51
|
Maselli DJ, Keyt H, Rogers L. Profile of lebrikizumab and its potential in the treatment of asthma. J Asthma Allergy 2015; 8:87-92. [PMID: 26309415 PMCID: PMC4539078 DOI: 10.2147/jaa.s69932] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interleukin (IL)-13 has been associated with multiple inflammatory features of asthma. It affects multiple cellular lines in asthma and is a key mediator in airway hyperreactivity and remodeling. Periostin, an extracellular protein, has been used as a surrogate marker of IL-13 activity and has been linked to airway remodeling by inducing subepithelial fibrosis. Lebrikizumab is a humanized monoclonal antibody that targets IL-13. Studies have demonstrated promising results with lebrikizumab therapy in asthma with regard to pulmonary function and exacerbation rates, especially on those patients with surrogate markers of T helper cell type 2-driven inflammation (ie, elevated immunoglobulin E levels, eosinophil counts, periostin levels). Lebrikizumab appears to be a safe therapy, but there are ongoing studies evaluating its efficacy and safety profile. Other therapies that target IL-13 and the receptor of IL-4/IL-13 have been studied, but future studies are needed to determine their role in the treatment of asthma.
Collapse
Affiliation(s)
- Diego Jose Maselli
- Department of Medicine, Division of Pulmonary Diseases and Critical Care, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Holly Keyt
- Department of Medicine, Division of Pulmonary Diseases and Critical Care, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Linda Rogers
- Pulmonary, Critical Care, and Sleep Medicine Division, Mount Sinai-National Jewish Health Respiratory Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
52
|
TROPOS: designing a clinical trial to evaluate the oral corticosteroid-sparing effect of a biologic in severe asthma. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/cli.15.37] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
53
|
STRATOS 1 and 2: considerations in clinical trial design for a fully human monoclonal antibody in severe asthma. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/cli.15.38] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
54
|
MESOS: considerations in designing a mechanistic study for a biologic used to treat asthma. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/cli.15.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
55
|
Martin PL, Nnane IP, Branigan P, Louden C. Unexpected Toxicology Findings in Rats Dosed With an Antihuman IL-13 Monoclonal Antibody. Int J Toxicol 2015; 34:393-407. [PMID: 26124191 DOI: 10.1177/1091581815591840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interleukin 13 (IL-13) is a type 2 helper T cytokine involved in allergic inflammation and immune responses to parasites. CNTO5825 is an antihuman IL-13 monoclonal antibody that inhibits the pharmacological activity of human, cynomolgus monkey, and rat IL-13. Repeated dose toxicology studies of 1- to 6-month duration were conducted in both rats and monkeys at doses of 20 to 100 mg/kg/wk. A decrease in the T cell-dependent antibody response to Keyhole Limpet Hemocyanin immunization was observed in monkeys but not in rats. In the 6-month rat study, there was a 2.2-fold increase in eosinophils in males at 3 and 6 months that was reversible. At necropsy (main and 4-month recovery), rats from control and CNTO5825-dosed groups were found to have pin worms, which may have contributed to the elevations in eosinophil. Testicular toxicity (dilatation of seminiferous tubules, atrophy, and degeneration of the germinal epithelium) was observed in 2 rats at 20 mg/kg and in 5 rats at 100 mg/kg (main and recovery). Brain lesions (unilateral focal accumulation of cells in the white matter of the cerebral cortex) were observed in 2 rats at 100 mg/kg, and vascular neoplasms (1 fatal multicentric hemangiosarcoma and 1 benign hemangioma) were observed at 100 mg/kg/wk. Overall, these studies show that CNTO5825 was without toxicity when administered to rats for up to 6 weeks and to monkeys for up to 6 months. However, when administered to rats for 6 months, a number of seemingly unrelated events occurred that could not be clearly linked to CNTO5825 administration, inhibition of IL-13, or to the immunological status of the animals.
Collapse
Affiliation(s)
| | - Ivo P Nnane
- Janssen Research and Development Inc, Spring House, PA, USA
| | | | - Calvert Louden
- Janssen Research and Development Inc, Spring House, PA, USA
| |
Collapse
|
56
|
Abstract
It is recognised that airway inflammation is key to asthma pathogenesis. Biopharmaceutical approaches have identified new therapies that target key cells and mediators that drive the inflammatory responses in the asthmatic lung. Such an approach resulted in the development of biologics targeted at inhibition of IL-4, IL-5 and IL-13. However, early clinical trials with these biologics in patients with asthma were for the most part disappointing even though they were highly effective in animal models of asthma. It is becoming apparent that significant clinical effects with anti-cytokine-based biologic therapies are more likely in carefully selected patient populations that take asthma phenotypes into account. The development of discriminatory biomarkers and genetic profiling may aid identification of such patients with asthma. This review is an update of the evidence demonstrating the effectiveness or otherwise of the targeting of the TH2 cytokines IL-4 and IL-13 with biologics in patients with asthma.
Collapse
Affiliation(s)
- Garry M Walsh
- a University of Aberdeen, Institute of Medical Sciences, School of Medicine and Dentistry, Division of Applied Medicine, Section of Immunology and Infection , Foresterhill, Aberdeen AB25 2ZD, UK +44 0 1224 437354 ; +44 0 1224 437348 ;
| |
Collapse
|
57
|
Abstract
Asthma is one of the most common chronic immunological diseases in humans, affecting people from childhood to old age. Progress in treating asthma has been relatively slow and treatment guidelines have mostly recommended empirical approaches on the basis of clinical measures of disease severity rather than on the basis of the underlying mechanisms of pathogenesis. An important molecular mechanism of asthma is type 2 inflammation, which occurs in many but not all patients. In this Opinion article, I explore the role of type 2 inflammation in asthma, including lessons learnt from clinical trials of inhibitors of type 2 inflammation. I consider how dichotomizing asthma according to levels of type 2 inflammation--into 'T helper 2 (TH2)-high' and 'TH2-low' subtypes (endotypes)--has shaped our thinking about the pathobiology of asthma and has generated new interest in understanding the mechanisms of disease that are independent of type 2 inflammation.
Collapse
|
58
|
Danese S, Rudziński J, Brandt W, Dupas JL, Peyrin-Biroulet L, Bouhnik Y, Kleczkowski D, Uebel P, Lukas M, Knutsson M, Erlandsson F, Hansen MB, Keshav S. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut 2015; 64:243-9. [PMID: 25304132 DOI: 10.1136/gutjnl-2014-308004] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Interleukin-13 (IL-13) has been implicated as a key driver of UC. This trial evaluates the efficacy and safety of tralokinumab, an IL-13-neutralising antibody, as add-on therapy in adults with moderate-to-severe UC despite standard treatments. DESIGN Non-hospitalised adults with UC (total Mayo score ≥6) were randomised to receive tralokinumab 300 mg or placebo subcutaneously every 2 weeks for 12 weeks. The primary end point was the rate of clinical response at week 8. Secondary efficacy end points included clinical remission and mucosal healing rates at week 8 and changes in total Mayo score, total modified Riley score, partial Mayo score and disease activity markers. RESULTS Clinical response rate was 38% (21/56) for tralokinumab vs. 33% (18/55) for placebo (p=0.406). Clinical remission rate was 18% (10/56) vs. 6% (3/55) (p=0.033) and mucosal healing rate was 32% (18/56) vs. 20% (11/55) (p=0.104) for tralokinumab vs placebo. Changes to week 8 in total Mayo score and total modified Riley score were similar for tralokinumab and placebo (least-squares mean difference between groups: -0.49 (p=0.394) and 0.25 (p=0.449), respectively). Partial Mayo score at week 4 was lower with tralokinumab than placebo (least-squares mean difference between groups: -0.90 (p=0.041)). No consistent patterns were observed for disease activity markers. Tralokinumab had an acceptable safety profile. CONCLUSIONS Add-on therapy with tralokinumab did not significantly improve clinical response. However, the higher clinical remission rate with tralokinumab than placebo suggests that tralokinumab may benefit some patients with UC. Tralokinumab was well tolerated. TRIAL REGISTRATION NUMBER ClinicalTrials.gov number: NCT01482884.
Collapse
Affiliation(s)
| | | | | | | | - Laurent Peyrin-Biroulet
- Inserm U954 and Department of Gastroenterology, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | | | - Peter Uebel
- P. Uebel Haus der Gesundheit, Ludwigshafen, Germany
| | - Milan Lukas
- IBD Clinical and Research Centre, ISCARE Lighthouse and 1st Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | | - Satish Keshav
- Department of Medicine, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
59
|
Abstract
Asthma is one of the most common chronic immunological diseases in humans, affecting people from childhood to old age. Progress in treating asthma has been relatively slow and treatment guidelines have mostly recommended empirical approaches on the basis of clinical measures of disease severity rather than on the basis of the underlying mechanisms of pathogenesis. An important molecular mechanism of asthma is type 2 inflammation, which occurs in many but not all patients. In this Opinion article, I explore the role of type 2 inflammation in asthma, including lessons learnt from clinical trials of inhibitors of type 2 inflammation. I consider how dichotomizing asthma according to levels of type 2 inflammation--into 'T helper 2 (TH2)-high' and 'TH2-low' subtypes (endotypes)--has shaped our thinking about the pathobiology of asthma and has generated new interest in understanding the mechanisms of disease that are independent of type 2 inflammation.
Collapse
|
60
|
Thomson NC. Novel therapies targeting eosinophilic inflammation in asthma. Clin Exp Allergy 2014; 44:462-8. [PMID: 24666518 DOI: 10.1111/cea.12268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- N C Thomson
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
61
|
Murray LA, Zhang H, Oak SR, Coelho AL, Herath A, Flaherty KR, Lee J, Bell M, Knight DA, Martinez FJ, Sleeman MA, Herzog EL, Hogaboam CM. Targeting interleukin-13 with tralokinumab attenuates lung fibrosis and epithelial damage in a humanized SCID idiopathic pulmonary fibrosis model. Am J Respir Cell Mol Biol 2014; 50:985-94. [PMID: 24325475 DOI: 10.1165/rcmb.2013-0342oc] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung.
Collapse
|
62
|
Abstract
Although it is recognized that airway inflammation is key to asthma pathogenesis, the marked heterogeneity in its clinical course and variations in response to treatment make it a challenging condition for the development of novel and effective biologic-based therapies. Biopharmaceutical approaches have identified new therapies that target key cells and mediators that drive inflammatory responses in the asthmatic lung. Such an approach resulted in the development of biologics targeted at inhibiting IL-4, IL-5 and IL-13. With the notable exception of the anti-IgE monoclonal antibody omalizumab, early clinical trials with cytokine-targeted biologics in patients with asthma were, for the most part, disappointing, despite being highly effective in animal models of asthma. It is becoming apparent that significant clinical effects with anticytokine-based therapies are more likely in carefully selected patient populations that take asthma phenotypes into account. The development of discriminatory biomarkers and genetic profiling may aid identification of such patients with asthma. This review summarizes recent evidence demonstrating the effectiveness or otherwise of monoclonal antibody-based therapies in patients with asthma.
Collapse
Affiliation(s)
- Garry M Walsh
- Section of Immunology & Infection, Division of Applied Medicine, School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW Most asthma patients are easily managed with a standard combination of therapies consisting of inhaled controller and reliever drugs, but there remains a large unmet need at the severe end of the disease spectrum. For these patients, development of safer and more effective therapies for asthmatic patients with severe refractory disease remains a top priority. Here, drugs in development for the severe asthma sufferers and their specific mechanism-based pharmacological rationale will be reviewed with a focus on biologics. A systematic search of the literature was made using Medline, and publications were selected on the basis of their relevance to the topic. Here, the authors will review the existing efficacy and safety data from clinical trials of some of the new biologic therapies that are in development for severe asthma. RECENT FINDINGS Despite strong preclinical data for many of the more recently identified asthma targets, especially those relating to the T-helper 2 allergic pathway, clinical trials with specific biologics have been largely disappointing. However, there is scope for their specific role in distinctively targeted subpopulations of severe asthmatic patients. SUMMARY It is clear that more efforts should be devoted towards establishing new and more efficient key targets. A closer interaction between industry, academia and health workers will be required to achieve this goal effectively.
Collapse
|
64
|
Ashino S, Takeda K, Li H, Taylor V, Joetham A, Pine PR, Gelfand EW. Janus kinase 1/3 signaling pathways are key initiators of TH2 differentiation and lung allergic responses. J Allergy Clin Immunol 2014; 133:1162-74. [PMID: 24365136 PMCID: PMC3972277 DOI: 10.1016/j.jaci.2013.10.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Janus kinases (JAKs) are regulators of signaling through cytokine receptors. The importance of JAK1/3 signaling on TH2 differentiation and development of lung allergic responses has not been investigated. OBJECTIVE We sought to examine a selective JAK1/3 inhibitor (R256) on differentiation of TH subsets in vitro and on development of ovalbumin (OVA)-induced airway hyperresponsiveness (AHR) and inflammation in an experimental model of asthma. METHODS A selective JAK1/3 inhibitor was used to assay the importance of this pathway on induction of TH1, TH2, and TH17 differentiation in vitro. In vivo, the effects of inhibiting JAK1/3 signaling were examined by administering the inhibitor during the sensitization or allergen challenge phases in the primary challenge model or just before provocative challenge in the secondary challenge model. Airway inflammation and AHR were examined after the last airway challenge. RESULTS In vitro, R256 inhibited differentiation of TH2 but not TH1 or TH17 cells, which was associated with downregulation of signal transducer and activator of transcription (STAT) 6 and STAT5 phosphorylation. However, once polarized, TH2 cells were unaffected by the inhibitor. In vivo, R256 administered during the OVA sensitization phase prevented the development of AHR, airway eosinophilia, mucus hypersecretion, and TH2 cytokine production without changes in TH1 and TH17 cytokine levels, indicating that selective blockade of TH2 differentiation was critical. Inhibitor administration after OVA sensitization but during the challenge phases in the primary or secondary challenge models similarly suppressed AHR, airway eosinophilia, and mucus hypersecretion without any reduction in TH2 cytokine production, suggesting the inhibitory effects were downstream of TH2 cytokine receptor signaling pathways. CONCLUSIONS Targeting the TH2-dependent JAK/STAT activation pathway represents a novel therapeutic approach for the treatment of asthma.
Collapse
Affiliation(s)
- Shigeru Ashino
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Hui Li
- Rigel Pharmaceuticals, South San Francisco, Calif
| | | | - Anthony Joetham
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Polly R Pine
- Rigel Pharmaceuticals, South San Francisco, Calif
| | - Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo.
| |
Collapse
|
65
|
Abstract
Therapeutic antibodies have been used since the end of nineteenth century, but their use is progressively increased and recently, with the availability of monoclonal antibodies, they are successfully employed in a large disease spectrum, which transversally covers different fields of medicine. Hyperimmune polyclonal immune globulin has been used against infectious diseases, in a period in which anti-microbial drugs were not yet available, and it still maintains a relevant place in prophylaxis/therapy. Although immune globulin should be considered life-saving as replacement therapy in humoral immunodeficiencies, its place in the immune-modulating treatment is not usually first-choice, but it should be considered as support to standard approved treatments. Despite therapeutic monoclonal antibodies have been lastly introduced in therapy, their extreme potentiality is reflected by the large number of approved molecules, addressed toward different immunological targets and able to heavily influence the prognosis and quality of life of a wide range of different diseases.
Collapse
Affiliation(s)
- Simonetta Salemi
- Sapienza Università di Roma -Facoltà di Medicina e Psicologia , Azienda Ospedaliera S. Andrea, Roma , Italy
| | | | | | | |
Collapse
|
66
|
Holgate ST. Stratified approaches to the treatment of asthma. Br J Clin Pharmacol 2013; 76:277-91. [PMID: 23163316 DOI: 10.1111/bcp.12036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/28/2012] [Indexed: 01/01/2023] Open
Abstract
While asthma is a chronic inflammatory disorder that is managed with inhaled controller and reliever drugs, there remains a large unmet need at the severe end of the disease spectrum. Here, a novel stratified approach to its treatment is reviewed, based upon identification of causal pathways, with a focus on biologics. A systematic search of the literature was made using Medline, and publications were selected on the basis of their relevance to the topic. Despite strong preclinical data for many of the more recently identified asthma targets, especially those relating to the T-helper 2 allergic pathway, clinical trials with specific biologics in moderate to severe asthma as a group have been disappointing. However, subgroup analyses based upon pathway-specific biomarkers suggest specific endotypes that are responsive. Application of hypothesis-free analytical approaches (the 'omics') to well-defined phenotypes is leading to the stratification of asthma along causal pathways. Refinement of this approach is likely to be the future for diagnosing and treating this group of diseases, as well as helping to define new causal pathways. The identification of responders and nonresponders to targeted asthma treatments provides a new way of looking at asthma diagnosis and management, especially with biologics that are costly. The identification of novel biomarkers linked to well-phenotyped patients provides a stratified approach to disease management beyond simple disease severity and involving causal pathways. In order to achieve this effectively, a closer interaction will be required between industry (therapeutic and diagnostic), academia and health workers.
Collapse
|
67
|
Beal DR, Stepien DM, Natarajan S, Kim J, Remick DG. Reduction of eotaxin production and eosinophil recruitment by pulmonary autologous macrophage transfer in a cockroach allergen-induced asthma model. Am J Physiol Lung Cell Mol Physiol 2013; 305:L866-77. [PMID: 24077949 DOI: 10.1152/ajplung.00120.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We sought to investigate the effects of cockroach allergen (CRA) exposure on the lung macrophage population to determine how different macrophage phenotypes influence exacerbation of disease. CRA exposure caused significantly reduced expression of CD86 on lung macrophages. These effects were not systemic, as peritoneal macrophage CD86 expression was not altered. To investigate whether naïve macrophages could reduce asthma-like pulmonary inflammation, autologous peritoneal macrophages were instilled into the airways 24 h before the final CRA challenge. Pulmonary inflammation was assessed by measurement of airway hyperresponsiveness, mucin production, inflammatory cell recruitment, and cytokine production. Cell transfer did not have significant effects in control mice, nor did it affect pulmonary mucin production or airway hyperresponsiveness in control or CRA-exposed mice. However, there was significant reduction in the number of eosinophils recovered in the bronchoalveolar lavage (BAL) (5.8 × 10⁵ vs. 0.88 × 10⁵), and total cell recruitment to the airways of CRA-exposed mice was markedly reduced (1.1 × 10⁶ vs. 0.57 × 10⁶). The reduced eosinophil recruitment was reflected by substantially lower levels of eosinophil peroxidase in the lung and significantly lower concentrations of eotaxins in BAL (eotaxin 1: 3 pg/ml vs. undetectable; eotaxin 2: 2,383 vs. 131 pg/ml) and lung homogenate (eotaxin 1: 1,043 vs. 218 pg/ml; eotaxin 2: 10 vs. 1.5 ng/ml). We conclude that CRA decreases lung macrophage CD86 expression. Furthermore, supplementation of the lung cell population with peritoneal macrophages inhibits eosinophil recruitment, achieved through reduction of eotaxin production. These data demonstrate that transfer of naïve macrophages will reduce some aspects of asthma-like pulmonary inflammation in response to CRA.
Collapse
Affiliation(s)
- Dominic R Beal
- Boston Univ. School of Medicine, 670 Albany St., Rm. 405, Boston, MA 02118.
| | | | | | | | | |
Collapse
|
68
|
|
69
|
Mullane K, Williams M. Animal models of asthma: reprise or reboot? Biochem Pharmacol 2013; 87:131-9. [PMID: 23831953 DOI: 10.1016/j.bcp.2013.06.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Animal models of disease represent the pinnacle of hierarchical research efforts to validate targets and compounds for therapeutic intervention. Yet models of asthma, particularly in the mouse, which, for practical reasons, has become the sine qua non of asthma research, have been a bone of contention for decades. With barely a nod to their limitations and an extensive history of translational failures, they continue to be used for target identification and to justify the clinical evaluation of new compounds. Recent improvements - including sensitization directly to the airways; use of more relevant allergens; development of a chronic rather than short-term condition; utilization of techniques to measure lung function beyond uninterpretable measures of airway hyperresponsiveness - are laudable but cannot bridge the chasm between the models and the myriad complexities of the human disorder and multiple asthma endophenotypes. While further model developments are necessary, including recognition of key environmental factors beyond allergens, the judicious integration with newer ex vivo and in vitro techniques, including human precision-cut lung slices, reprograming of patient-derived induced pluripotent stem cells and fibroblasts to epithelial and smooth muscle cells, and use of other clinical samples to create a more holistic depiction of activities, might improve their translational success.
Collapse
Affiliation(s)
- Kevin Mullane
- Profectus Pharma Consulting Inc., San Jose, CA, USA.
| | - Michael Williams
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
70
|
Cheng DT, Ma C, Niewoehner J, Dahl M, Tsai A, Zhang J, Gonsiorek W, Apparsundaram S, Pashine A, Ravindran P, Jung J, Hang J, Allard J, Bitter H, Tribouley C, Narula S, Wilson S, Fuentes ME. Thymic stromal lymphopoietin receptor blockade reduces allergic inflammation in a cynomolgus monkey model of asthma. J Allergy Clin Immunol 2013; 132:455-62. [PMID: 23810153 DOI: 10.1016/j.jaci.2013.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/05/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) pathway blockade is a potential strategy for asthma treatment because the main activities of TSLP are activation of myeloid dendritic cells (mDCs) and modulation of cytokine production by mast cells. TSLP-activated mDCs prime the differentiation of naive T cells into inflammatory TH2 cells. OBJECTIVE We sought to investigate mechanisms underlying the development of allergic lung inflammation in cynomolgus monkeys using gene expression profiling and to assess the effect of thymic stromal lymphopoietin receptor (TSLPR) blockade in this model. METHODS An mAb against human TSLPR was generated and confirmed to be cross-reactive to cynomolgus monkey. Animals were dosed weekly with either vehicle or anti-TSLPR mAb for 6 weeks, and their responses to allergen challenge at baseline, week 2, and week 6 were assessed. RESULTS After 6 weeks of treatment, anti-TSLPR mAb-treated animals showed reduced bronchoalveolar lavage (BAL) fluid eosinophil counts, reduced airway resistance in response to allergen challenge, and reduced IL-13 cytokine levels in BAL fluid compared with values seen in vehicle-treated animals. Expression profiling of BAL fluid cells collected before and after challenge showed a group of genes upregulated by allergen challenge that strongly overlapped with 11 genes upregulated in dendritic cells (DCs) when in vitro stimulated by TSLP (TSLP-DC gene signature). The number of genes differentially expressed in response to challenge was reduced in antibody-treated animals after 6 weeks relative to vehicle-treated animals. Expression of the TSLP-DC gene signature was also significantly reduced in antibody-treated animals. CONCLUSION These results demonstrate promising efficacy for TSLPR blockade in an allergic lung inflammation model in which TSLP activation of mDCs might play a key role.
Collapse
|
71
|
Murray CJ, Baliga R. Cell-free translation of peptides and proteins:from high throughput screening to clinical production. Curr Opin Chem Biol 2013; 17:420-6. [DOI: 10.1016/j.cbpa.2013.02.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/14/2013] [Indexed: 12/01/2022]
|
72
|
Wang L, Jenkins TJ, Dai M, Yin W, Pulido JC, Lamantia-Martin E, Hodge MR, Ocain T, Kolbeck R. Antagonism of chemokine receptor CCR8 is ineffective in a primate model of asthma. Thorax 2013; 68:506-12. [PMID: 23457038 DOI: 10.1136/thoraxjnl-2012-203012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Expression of the T-cell-associated chemokine receptor CCR8 and its ligand CCL1 have been demonstrated to be elevated in patients with asthma. CCR8 deficiency or inhibition in models of allergic airway disease in mice resulted in conflicting data. OBJECTIVE To investigate the effects of a selective small molecule CCR8 inhibitor (ML604086) in a primate model of asthma. METHODS ML604086 and vehicle were administered by intravenous infusion to 12 cynomolgus monkeys during airway challenge with Ascaris suum. Samples were collected throughout the study to measure pharmacokinetics (PK) and systemic CCR8 inhibition, as well as inflammation, T helper 2 (Th2) cytokines and mucus in bronchoalveolar lavage (BAL). Airway resistance and compliance were measured before and after allergen challenge, and in response to increasing concentrations of methacholine. RESULTS ML604086 inhibited CCL1 binding to CCR8 on circulating T-cells>98% throughout the duration of the study. However, CCR8 inhibition had no significant effect on allergen-induced BAL eosinophilia and the induction of the Th2 cytokines IL-4, IL-5, IL-13 and mucus levels in BAL. Changes in airway resistance and compliance induced by allergen provocation and increasing concentrations of methacholine were also not affected by ML604086. CONCLUSIONS These results clearly demonstrate a dispensable role for CCR8 in ameliorating allergic airway disease in atopic primates, and suggest that strategies other than CCR8 antagonism should be considered for the treatment of asthma.
Collapse
Affiliation(s)
- Lin Wang
- Department of Cellular Immunology and Pharmacology, Millennium Pharmaceuticals Inc., Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Ultsch M, Bevers J, Nakamura G, Vandlen R, Kelley RF, Wu LC, Eigenbrot C. Structural basis of signaling blockade by anti-IL-13 antibody Lebrikizumab. J Mol Biol 2013; 425:1330-9. [PMID: 23357170 DOI: 10.1016/j.jmb.2013.01.024] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 01/13/2023]
Abstract
The cytokine interleukin 13 (IL-13) is a major effector molecule for T-helper type 2 inflammation and is pathogenic in allergic diseases such as asthma. The effects of IL-13 are mediated via a pathway that is initiated by binding to a heterodimeric receptor consisting of IL-13Rα1 and IL-4Rα. Antibodies raised against IL-13 can block its inflammatory effects by interfering with binding to either of the two receptor polypeptides. Lebrikizumab is a monoclonal anti-IL-13 antibody that has shown clinical benefit in a phase II study for the treatment of moderate-to-severe uncontrolled asthma. Here we report the molecular structure of IL-13 in complex with the Fab from lebrikizumab by X-ray crystallography at 1.9Å resolution. We show that lebrikizumab inhibits IL-13 signaling by binding to IL-13 with very high affinity and blocking IL-13 binding to IL-4Rα. In addition, we use site-directed mutations to identify the most important antibody contributors to binding. Our studies define key features of lebrikizumab binding and its mechanism of action that may contribute to its clinical effects.
Collapse
Affiliation(s)
- Mark Ultsch
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Antoniu SA. Monoclonal antibodies for asthma and chronic obstructive pulmonary disease. Expert Opin Biol Ther 2013; 13:257-68. [PMID: 23282002 DOI: 10.1517/14712598.2012.758247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION In asthma and chronic obstructive pulmonary disease (COPD), the inflammation in the airways cannot always be controlled with conventional therapies, such as inhaled corticosteroids. Addition of more specific anti-inflammatory therapies, such as monoclonal antibodies, against inflammation pathways might improve the disease outcome. AREAS COVERED This review individually discusses the major inflammation pathways and their potential blocking monoclonal antibodies in asthma and COPD. EXPERT OPINION The current use of omalizumab in asthma provides a good example on the potential therapeutic role of monoclonal antibodies in both asthma and COPD. There are many other monoclonal antibodies which are currently investigated as possible therapies in these diseases. The identification of the disease subsets in which such antibodies might exert the maximum benefit opens the door for personalized medicine and for targeted biological therapy in asthma and COPD.
Collapse
Affiliation(s)
- Sabina Antonela Antoniu
- University of Medicine and Pharmacy, Pulmonary Disease University Hospital, Division of Pulmonary Disease, Iasi 700115, Romania.
| |
Collapse
|
75
|
Antohe I, Croitoru R, Antoniu S. Tralokinumab for uncontrolled asthma. Expert Opin Biol Ther 2012; 13:323-6. [PMID: 23268592 DOI: 10.1517/14712598.2012.748740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Asthma is a chronic inflammatory disease of the airways mainly related to allergen exposure, in which various cytokine-specific pathways interact among themselves to promote IgE hyperproduction, bronchial hyperresponsiveness, eosinophil local recruitment and airways remodeling. IL-13 is known for its prominent pathogenic role in this disease and therapeutic blocking approaches are underway. AREAS COVERED Anti-IL-13 antibodies are currently investigated in clinical studies in uncontrolled asthma. Tralokinumab is a human IgG4 anti IL-13 antibody which was recently evaluated in a Phase II study demonstrating the maximal efficacy in a subset of asthma patients characterized by the highest sputum IL-13 levels. The results of this study are discussed in this paper. EXPERT OPINION The IL-13 blockade with various therapeutic approaches such as tralokinumab has the potential to improve the asthma control in patients subsets in whom the blocked cytokine is demonstrated to be overexpressed.
Collapse
Affiliation(s)
- Ileana Antohe
- University of Medicine and Pharmacy, Grigore T Popa Iaşi, Internal Medicine I Clinic, Emergency Hospital Saint Spiridon, Independence Boulevard 1, 700019, Iasi, Romania
| | | | | |
Collapse
|
76
|
Abstract
There is a need for improved therapies for severe asthma. Lebrikizumab, a humanized monoclonal antibody that binds to interleukin (IL)-13, is under development for the treatment of poorly controlled asthma. This article reviews the potential role of IL-13 in the pathogenesis of asthma, the efficacy and safety of lebrikizumab in humans, and progress in patient selection for lebrikizumab therapy. IL-13 is a T-helper (Th2) cell-derived cytokine implicated in inflammatory responses in asthma, including serum immunoglobulin-E synthesis, mucus hypersecretion, and subepithelial fibrosis. Blocking the pro-inflammatory effects of IL-13 with lebrikizumab has the potential to improve asthma control. Published data on the efficacy and safety of lebrikizumab in the treatment of asthma are relatively limited. The late asthmatic response after inhaled allergen challenge is reduced by almost 50%, following treatment with lebrikizumab. In a Phase II study performed in 219 adults with poorly controlled asthma despite inhaled corticosteroids (MILLY trial), lebrikizumab produced an improvement in prebronchodilator forced expiratory volume in 1 second of 5.5% compared with placebo at 12 weeks, but had no effects on other efficacy end points. Adverse effects were similar to placebo, except that musculoskeletal side effects occurred slightly more often with lebrikizumab. Stratifying patients into a high Th2 phenotype using serum periostin, which is upregulated in lung epithelial cells by IL-13, may identify individuals responsive to blockade of IL-13. In the MILLY trial, lebrikizumab treatment was associated with greater improvement in lung function in patients with elevated serum periostin levels compared with those with low periostin levels. Two large Phase III randomized controlled trials in patients with uncontrolled asthma are underway to establish the safety and efficacy of lebrikizumab when administered over a 52-week period. These studies will also help to determine whether identifying patients with a Th2 high inflammatory phenotype using serum periostin allows a personalized approach to the treatment of asthma.
Collapse
Affiliation(s)
- Neil C Thomson
- Institute of Infection, Immunity, and Inflammation, University of Glasgow and Respiratory Medicine, Gartnavel General Hospital, Glasgow, UK
| | | | | |
Collapse
|
77
|
Ingram JL, Kraft M. IL-13 in asthma and allergic disease: asthma phenotypes and targeted therapies. J Allergy Clin Immunol 2012; 130:829-42; quiz 843-4. [PMID: 22951057 DOI: 10.1016/j.jaci.2012.06.034] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 02/07/2023]
Abstract
Decades of research in animal models have provided abundant evidence to show that IL-13 is a key T(H)2 cytokine that directs many of the important features of airway inflammation and remodeling in patients with allergic asthma. Several promising focused therapies for asthma that target the IL-13/IL-4/signal transducer and activator of transcription 6 pathway are in development, including anti-IL-13 mAbs and IL-4 receptor antagonists. The efficacy of these new potential asthma therapies depends on the responsiveness of patients. However, an understanding of how IL-13-directed therapies might benefit asthmatic patients is confounded by the complex heterogeneity of the disease. Recent efforts to classify subphenotypes of asthma have focused on sputum cellular inflammation profiles, as well as cluster analyses of clinical variables and molecular and genetic signatures. Researchers and clinicians can now evaluate biomarkers of T(H)2-driven airway inflammation in asthmatic patients, such as serum IgE levels, sputum eosinophil counts, fraction of exhaled nitric oxide levels, and serum periostin levels, to aid decision making in clinical trials and drug development and to identify subsets of patients who might benefit from therapies. Although it is unlikely that these therapies will benefit all asthmatic patients with this heterogeneous disease, advances in understanding asthma subphenotypes in relation to clinical variables and T(H)2 cytokine responses offer the opportunity to improve the efficacy and safety of proposed therapies for asthma.
Collapse
Affiliation(s)
- Jennifer L Ingram
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
78
|
Grünig G, Corry DB, Reibman J, Wills-Karp M. Interleukin 13 and the evolution of asthma therapy. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2012; 1:20-27. [PMID: 23607082 PMCID: PMC3630076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/05/2012] [Indexed: 06/02/2023]
Abstract
This is a concise review on Interleukin (IL)-13 and the evolution of asthma therapy, from discovery of the molecule, the identification of its pathogenic role in animal models of asthma, to the development of clinically successful neutralizing agents. The translational path from basic research to clinical application was not sequential as expected but random with respect to the tools (molecular & cell biology, animal models, human studies) used and to the application of academic versus industry research. The experiences with the development of neutralizing anti-IL-13 reagents emphasize the need for inclusion of a biomarker assay in the clinical trials that both identifies individuals that actually have aberrant expression of the pathway of interest and allows determining whether the target of interest is neutralized.
Collapse
Affiliation(s)
- Gabriele Grünig
- Departments of Environmental Medicine and Medicine, NYU Langone Medical Center, Tuxedo, NY 10987
| | | | | | | |
Collapse
|
79
|
Piper E, Brightling C, Niven R, Oh C, Faggioni R, Poon K, She D, Kell C, May RD, Geba GP, Molfino NA. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J 2012; 41:330-8. [PMID: 22743678 PMCID: PMC3561510 DOI: 10.1183/09031936.00223411] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pre-clinical data demonstrate a pivotal role for interleukin (IL)-13 in the development and maintenance of asthma. This study assessed the effects of tralokinumab, an investigational human IL-13-neutralising immunoglobulin G4 monoclonal antibody, in adults with moderate-to-severe uncontrolled asthma despite controller therapies. 194 subjects were randomised to receive tralokinumab (150, 300 or 600 mg) or placebo subcutaneously every 2 weeks. Primary end-point was change from baseline in mean Asthma Control Questionnaire score (ACQ-6; ACQ mean of six individual item scores) at week 13 comparing placebo and combined tralokinumab dose groups. Secondary end-points included pre-bronchodilator lung function, rescue β2-agonist use and safety. Numerical end-points are reported as mean±sd. At week 13, change from baseline in ACQ-6 was -0.76±1.04 for tralokinumab versus -0.61±0.90 for placebo (p=0.375). Increases from baseline in forced expiratory volume in 1 s (FEV1) were 0.21±0.38 L versus 0.06±0.48 L (p=0.072), with a dose-response observed across the tralokinumab doses tested. β2-agonist use (puffs per day) was decreased for tralokinumab -0.68±1.45 versus placebo -0.10±1.49 (p=0.020). The increase in FEV1 following tralokinumab treatment remained evident 12 weeks after the final dose. Safety profile was acceptable with no serious adverse events related to tralokinumab. No improvement in ACQ-6 was observed, although tralokinumab treatment was associated with improved lung function.
Collapse
Affiliation(s)
- Edward Piper
- Clinical Development, MedImmune Ltd., Granta Park, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Maes T, Joos GF, Brusselle GG. Targeting interleukin-4 in asthma: lost in translation? Am J Respir Cell Mol Biol 2012; 47:261-70. [PMID: 22538865 DOI: 10.1165/rcmb.2012-0080tr] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The first discovery that interleukin-4 (IL-4) is crucial in the development of allergic airway inflammation originates from the early 1990s. Whereas initial studies in experimental animal models provided the community with the optimistic view that targeting IL-4 would be the ultimate solution for treating asthma, the translation of these findings to the clinic has not been evident and has not yet fulfilled the expectations. Many technical challenges have been encountered in the attempts to modulate IL-4 expression or activity and in transferring knowledge of preclinical studies to clinical trials. Moreover, biological redundancies between IL-4 and IL-13 have compelled a simultaneous blockade of both cytokines. A number of phase I/II studies are now providing us with clinical evidence that targeting IL-4/IL-13 may provide some clinical benefit. However, the initial view that asthma is a purely Th2-mediated disease had to be revised. Currently, different asthma phenotypes have been described, implying that blocking specifically Th2 cytokines, such as IL-4, IL-5, and IL-13, should be targeted to only a specific subset of patients. Taking this into consideration, IL-4 (together with IL-13) deserves attention as subject of further investigations to treat asthma. In this review, we will address the role of IL-4 in asthma, describe IL-4 signaling, and give an overview of preclinical and clinical studies targeting the IL-4 Receptor pathway.
Collapse
Affiliation(s)
- Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | |
Collapse
|
81
|
Association of systemic inflammation markers with the presence and extent of coronary artery calcification. Cytokine 2011; 57:251-7. [PMID: 22172511 DOI: 10.1016/j.cyto.2011.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 11/15/2011] [Accepted: 11/20/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Coronary artery calcification (CAC) is a marker for the presence and extent of coronary atherosclerotic plaques and can be detected non-invasively by multi-detector row CT (MDCT). Well known predictors of CAC are age, gender, and the classical atherogenic risk factors. CAC is associated with atherosclerotic plaque burden, but it is still elusive if atherosclerosis-relevant cytokines and chemokines are also associated with CAC. METHODS We conducted a clinical study among 455 consecutive individuals who underwent coronary calcium assessment performed by MDCT. Before MDCT, blood was drawn and subsequently analyzed for 20 different atherosclerosis-relevant cytokines and chemokines using a Luminex-laser-based fluorescence analysis. RESULTS Using univariate analyses, CAC patients revealed significantly higher levels of the chemokines IP-10 (P=0.047) and eotaxin (P=0.031) as compared to non-CAC patients. In multivariate analyses using common thresholds for calcium burden, the three cytokines interleukin-6 (P=0.028), interleukin-8 (P=0.009), and interleukin-13 (P=0.024) were associated with high coronary calcium levels after adjustment for classical variables and risk factors. CONCLUSIONS In a large group of individuals with atypical chest pain and a low to intermediate likelihood for coronary artery disease elevated plasma levels of IL-6 and reduced levels of IL-8 and IL-13 were predictive for distinct coronary artery calcification. These findings support a specific role of these cytokines in coronary calcification.
Collapse
|