex for NEP-n and NEP-s treatment groups. Our results indicate that while rAAV-IDE does not have the same therapeutic potential as rAAV-NEP, rAAV-NEP-s and NEP-n are effective at reducing amyloid loads, and both of these vectors continue to have significant effects nine months post-injection. As such, they may be considered reasonable candidates for gene therapy trials in AD.
Collapse
Affiliation(s)
- Nikisha Carty
- University of South Florida College of Medicine, Byrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, Tampa, Florida, United States of America
| | - Kevin R. Nash
- University of South Florida College of Medicine, Byrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, Tampa, Florida, United States of America
| | - Milene Brownlow
- University of South Florida College of Medicine, Byrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, Tampa, Florida, United States of America
| | - Dana Cruite
- University of South Florida College of Medicine, Byrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, Tampa, Florida, United States of America
| | - Donna Wilcock
- University of Kentucky Sanders-Brown Center on Aging, Department of Physiology, Lexington, Kentucky, United States of America
| | - Maj-Linda B. Selenica
- Department of Pharmaceutical Sciences, University of South Florida College of Pharmacy, Byrd Alzheimer Institute, Tampa, Florida, United States of America
| | - Daniel C. Lee
- Department of Pharmaceutical Sciences, University of South Florida College of Pharmacy, Byrd Alzheimer Institute, Tampa, Florida, United States of America
| | - Marcia N. Gordon
- University of South Florida College of Medicine, Byrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, Tampa, Florida, United States of America
| | - Dave Morgan
- University of South Florida College of Medicine, Byrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, Tampa, Florida, United States of America
| |
Collapse
|
98
|
Leal MC, Magnani N, Villordo S, Buslje CM, Evelson P, Castaño EM, Morelli L. Transcriptional regulation of insulin-degrading enzyme modulates mitochondrial amyloid β (Aβ) peptide catabolism and functionality. J Biol Chem 2013; 288:12920-31. [PMID: 23525105 DOI: 10.1074/jbc.m112.424820] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Studies of post-mortem brains from Alzheimer disease patients suggest that oxidative damage induced by mitochondrial amyloid β (mitAβ) accumulation is associated with mitochondrial dysfunction. However, the regulation of mitAβ metabolism is unknown. One of the proteases involved in mitAβ catabolism is the long insulin-degrading enzyme (IDE) isoform (IDE-Met(1)). However, the mechanisms of its expression are unknown, and its presence in brain is uncertain. We detected IDE-Met(1) in brain and showed that its expression is regulated by the mitochondrial biogenesis pathway (PGC-1α/NRF-1). A strong positive correlation between PGC-1α or NRF-1 and long IDE isoform transcripts was found in non-demented brains. This correlation was weaker in Alzheimer disease. In vitro inhibition of IDE increased mitAβ and impaired mitochondrial respiration. These changes were restored by inhibition of γ-secretase or promotion of mitochondrial biogenesis. Our results suggest that IDE-Met(1) links the mitochondrial biogenesis pathway with mitAβ levels and organelle functionality.
Collapse
Affiliation(s)
- María C Leal
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)), Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
| | | | | | | | | | | | | |
Collapse
|
99
|
Beckett TL, Webb RL, Niedowicz DM, Holler CJ, Matveev S, Baig I, LeVine H, Keller JN, Murphy MP. Postmortem Pittsburgh Compound B (PiB) binding increases with Alzheimer's disease progression. J Alzheimers Dis 2013; 32:127-38. [PMID: 22766739 DOI: 10.3233/jad-2012-120655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of imaging reagents is of considerable interest in the Alzheimer's disease (AD) field. Some of these, such as Pittsburgh Compound B (PiB), were designed to bind to the amyloid-β peptide (Aβ), the major component of amyloid deposits in the AD brain. Although these agents were designed for imaging amyloid deposits in vivo, a major avenue of evaluation relies on postmortem cross validation with established indices of AD pathology. In this study, we evaluated changes in the postmortem binding of PiB and its relationship to other aspects of Aβ-related pathology in a series of AD cases and age-matched controls. We also examined cases of preclinical AD (PCAD) and amnestic mild cognitive impairment (MCI), both considered early points in the AD continuum. PiB binding was found to increase with the progression of the disease and paralleled increases in the less soluble forms of Aβ, including SDS-stable Aβ oligomers. Increased PiB binding and its relationship to Aβ was only significant in a brain region vulnerable to the development of AD pathology (the superior and middle temporal gyri) but not in an unaffected region (cerebellum). This implies that the amyloid deposited in disease-affected regions may possess fundamental, brain region specific characteristics that may not as yet be fully appreciated. These data support the idea that PiB is a useful diagnostic tool for AD, particularly in the early stage of the disease, and also show that PiB could be a useful agent for the discovery of novel disease-related properties of amyloid.
Collapse
Affiliation(s)
- Tina L Beckett
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Klein C, Patte-Mensah C, Taleb O, Bourguignon JJ, Schmitt M, Bihel F, Maitre M, Mensah-Nyagan AG. The neuroprotector kynurenic acid increases neuronal cell survival through neprilysin induction. Neuropharmacology 2013; 70:254-60. [PMID: 23422298 DOI: 10.1016/j.neuropharm.2013.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/07/2013] [Accepted: 02/06/2013] [Indexed: 11/25/2022]
Abstract
Kynurenic acid (KYNA), one of the main product of the kynurenine pathway originating from tryptophan, is considered to be neuroprotective. Dysregulation of KYNA activity is thought to be involved in neurodegenerative diseases, the physiopathology of which evokes excitotoxicity, oxidative stress and/or protein aggregation. The neuroprotective effect of KYNA is generally attributed to its antagonistic action on NMDA receptors. However, this single target action appears insufficient to support KYNA beneficial effects against complex neurodegenerative processes including neuroinflammation, β-amyloid peptide (Aβ) toxicity and apoptosis. Novel insights are therefore required to elucidate KYNA neuroprotective mechanisms. Here, we combined cellular, biochemical, molecular and pharmacological approaches to demonstrate that low micromolar concentrations of KYNA strongly induce neprilysin (NEP) gene expression, protein level and enzymatic activity increase in human neuroblastoma SH-SY5Y cells. Furthermore, our studies revealed that KYNA exerts a protective effect on SH-SY5Y cells by increasing their viability through a mechanism independent from NMDA receptors. Interestingly, KYNA also induced NEP activity and neuroprotection in mouse cortical neuron cultures the viability of which was more promoted than SH-SY5Y cell survival under KYNA treatment. KYNA-evoked neuroprotection disappeared in the presence of thiorphan, an inhibitor of NEP activity. NEP is a well characterized metallopeptidase whose deregulation leads to cerebral Aβ accumulation and neuronal death in Alzheimer's disease. Therefore, our results suggest that a part of the neuroprotective role of KYNA may depend on its ability to induce the expression and/or activity of the amyloid-degrading enzyme NEP in nerve cells.
Collapse
Affiliation(s)
- Christian Klein
- Biopathologie de Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Université de Strasbourg, Faculté de Médecine, 11 rue Humann, 67000 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|