51
|
Lisanti MT, Blaiotta G, Nioi C, Moio L. Alternative Methods to SO 2 for Microbiological Stabilization of Wine. Compr Rev Food Sci Food Saf 2019; 18:455-479. [PMID: 33336947 DOI: 10.1111/1541-4337.12422] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 01/15/2023]
Abstract
The use of sulfur dioxide (SO2 ) as wine additive is able to ensure both antioxidant protection and microbiological stability. In spite of these undeniable advantages, in the last two decades the presence of SO2 in wine has raised concerns about potential adverse clinical effects in sensitive individuals. The winemaking industry has followed the general trend towards the reduction of SO2 concentrations in food, by expressing at the same time the need for alternative control methods allowing reduction or even elimination of SO2. In the light of this, research has been strongly oriented toward the study of alternatives to the use of SO2 in wine. Most of the studies have focused on methods able to replace the antimicrobial activity of SO2 . This review article gives a comprehensive overview of the current state-of-the-art about the chemical additives and the innovative physical techniques that have been proposed for this purpose. After a focus on the chemistry and properties of SO2 in wine, as well as on wine spoilage and on the conventional methods used for the microbiological stabilization of wine, recent advances on alternative methods proposed to replace the antimicrobial activity of SO2 in winemaking are presented and discussed. Even though many of the alternatives to SO2 showed good efficacy, nowadays no other physical technique or additive can deliver the efficacy and broad spectrum of action as SO2 (both antioxidant and antimicrobial), therefore the alternative methods should be considered a complement to SO2 in low-sulfite winemaking, rather than being seen as its substitutes.
Collapse
Affiliation(s)
- Maria Tiziana Lisanti
- Dipt. di Agraria -Sezione di Scienze della Vigna e del Vino, Univ. degli Studi di Napoli Federico II, viale Italia 83100 Avellino, Italy
| | - Giuseppe Blaiotta
- Dipt. di Agraria -Sezione di Scienze della Vigna e del Vino, Univ. degli Studi di Napoli Federico II, viale Italia 83100 Avellino, Italy
| | - Claudia Nioi
- Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Inst. des Sciences de la Vigne et du Vin CS 50008 - 210, chemin de Leysotte - 33882 - Villenave d'Ornon cedex -France
| | - Luigi Moio
- Dipt. di Agraria -Sezione di Scienze della Vigna e del Vino, Univ. degli Studi di Napoli Federico II, viale Italia 83100 Avellino, Italy
| |
Collapse
|
52
|
Continuous pulsed electric field treatments’ impact on the microbiota of red Tempranillo wines aged in oak barrels. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2018.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
53
|
González-Arenzana L, Portu J, López N, Santamaría P, Gutiérrez AR, López R, López-Alfaro I. Pulsed Electric Field treatment after malolactic fermentation of Tempranillo Rioja wines: Influence on microbial, physicochemical and sensorial quality. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
54
|
Oenological characterisation of indigenous strains of S. cerevisiae isolated in a biodynamic winery in the Cortona DOC area. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
55
|
Genovese ME, Abraham S, Caputo G, Nanni G, Kumaran SK, Montemagno CD, Athanassiou A, Fragouli D. Photochromic Paper Indicators for Acidic Food Spoilage Detection. ACS OMEGA 2018; 3:13484-13493. [PMID: 31458057 PMCID: PMC6645322 DOI: 10.1021/acsomega.8b02570] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 05/30/2023]
Abstract
A photoresponsive microstructured composite is fabricated through the impregnation of cellulosic filter paper (FP) with a spiropyran-modified acrylic polymer. The polymer enwraps uniformly each individual cellulose fiber, increases the thermal stability of cellulose, and ensures the preservation of the composite functionalities even upon removal of the surface layers through mechanical scratching. The photochromic spiropyran moieties of the polymer, even while embedded in the cellulosic sheet, can reversibly interconvert between the colorless spiropyran and the pink merocyanine isomeric states upon irradiation with UV and visible light, respectively. Moreover, the photochromic polymer presents a faster photochromic response and a higher resistance to photodegradation, with an outstanding reusability for more than 100 switching cycles when it is incorporated in the cellulose network. Most importantly, the acidochromism of the modified FP, attributed to the spiropyran molecules after UV activation, allows the real-time optical and visual detection of acidity changes and spoilage in food products, such as wine and milk. Spoilage due to bacterial degradation and oxidation processes generates acidic vapors that induce the protonation of the merocyanine. This results in a visually detectable chromic transition from pink to white of the treated cellulose fibers, corresponding to a blue shift in the absorption spectrum. The developed photoresponsive cellulose composite can serve as cost-effective robust optical component in integrated functional platforms and consumer-friendly indicators for smart food packaging, as well as portable on demand acidoresponsive interfaces for gas monitoring in industrial and environmental applications.
Collapse
Affiliation(s)
- Maria E. Genovese
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Sinoj Abraham
- Department
of Chemical and Materials Engineering, University
of Alberta, 9211-116 Street NW, Edmonton T6G 1H9, Canada
| | - Gianvito Caputo
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Gabriele Nanni
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Surjith K. Kumaran
- Department
of Chemical and Materials Engineering, University
of Alberta, 9211-116 Street NW, Edmonton T6G 1H9, Canada
| | - Carlo D. Montemagno
- Southern
Illinois University, 1230 Lincoln Drive, Carbondale, Illinois 62901, United
States
| | | | - Despina Fragouli
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
56
|
Morgan SC, Tantikachornkiat M, Scholl CM, Benson NL, Cliff MA, Durall DM. The effect of sulfur dioxide addition at crush on the fungal and bacterial communities and the sensory attributes of Pinot gris wines. Int J Food Microbiol 2018; 290:1-14. [PMID: 30278370 DOI: 10.1016/j.ijfoodmicro.2018.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022]
Abstract
Modern day winemaking often involves the addition of sulfur dioxide (SO2) at crush to act as both an antioxidant and an antimicrobial agent. While the effects of SO2 on microbial communities and particularly on spoilage microorganisms has been well-studied, the advent of culture-independent molecular technologies, such as Illumina sequencing, allows the subject to be re-visited in a new context. High-throughput amplicon sequencing allows for a more thorough evaluation of microbial communities, as thousands of microbial sequences per sample can be identified and even rare microorganisms can be studied. This research investigated whether the addition of different levels of SO2 at crush (0, 20, or 40 mg/L) would affect the composition of fungal and bacterial communities, as well as the sensory attributes of the resulting wines. Samples were taken from uninoculated fermentations of Pinot gris and analyzed via high-throughput amplicon sequencing using the Illumina MiSeq platform. Yeast relative abundance and overall fungal community composition differed among the SO2 additions. Notably, a Hanseniaspora yeast appeared in all treatments and persisted until the end of alcoholic fermentation, although its relative abundance was significantly higher in the fermentations to which low or no SO2 had been added. Two key wine sensory attributes (citrus aroma and pome fruit flavor) differed among the SO2 treatments. This research provides an in-depth look into the fungal and bacterial communities during alcoholic fermentation and gives a better understanding of the microbial community response to SO2 additions during the crush period.
Collapse
Affiliation(s)
- Sydney C Morgan
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada.
| | - Mansak Tantikachornkiat
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Chrystal M Scholl
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Natasha L Benson
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Margaret A Cliff
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 Highway 97, Summerland, British Columbia V0H 1Z0, Canada.
| | - Daniel M Durall
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
57
|
Cheng RM, Churey JJ, Worobo RW. Inactivation of Salmonella enterica and spoilage microorganisms in orange juice treated with dimethyl dicarbonate (DMDC). Int J Food Microbiol 2018; 285:152-157. [PMID: 30153527 DOI: 10.1016/j.ijfoodmicro.2018.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Salmonella enterica is the pertinent pathogen associated with orange juice products that have resulted in numerous foodborne outbreaks. Although fresh orange juice typically has a pH below 4.0, which inhibits most pathogen growth, S. enterica can survive at low pH for extended periods. Additionally, fresh juice contains spoilage microorganisms such as natural yeasts and molds, which can grow at low pH, and may cause fermentation and product spoilage if left untreated. Numerous Salmonella outbreaks linked to fresh orange juice, as well as the burden of product spoilage, have generated increased demand for alternative, non-thermal treatments that can ensure pathogen- and spoilage-free products. In this study, the effect of dimethyl dicarbonate (DMDC) on pathogen and spoilage microorganism inactivation in orange juice has been investigated with two experiments. First, pasteurized orange juice was inoculated with approximately 106-107 CFU/ml of five serotypes of S. enterica per ml and treated with DMDC to test the effectiveness of inactivation against Salmonella. For the fungal spoilage microorganism study, fresh orange juice was held at room temperature to increase natural yeast and mold count to roughly 105-106 CFU/ml, followed with treatment with DMDC. DMDC at two concentrations (172 and 200 ppm) was used, and the tests were carried out at ambient (21 °C ± 3 °C) and refrigeration (4 °C) temperatures. There was a >5-log reduction of Salmonella at 4 °C after 24 h at both 172 and 200 ppm of DMDC. For the treatment of fungal spoilage microorganisms, a nearly 5 and 4 log reduction of yeasts and molds was observed at ambient temperature and 4 °C, respectively. These results suggest that DMDC is most effective for use under the 4 °C holding conditions to inactivate S. enterica, and should be coupled with an additional preservative system for fungal spoilage control to produce safe orange juice that retains fresh quality.
Collapse
Affiliation(s)
- Rebecca M Cheng
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - John J Churey
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Randy W Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
58
|
Fernández-Pérez R, Tenorio Rodríguez C, Ruiz-Larrea F. Fluorescence microscopy to monitor wine malolactic fermentation. Food Chem 2018; 274:228-233. [PMID: 30372931 DOI: 10.1016/j.foodchem.2018.08.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023]
Abstract
Malolactic fermentation (MLF) is a natural and biological deacidification of wines and a required step for making premium red wines. MLF is carried out by lactic acid bacteria (LAB) that are present in the fermenting wines. Currently, real-time control of MLF is an issue of great interest as the classical plate count technique for assessing bacterial populations requires long incubation times that are not compatible with a tight control of MLF. The aim of this study was to apply fluorescence microscopy and the bacteria staining kit Live/Dead BacLight™ to quantify viable LAB populations in red wines undergoing MLF. This method proved to be a fast and reliable culture-independent method to monitor wine MLF. Moreover, comparison of bacterial population data obtained by fluorescence microscopy and classical plate counts of LAB populations allowed discriminating a population of fully active and culturable cells, from total viable cells that include cells in an intermediate unculturable state.
Collapse
Affiliation(s)
- Rocío Fernández-Pérez
- University of La Rioja, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Edificio Científico Tecnológico (CCT), Av Madre de Dios 53, 26006 Logroño, Spain
| | - Carmen Tenorio Rodríguez
- University of La Rioja, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Edificio Científico Tecnológico (CCT), Av Madre de Dios 53, 26006 Logroño, Spain
| | - Fernanda Ruiz-Larrea
- University of La Rioja, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Edificio Científico Tecnológico (CCT), Av Madre de Dios 53, 26006 Logroño, Spain.
| |
Collapse
|
59
|
Guzzon R, Franciosi E, Moser S, Carafa I, Larcher R. Application of ozone during grape drying for the production of straw wine. Effects on the microbiota and compositive profile of grapes. J Appl Microbiol 2018; 125:513-527. [DOI: 10.1111/jam.13774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/27/2018] [Accepted: 03/19/2018] [Indexed: 11/28/2022]
Affiliation(s)
- R. Guzzon
- Edmund Mach Foundation San Michele all'Adige Trento Italy
| | - E. Franciosi
- Edmund Mach Foundation San Michele all'Adige Trento Italy
| | - S. Moser
- Edmund Mach Foundation San Michele all'Adige Trento Italy
| | - I. Carafa
- Edmund Mach Foundation San Michele all'Adige Trento Italy
| | - R. Larcher
- Edmund Mach Foundation San Michele all'Adige Trento Italy
| |
Collapse
|
60
|
Müller N. Iminiumsalz-Strukturen bei der durch Pyridoxalphosphat (Vitamin B6) katalysierten Bildung von Aromastoffen und Fehlaromen im Wein. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2018-0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Enzymes that use pyridoxal phosphate (PLP, Vitamin B6) as cofactor constitute a ubiquitous class of biocatalysts. A variety of PLP-dependant enzymes mainly involved in biochemical pathways concerning amino acid metabolism are found in all forms of life. These enzymes also play an important role in wine production, as well in grape growing as in enological processes. The formation of pleasant aroma compounds often runs with participation of pyridoxal-dependant enzymes. But these are also brought into context with the formation of off-odors, especially from sulfur compounds (i.e. sulfur containing amino acids cysteine, methionine). The versatility of PLP-dependant bioreactions arises from its ability to covalently bind the substrate and then to function as an electrophilic catalyst, thereby stabilizing different types of carbanionic reaction intermediates, containing iminium salt structures. This article summarizes the influence of PLP on sensorically important aroma compounds in wine growing and wine processing.
Collapse
|
61
|
Cimaglia F, Tristezza M, Saccomanno A, Rampino P, Perrotta C, Capozzi V, Spano G, Chiesa M, Mita G, Grieco F. An innovative oligonucleotide microarray to detect spoilage microorganisms in wine. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
62
|
Bartowsky EJ. Oenococcus oeni and the genomic era. FEMS Microbiol Rev 2018; 41:S84-S94. [PMID: 28830095 DOI: 10.1093/femsre/fux034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/13/2017] [Indexed: 11/13/2022] Open
Abstract
Oenococcus oeni is the main lactic acid bacteria species associated with grapes and wine. It is a bacterium that has adapted itself to the harsh conditions of wine, and demonstrated its importance in the production of quality wines. It has a small genome (1.8 Mb); over 200 strains have had their genome sequenced. Genomic analyses have proposed that there are two major branches of O. oeni strains that might be linked to wine style (sparkling wine versus white and red) and metagenomic studies have suggested a possible influence of terroir. This review explores recent developments of O. oeni including genomic studies examining O. oeni diversity and how this might shape future regional-specific commercial O. oeni starter strains.
Collapse
Affiliation(s)
- Eveline J Bartowsky
- Lallemand Australia, PO Box 210, Edwardstown, Adelaide, SA 5039, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| |
Collapse
|
63
|
González-Arenzana L, López-Alfaro I, Garde-Cerdán T, Portu J, López R, Santamaría P. Microbial inactivation and MLF performances of Tempranillo Rioja wines treated with PEF after alcoholic fermentation. Int J Food Microbiol 2018; 269:19-26. [DOI: 10.1016/j.ijfoodmicro.2018.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 11/28/2022]
|
64
|
Bučková M, Puškárová A, Ženišová K, Kraková L, Piknová Ľ, Kuchta T, Pangallo D. Novel insights into microbial community dynamics during the fermentation of Central European ice wine. Int J Food Microbiol 2018; 266:42-51. [DOI: 10.1016/j.ijfoodmicro.2017.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/06/2017] [Accepted: 11/14/2017] [Indexed: 11/28/2022]
|
65
|
Ozturk B, Anli E. Pulsed electric fields (PEF) applications on wine production: A review. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170902008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
66
|
Philippe C, Jaomanjaka F, Claisse O, Laforgue R, Maupeu J, Petrel M, Le Marrec C. A survey of oenophages during wine making reveals a novel group with unusual genomic characteristics. Int J Food Microbiol 2017. [PMID: 28651079 DOI: 10.1016/j.ijfoodmicro.2017.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oenophages have so far been mostly isolated from red wines under malolactic fermentation (MLF), and correspond to temperate or ex-temperate phages of Oenococcus oeni. Their genomes are clustered into 4 integrase gene sequence groups, which are also related to the chromosomal integration site. Our aims were to survey the occurrence of oenophages in a broader and more diverse collection of samples than those previously explored. Active phages were isolated from 33 out of 166 samples, which mostly originated from must and MLF. Seventy one phage lysates were produced and 30% were assigned to a novel group with unusual genomic characteristics, called unk. All unk members produced similar RAPD and DNA restriction patterns, were negative by PCR for the signature sequences previously identified in the integrase and endolysin genes of oenophages, and lacked any BamHI restriction site in their genome. The data support that development of additional and novel signature genes for assessing oenophage diversity is now required.
Collapse
Affiliation(s)
- Cécile Philippe
- Univ. Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France
| | - Fety Jaomanjaka
- Univ. Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France; Institut Polytechnique de Bordeaux, ISVV, EA 4577 Oenologie, F-33140 Villenave d'Ornon, France
| | - Olivier Claisse
- Univ. Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France; INRA, ISVV, USC 1366 Oenologie, F-33882 Villenave d'Ornon, France
| | - Rémi Laforgue
- Univ. Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France; MICROFLORA, ISVV, EA 4577 Oenologie, F-33140 Villenave d'Ornon, France
| | - Julie Maupeu
- Univ. Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France; MICROFLORA, ISVV, EA 4577 Oenologie, F-33140 Villenave d'Ornon, France
| | - Melina Petrel
- Univ. Bordeaux, Bordeaux Imaging Center, UMS 3420 CNRS-US4 INSERM, Bordeaux, France
| | - Claire Le Marrec
- Univ. Bordeaux, ISVV, EA 4577, Unité de recherche Oenologie, F-33882 Villenave d'Ornon, France; Institut Polytechnique de Bordeaux, ISVV, EA 4577 Oenologie, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
67
|
Bergsveinson J, Kajala I, Ziola B. Next-generation sequencing approaches for improvement of lactic acid bacteria-fermented plant-based beverages. AIMS Microbiol 2017; 3:8-24. [PMID: 31294146 PMCID: PMC6604971 DOI: 10.3934/microbiol.2017.1.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Plant-based beverages and milk alternatives produced from cereals and legumes have grown in popularity in recent years due to a range of consumer concerns over dairy products. These plant-based products can often have undesirable physiochemical properties related to flavour, texture, and nutrient availability and/or deficiencies. Lactic acid bacteria (LAB) fermentation offers potential remediation for many of these issues, and allows consumers to retain their perception of the resultant products as natural and additive-free. Using next-generation sequencing (NGS) or omics approaches to characterize LAB isolates to find those that will improve properties of plant-based beverages is the most direct way to product improvement. Although NGS/omics approaches have been extensively used for selection of LAB for use in the dairy industry, a comparable effort has not occurred for selecting LAB for fermenting plant raw substrates, save those used in producing wine and certain types of beer. Here we review the few and recent applications of NGS/omics to profile and improve LAB fermentation of various plant-based substrates for beverage production. We also identify specific issues in the production of various LAB fermented plant-based beverages that such NGS/omics applications have the power to resolve.
Collapse
Affiliation(s)
- Jordyn Bergsveinson
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 2841 Royal University Hospital, 103 Hospital Drive, Saskatoon, SK Canada S7N 0W8
| | - Ilkka Kajala
- VTT Technical Research Centre of Finland Ltd., PL1000, 02044VTT, Espoo, Finland
| | - Barry Ziola
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 2841 Royal University Hospital, 103 Hospital Drive, Saskatoon, SK Canada S7N 0W8
| |
Collapse
|
68
|
Abstract
The production of alcoholic beverages, such as winemaking, has a long history, dating back well over 7000 years. The winemaking process is not vastly different to that used by the ancient Greeks and Egyptians. The main difference is that modern-day winemakers have much more control over the different steps; time and method of grape harvesting, use of selected yeast and bacteria, and maturation techniques. The various yeast and bacteria involved in winemaking originate in the vineyard, on grapes and winemaking equipment. Even though yeast and bacteria can impart desirable sensory characteristics to wine, this is not always the case – there are numerous microbes that are unwanted. This overview of wine microbiology will be limited to yeast and bacterial fermentations and microbiological spoilage by these microbes, and will not cover vineyard moulds.
Collapse
|
69
|
Wang CY, Huang HW, Hsu CP, Yang BB. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology. Crit Rev Food Sci Nutr 2016; 56:527-40. [PMID: 25629307 DOI: 10.1080/10408398.2012.745479] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications.
Collapse
Affiliation(s)
- Chung-Yi Wang
- a Southern Taiwan Service Center, Food Industry Research and Development Institute , Tainan , Taiwan
| | - Hsiao-Wen Huang
- a Southern Taiwan Service Center, Food Industry Research and Development Institute , Tainan , Taiwan
| | - Chiao-Ping Hsu
- a Southern Taiwan Service Center, Food Industry Research and Development Institute , Tainan , Taiwan
| | - Binghuei Barry Yang
- a Southern Taiwan Service Center, Food Industry Research and Development Institute , Tainan , Taiwan
| |
Collapse
|
70
|
Mainente F, Simonato B, Pasini G, Franchin C, Arrigoni G, Rizzi C. Hen egg white lysozyme is a hidden allergen in Italian commercial ciders. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 34:145-151. [PMID: 27892783 DOI: 10.1080/19440049.2016.1265673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hen egg white lysozyme (HEWL) is an enzyme used in alcoholic fermentation for its ability to control the growth of Gram-positive and spoilage bacteria, without inhibiting yeast growth, and it allows a reduction in the use of sulphur dioxide. Nevertheless, considering the potential allergenicity of this protein, the presence of HEWL should be declared on the label of the final product. In this work, we analysed 18 commercial Italian ciders by LC-MS/MS and found traces of HEWL in 12 samples without label declaration. We used Western blot and enzyme-linked immunosorbent assay (ELISA) to verify the immunological activity of HEWL, and to quantify its content in the ciders. Two out of 18 samples were found to be positive both by immunoblot and ELISA. The results indicate the requirement of a more stringent control of commercial ciders and the need of label declaration for ciders treated with such compounds.
Collapse
Affiliation(s)
- Federica Mainente
- a Department of Agronomy Food Natural Resources Animals and Environment , University of Padua , Legnaro (PD) , Italy.,b Department of Biotechnology , University of Verona , Verona , Italy
| | - Barbara Simonato
- b Department of Biotechnology , University of Verona , Verona , Italy
| | - Gabriella Pasini
- a Department of Agronomy Food Natural Resources Animals and Environment , University of Padua , Legnaro (PD) , Italy
| | - Cinzia Franchin
- c Department of Biomedical Sciences , University of Padua , Padua , Italy.,d Proteomics Center of Padua University and Azienda Ospedaliera di Padova , Padua , Italy
| | - Giorgio Arrigoni
- c Department of Biomedical Sciences , University of Padua , Padua , Italy.,d Proteomics Center of Padua University and Azienda Ospedaliera di Padova , Padua , Italy
| | - Corrado Rizzi
- b Department of Biotechnology , University of Verona , Verona , Italy
| |
Collapse
|
71
|
Miranda-Castilleja DE, Martínez-Peniche RÁ, Aldrete-Tapia JA, Soto-Muñoz L, Iturriaga MH, Pacheco-Aguilar JR, Arvizu-Medrano SM. Distribution of Native Lactic Acid Bacteria in Wineries of Queretaro, Mexico and Their Resistance to Wine-Like Conditions. Front Microbiol 2016; 7:1769. [PMID: 27877164 PMCID: PMC5100547 DOI: 10.3389/fmicb.2016.01769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
Native lactic acid bacteria (LAB) are capable of growing during winemaking, thereby strongly affecting wine quality. The species of LAB present in musts, wines during malolactic fermentation (MLF), and barrels/filters were investigated in wineries from the emerging wine region of Queretaro, México using multiplex PCR and culture. The resistance to wine-like conditions (WLC): ethanol (10, 12, and 13%), SO2 (30 mg⋅l-1), and low pH (3.5) of native LAB strains was also studied. Five species were detected within 61 samples obtained: Oenococcus oeni, Lactobacillus plantarum, Pediococcus parvulus, Lactobacillus hilgardi, and Lactobacillus brevis. Four species (excepting L. brevis) were found in must; O. oeni and P. parvulus were ubiquitous in wine and L. plantarum and L. brevis were mainly present at the initial stage of MLF, while L. hilgardii was mostly detected at the advanced stage. Furthermore, some species detected in barrel/filter, prove them to be hazardous reservoirs. From 822 LAB isolates, only 119 resisted WLC with 10% ethanol; the number of strains able to grow in WLC with 13% ethanol decreased approximately by 50%, O. oeni being the most versatile species with 65% of resistant isolates, while Lactobacillus spp. and P. parvulus were the most strongly affected, especially those recovered from barrel/filter, with less than 10% of resistant isolates. This study evidences the presence of local strains able to be used as starter cultures, and also enabled the assessment of the risks derived from the presence of spoilage LAB strains resistant to WLC.
Collapse
Affiliation(s)
- Dalia E Miranda-Castilleja
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro Santiago de Querétaro, Mexico
| | - Ramón Álvar Martínez-Peniche
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro Santiago de Querétaro, Mexico
| | - J A Aldrete-Tapia
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro Santiago de Querétaro, Mexico
| | - Lourdes Soto-Muñoz
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro Santiago de Querétaro, Mexico
| | - Montserrat H Iturriaga
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro Santiago de Querétaro, Mexico
| | - J R Pacheco-Aguilar
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro Santiago de Querétaro, Mexico
| | - Sofía M Arvizu-Medrano
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro Santiago de Querétaro, Mexico
| |
Collapse
|
72
|
Benucci I, Cappannella E, Liburdi K, Esti M. Inhibitory effect of ethanol, sulphur dioxide and proanthocyanidinic tannins on lysozyme antimicrobial activity in model wine. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
73
|
Louw M, du Toit M, Alexandre H, Divol B. Comparative morphological characteristics of three Brettanomyces bruxellensis wine strains in the presence/absence of sulfur dioxide. Int J Food Microbiol 2016; 238:79-88. [PMID: 27598001 DOI: 10.1016/j.ijfoodmicro.2016.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 12/26/2022]
Abstract
The red wine spoilage yeast Brettanomyces bruxellensis has been the subject of numerous investigations. Some of these studies focused on spoilage mechanisms, sulfur dioxide tolerance and nutrient requirements. Pseudomycelium formation, although a striking feature of this species, has however been poorly investigated. Furthermore, literature regarding the induction mechanism of pseudomycelium formation in this yeast is limited and lacks clarity, as results published are contradictory. This study elucidates this phenomenon among strains from geographically different areas. Potential environmental cues were investigated, to attain a better understanding of this mechanism and its role as a survival strategy. SO2 was previously reported to induce this morphological change however results obtained in this study did not support this. Nevertheless, the results obtained using scanning and transmission electron microscopy illustrate, for the first time in this yeast, deformity to the cell membrane and alterations to the fibrillar layers in SO2 treated cells. In addition, the SO2 exposed cultures displayed cell size variations, with cells displaying a decrease in length as well as delayed growth, with a prolonged lag phase. Fluorescence microscopy demonstrated a decrease in metabolic activity and the appearance of inclusion body-like structures in the cells following exposure to SO2.
Collapse
Affiliation(s)
- Marli Louw
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Maret du Toit
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Hervé Alexandre
- UMR PAM, Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 21078 Dijon Cedex, France
| | - Benoit Divol
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
74
|
Lyu C, Huang K, Yang N, Wang H, Wang J. Combination of Thermosonication and Pulsed Electric Fields Treatments for Controlling Saccharomyces cerevisiae in Chinese Rice Wine. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1769-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
75
|
Liburdi K, Benucci I, Palumbo F, Esti M. Lysozyme immobilized on chitosan beads: Kinetic characterization and antimicrobial activity in white wines. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
76
|
Papafotopoulou-Patrinou E, Gialleli AI, Kallis M, Plessas S, Alexopoulos A, Mantzourani I, Bezirtzoglou E, Bekatorou A, Kanellaki M, Koutinas A. Microbiological assessment of tubular cellulose filters used for liquid foods cold pasteurization. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
77
|
|
78
|
Matias F, Pinto AF, Torgal I, Alves M, Grácio J, Mira AH. The Ultraviolet radiation (UV-C) for the microbiological stabilization of red wine. BIO WEB OF CONFERENCES 2016. [DOI: 10.1051/bioconf/20160702013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
79
|
Godálová Z, Kraková L, Puškárová A, Bučková M, Kuchta T, Piknová Ľ, Pangallo D. Bacterial consortia at different wine fermentation phases of two typical Central European grape varieties: Blaufränkisch (Frankovka modrá) and Grüner Veltliner (Veltlínske zelené). Int J Food Microbiol 2016; 217:110-6. [DOI: 10.1016/j.ijfoodmicro.2015.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/25/2015] [Accepted: 10/14/2015] [Indexed: 11/16/2022]
|
80
|
|
81
|
Kántor A, Kluz M, Puchalski C, Terentjeva M, Kačániová M. Identification of lactic acid bacteria isolated from wine using real-time PCR. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 51:52-56. [PMID: 26549195 DOI: 10.1080/03601234.2015.1080497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Different lactic acid bacteria strains have been shown to cause wine spoilage, including the generation of substances undesirable for the health of wine consumers. The aim of this study was to investigate the occurrence of selected species of heterofermentative lactobacilli, specifically Lactobacillus brevis, Lactobacillus hilgardii, and Lactobacillus plantarum in six different Slovak red wines following the fermentation process. In order to identify the dominant Lactobacillus strain using quantitative (real time) polymerized chain reaction (qPCR) method, pure lyophilized bacterial cultures from the Czech Collection of Microorganisms were used. Six different red wine samples following malolactic fermentation were obtained from selected wineries. After collection, the samples were subjected to a classic plate dilution method for enumeration of lactobacilli cells. Real-time PCR was performed after DNA extraction from pure bacterial strains and wine samples. We used SYBR® Green master mix reagents for measuring the fluorescence in qPCR. The number of lactobacilli ranged from 3.60 to 5.02 log CFU mL(-1). Specific lactobacilli strains were confirmed by qPCR in all wine samples. The number of lactobacilli ranged from 10(3) to 10(6) CFU mL(-1). A melting curve with different melting temperatures (T(m)) of DNA amplicons was obtained after PCR for the comparison of T(m) of control and experimental portions, revealing that the most common species in wine samples was Lactobacillus plantarum with a T(m) of 84.64°C.
Collapse
Affiliation(s)
- Attila Kántor
- a Department of Microbiology , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture , Nitra , Slovakia
| | - Maciej Kluz
- b Department of Biotechnology and Microbiology , University of Rzeszow , Rzeszow , Poland
| | - Czeslaw Puchalski
- b Department of Biotechnology and Microbiology , University of Rzeszow , Rzeszow , Poland
| | - Margarita Terentjeva
- c Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Agriculture , Jelgava , Latvia
| | - Miroslava Kačániová
- a Department of Microbiology , Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture , Nitra , Slovakia
| |
Collapse
|
82
|
Delsart C, Grimi N, Boussetta N, Miot Sertier C, Ghidossi R, Mietton Peuchot M, Vorobiev E. Comparison of the effect of pulsed electric field or high voltage electrical discharge for the control of sweet white must fermentation process with the conventional addition of sulfur dioxide. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Gouma M, Gayán E, Raso J, Condón S, Álvarez I. Influence of dimethyl dicarbonate on the resistance of Escherichia coli to a combined UV-Heat treatment in apple juice. Front Microbiol 2015; 6:501. [PMID: 26042117 PMCID: PMC4436884 DOI: 10.3389/fmicb.2015.00501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/06/2015] [Indexed: 11/30/2022] Open
Abstract
Commercial apple juice inoculated with Escherichia coli was treated with UV-C, heat (55°C) and dimethyl dicarbonate – DMDC (25, 50, and 75 mg/L)-, applied separately and in combination, in order to investigate the possibility of synergistic lethal effects. The inactivation levels resulting from each treatment applied individually for a maximum treatment time of 3.58 min were limited, reaching 1.2, 2.9, and 0.06 log10 reductions for UV, heat, and DMDC (75 mg/L), respectively. However, all the investigated combinations resulted in a synergistic lethal effect, reducing the total treatment time and UV dose, with the synergistic lethal effect being higher when larger concentrations of DMDC were added to the apple juice. The addition of 75 mg/L of DMDC prior to the combined UV-C light treatment at 55°C resulted in 5 log10 reductions after only 1.8 min, reducing the treatment time and UV dose of the combined UV-Heat treatment by 44%.
Collapse
Affiliation(s)
- Maria Gouma
- Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza Zaragoza, Spain
| | - Elisa Gayán
- Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza Zaragoza, Spain ; Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven Leuven Belgium
| | - Javier Raso
- Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza Zaragoza, Spain
| | - Santiago Condón
- Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza Zaragoza, Spain
| | - Ignacio Álvarez
- Departamento de Producción Animal y Ciencia de los Alimentos, Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza Zaragoza, Spain
| |
Collapse
|
84
|
Chen K, Han SY, Zhang B, Li M, Sheng WJ. Development of lysozyme-combined antibacterial system to reduce sulfur dioxide and to stabilize Italian Riesling ice wine during aging process. Food Sci Nutr 2015; 3:453-65. [PMID: 26405531 PMCID: PMC4576969 DOI: 10.1002/fsn3.238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/21/2022] Open
Abstract
For the purpose of SO2 reduction and stabilizing ice wine, a new antibacterial technique was developed and verified in order to reduce the content of sulfur dioxide (SO2) and simultaneously maintain protein stability during ice wine aging process. Hazardous bacterial strain (lactic acid bacteria, LAB) and protein stability of Italian Riesling ice wine were evaluated in terms of different amounts of lysozyme, SO2, polyphenols, and wine pH by single-factor experiments. Subsequently, a quadratic rotation-orthogonal composite design with four variables was conducted to establish the multiple linear regression model that demonstrated the influence of different treatments on synthesis score between LAB inhibition and protein stability of ice wine. The results showed that, synthesis score can be influenced by lysozyme and SO2 concentrations on an extremely significant level (P < 0.01). Furthermore, the lysozyme-combined antibacterial system, which is specially designed for ice wine aging, was optimized step by step by response surface methodology and ridge analysis. As a result, the optimal proportion should be control in ice wine as follows: 179.31 mg L−1 lysozyme, 177.14 mg L−1 SO2, 0.60 g L−1 polyphenols, and 4.01 ice wine pH. Based on this system, the normalized synthesis score between LAB inhibition and protein stability can reach the highest point 0.920. Finally, by the experiments of verification and comparison, it was indicated that lysozyme-combined antibacterial system, which was a practical and prospective method to reduce SO2 concentration and effectively prevent contamination from hazardous LAB, can be used to stabilize ice wine during aging process.
Collapse
Affiliation(s)
- Kai Chen
- Gansu Key Laboratory of Viticulture & Enology (Lanzhou), College of Food Science & Engineering, Gansu Agricultural University Lanzhou City, 730070, P. R. China
| | - Shun-Yu Han
- Gansu Key Laboratory of Viticulture & Enology (Lanzhou), College of Food Science & Engineering, Gansu Agricultural University Lanzhou City, 730070, P. R. China
| | - Bo Zhang
- Gansu Key Laboratory of Viticulture & Enology (Lanzhou), College of Food Science & Engineering, Gansu Agricultural University Lanzhou City, 730070, P. R. China
| | - Min Li
- Gansu Key Laboratory of Viticulture & Enology (Lanzhou), College of Food Science & Engineering, Gansu Agricultural University Lanzhou City, 730070, P. R. China
| | - Wen-Jun Sheng
- Gansu Key Laboratory of Viticulture & Enology (Lanzhou), College of Food Science & Engineering, Gansu Agricultural University Lanzhou City, 730070, P. R. China
| |
Collapse
|
85
|
Garofalo C, El Khoury M, Lucas P, Bely M, Russo P, Spano G, Capozzi V. Autochthonous starter cultures and indigenous grape variety for regional wine production. J Appl Microbiol 2015; 118:1395-408. [DOI: 10.1111/jam.12789] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Affiliation(s)
- C. Garofalo
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente; Università di Foggia; Foggia Italy
| | - M. El Khoury
- University of Bordeaux; ISVV; Villenave d'Ornon France
| | - P. Lucas
- University of Bordeaux; ISVV; Villenave d'Ornon France
| | - M. Bely
- University of Bordeaux; ISVV; Villenave d'Ornon France
| | - P. Russo
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente; Università di Foggia; Foggia Italy
| | - G. Spano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente; Università di Foggia; Foggia Italy
| | - V. Capozzi
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente; Università di Foggia; Foggia Italy
| |
Collapse
|
86
|
Alañón M, García-Ruíz A, Díaz-Maroto M, Pérez-Coello M, Moreno-Arribas M. Antimicrobial and antioxidant activity of pressurized liquid extracts from oenological woods. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.09.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
87
|
|
88
|
Jeon SH, Kim NH, Shim MB, Jeon YW, Ahn JH, Lee SH, Hwang IG, Rhee MS. Microbiological diversity and prevalence of spoilage and pathogenic bacteria in commercial fermented alcoholic beverages (beer, fruit wine, refined rice wine, and yakju). J Food Prot 2015; 78:812-8. [PMID: 25836410 DOI: 10.4315/0362-028x.jfp-14-431] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study examined 469 commercially available fermented alcoholic beverages (FABs), including beer (draft, microbrewed, and pasteurized), fruit wine (grape and others), refined rice wine, and yakju (raw and pasteurized). Samples were screened for Escherichia coli and eight foodborne pathogens (Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Yersinia enterocolitica), and the aerobic plate count, lactic acid bacteria, acetic acid bacteria, fungi, and total coliforms were also enumerated. Microbrewed beer contained the highest number of microorganisms (average aerobic plate count, 3.5; lactic acid bacteria, 2.1; acetic acid bacteria, 2.0; and fungi, 3.6 log CFU/ml), followed by draft beer and yakju (P < 0.05), whereas the other FABs contained , 25 CFU/25 ml microorganisms. Unexpectedly, neither microbial diversity nor microbial count correlated with the alcohol content (4.7 to 14.1%) or pH (3.4 to 4.2) of the product. Despite the harsh conditions, coliforms (detected in 23.8% of microbrewed beer samples) and B. cereus (detected in all FABs) were present in some products. B. cereus was detected most frequently in microbrewed beer (54.8% of samples) and nonpasteurized yakju (50.0%), followed by pasteurized yakju (28.8%), refined rice wine (25.0%), other fruit wines (12.3%), grape wine (8.6%), draft beer (5.6%), and pasteurized beer (2.2%) (P < 0.05). The finding that spore-forming B. cereus and coliform bacteria can survive the harsh conditions present in alcoholic beverages should be taken into account (alongside traditional quality indicators such as the presence of lactic acid-producing bacteria, acetic acid-producing bacteria, or both) when developing manufacturing systems and methods to prolong the shelf life of high-quality FAB products. New strategic quality management plans for various FABs are needed.
Collapse
Affiliation(s)
- Se Hui Jeon
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Nam Hee Kim
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Moon Bo Shim
- R&D Center, Hitejinro Co., Ltd., North Chungcheong Province, 363-823, Republic of Korea
| | - Young Wook Jeon
- R&D Center, Hitejinro Co., Ltd., North Chungcheong Province, 363-823, Republic of Korea
| | - Ji Hye Ahn
- R&D Center, Hitejinro Co., Ltd., North Chungcheong Province, 363-823, Republic of Korea
| | - Soon Ho Lee
- Foodborne Diseases Prevention and Surveillance Division, Ministry of Food and Drug Safety, North Chungcheong Province, 363-700, Republic of Korea
| | - In Gyun Hwang
- Food Standard Division, Ministry of Food and Drug Safety, North Chungcheong Province, 363-700, Republic of Korea
| | - Min Suk Rhee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea.
| |
Collapse
|
89
|
García-Ruiz A, Crespo J, López-de-Luzuriaga J, Olmos M, Monge M, Rodríguez-Álfaro M, Martín-Álvarez P, Bartolome B, Moreno-Arribas M. Novel biocompatible silver nanoparticles for controlling the growth of lactic acid bacteria and acetic acid bacteria in wines. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.09.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
90
|
Ndlovu B, Schoeman H, Franz C, du Toit M. Screening, identification and characterization of bacteriocins produced by wine-isolated LAB strains. J Appl Microbiol 2015; 118:1007-22. [DOI: 10.1111/jam.12752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 11/18/2014] [Accepted: 01/07/2015] [Indexed: 11/30/2022]
Affiliation(s)
- B. Ndlovu
- Institute for Wine Biotechnology; Stellenbosch University; Stellenbosch South Africa
| | - H. Schoeman
- Institute for Wine Biotechnology; Stellenbosch University; Stellenbosch South Africa
| | - C.M.A.P. Franz
- Department of Microbiology and Biotechnology; Max Rubner-Institut; Kiel Germany
| | - M. du Toit
- Institute for Wine Biotechnology; Stellenbosch University; Stellenbosch South Africa
| |
Collapse
|
91
|
Dias R, Vilas-Boas E, Campos FM, Hogg T, Couto JA. Activity of lysozyme on Lactobacillus hilgardii strains isolated from Port wine. Food Microbiol 2015; 49:6-11. [PMID: 25846910 DOI: 10.1016/j.fm.2015.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
This work evaluated the effect of lysozyme on lactobacilli isolated from Port wine. Bacterial growth experiments were conducted in MRS/TJ medium and inactivation studies were performed in phosphate buffer (KH2PO4), distilled water and wine supplemented with different concentrations of lysozyme. The response of bacteria to lysozyme was found to be highly strain dependent. Some strains of Lactobacillus hilgardii together with Lactobacillus collinoides and Lactobacillus fructivorans were found to be resistant to concentrations of lysozyme as high as 2000 mg/L. It was observed that among the L. hilgardii taxon the resistant strains possess an S-layer coat. Apparently, the strains of L. collinoides and L. fructivorans studied are also S-layer producers as suggested by the total protein profile obtained by SDS-PAGE. Thus, the hypothetical protective role of the S-layer against the action of lysozyme was investigated. From the various treatments used to remove the protein from the surface of the cells, the one employing LiCl (5 M) was the most effective. LiCl pre-treated cells exposed to lysozyme (2000 mg/L) in KH2PO4 buffer maintained its resistance. However, when cells were suspended in distilled water an increased sensitivity to lysozyme was observed. Moreover, it was found that the addition of ethanol (20% v/v) to the suspension medium (distilled water) triggered a strong inactivation effect especially on cells previously treated with LiCl (reduction of >6 CFU log cycles). The results suggest that the S-layer exerts a protective effect against lysozyme and that the cell suspension medium influences the bacteriolysis efficiency. It was also noted that ethanol enhances the inactivation effect of lysozyme.
Collapse
Affiliation(s)
- Rita Dias
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Eduardo Vilas-Boas
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Francisco M Campos
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Tim Hogg
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - José António Couto
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| |
Collapse
|
92
|
Gialleli AI, Kallis M, Bekatorou A, Kanellaki M, Koutinas AA. Continuous Cold Pasteurisation of Contaminated Wine Using Nano- and Micro-Tubular Cellulose. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1416-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
93
|
Carrillo W, García-Ruiz A, Recio I, Moreno-Arribas MV. Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria. J Food Prot 2014; 77:1732-9. [PMID: 25285490 DOI: 10.4315/0362-028x.jfp-14-009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The antimicrobial activity of heat-denatured and hydrolyzed hen egg white lysozyme against oenological lactic acid and acetic acid bacteria was investigated. The lysozyme was denatured by heating, and native and heat-denatured lysozymes were hydrolyzed by pepsin. The lytic activity against Micrococcus lysodeikticus of heat-denatured lysozyme decreased with the temperature of the heat treatment, whereas the hydrolyzed lysozyme had no enzymatic activity. Heat-denatured and hydrolyzed lysozyme preparations showed antimicrobial activity against acetic acid bacteria. Lysozyme heated at 90°C exerted potent activity against Acetobacter aceti CIAL-106 and Gluconobacter oxydans CIAL-107 with concentrations required to obtain 50% inhibition of growth (IC50) of 0.089 and 0.013 mg/ml, respectively. This preparation also demonstrated activity against Lactobacillus casei CIAL-52 and Oenococcus oeni CIAL-91 (IC50, 1.37 and 0.45 mg/ml, respectively). The two hydrolysates from native and heat-denatured lysozyme were active against O. oeni CIAL-96 (IC50, 2.77 and 0.3 mg/ml, respectively). The results obtained suggest that thermal and enzymatic treatments increase the antibacterial spectrum of hen egg white lysozyme in relation to oenological microorganisms.
Collapse
Affiliation(s)
- W Carrillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera 9, Spain; Campus de Cantoblanco, 28049 Madrid, Spain, Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato Campus Huachi, Avenida Los Chasquis y Rio Payamino, Ambato, Ecuador
| | - A García-Ruiz
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - I Recio
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M V Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
94
|
Fraatz MA, Rühl M, Zorn H. Food and feed enzymes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 143:229-56. [PMID: 23873095 DOI: 10.1007/10_2013_235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Humans have benefited from the unique catalytic properties of enzymes, in particular for food production, for thousands of years. Prominent examples include the production of fermented alcoholic beverages, such as beer and wine, as well as bakery and dairy products. The chapter reviews the historic background of the development of modern enzyme technology and provides an overview of the industrial food and feed enzymes currently available on the world market. The chapter highlights enzyme applications for the improvement of resource efficiency, the biopreservation of food, and the treatment of food intolerances. Further topics address the improvement of food safety and food quality.
Collapse
Affiliation(s)
- Marco Alexander Fraatz
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, 35392, Giessen, Germany
| | | | | |
Collapse
|
95
|
Liburdi K, Benucci I, Esti M. Lysozyme in Wine: An Overview of Current and Future Applications. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12102] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- K. Liburdi
- Dept. for Innovation in Biological; Agro-food Food and Forest systems Systems (DIBAF); Univ. of Tuscia; via S. Camillo de Lellis 01100 Viterbo Italy
| | - I. Benucci
- Dept. for Innovation in Biological; Agro-food Food and Forest systems Systems (DIBAF); Univ. of Tuscia; via S. Camillo de Lellis 01100 Viterbo Italy
| | - M. Esti
- Dept. for Innovation in Biological; Agro-food Food and Forest systems Systems (DIBAF); Univ. of Tuscia; via S. Camillo de Lellis 01100 Viterbo Italy
| |
Collapse
|
96
|
|
97
|
Gambetta JM, Bastian SEP, Cozzolino D, Jeffery DW. Factors influencing the aroma composition of Chardonnay wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6512-6534. [PMID: 24954266 DOI: 10.1021/jf501945s] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chardonnay is one of the oldest and most widely distributed wine grape cultivars and is of commercial importance for the world's wine-producing nations. It is an extremely flexible variety that has adapted to different regions with varied weather and soil characteristics. Somewhat uniquely among white wines, Chardonnay lends itself to a wide variety of production styles, which can be tailored to the target market. Techniques such as skin maceration, barrel and stainless steel fermentation, use of selected or indigenous yeasts, malolactic fermentation, and aging in barrels with or without lees are all applicable and lead to different compositional outcomes. A number of research papers have been published with a view to understanding Chardonnay composition and quality as well as the impact of different enological techniques on the final product. This review summarizes current knowledge, explaining the influence of viticultural and production techniques on aroma composition, and poses directions for further research into Chardonnay wines.
Collapse
Affiliation(s)
- Joanna M Gambetta
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide , PMB 1, Glen Osmond, South Australia 5064, Australia
| | | | | | | |
Collapse
|
98
|
Guzzon R, Nicolini G, Nardin T, Malacarne M, Larcher R. Survey about the microbiological features, the oenological performance and the influence on the character of wine of active dry yeast employed as starters of wine fermentation. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raffaele Guzzon
- Technology Transfer Centre; Edmund Mach Foundation; Via Edmund Mach 1 38010 San Michele all'Adige TN Italy
| | - Giorgio Nicolini
- Technology Transfer Centre; Edmund Mach Foundation; Via Edmund Mach 1 38010 San Michele all'Adige TN Italy
| | - Tiziana Nardin
- Technology Transfer Centre; Edmund Mach Foundation; Via Edmund Mach 1 38010 San Michele all'Adige TN Italy
| | - Mario Malacarne
- Technology Transfer Centre; Edmund Mach Foundation; Via Edmund Mach 1 38010 San Michele all'Adige TN Italy
| | - Roberto Larcher
- Technology Transfer Centre; Edmund Mach Foundation; Via Edmund Mach 1 38010 San Michele all'Adige TN Italy
| |
Collapse
|
99
|
Su J, Wang T, Wang Y, Li YY, Li H. The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry. Appl Microbiol Biotechnol 2014; 98:2395-413. [DOI: 10.1007/s00253-014-5508-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/24/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
|
100
|
|