51
|
Rahman T, Smith ESJ. In silico assessment of interaction of sea anemone toxin APETx2 and acid sensing ion channel 3. Biochem Biophys Res Commun 2014; 450:384-9. [PMID: 24942880 DOI: 10.1016/j.bbrc.2014.05.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 01/21/2023]
Abstract
Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed throughout the nervous system and have been implicated in mediating sensory perception of noxious stimuli. Amongst the six ASIC isoforms, ASIC1a, 1b, 2a and 3 form proton-gated homomers, which differ in their activation and inactivation kinetics, expression profiles and pharmacological modulation; protons do not gate ASIC2b and ASIC4. As with many other ion channels, structure-function studies of ASICs have been greatly aided by the discovery of some toxins that act in isoform-specific ways. ASIC3 is predominantly expressed by sensory neurons of the peripheral nervous system where it acts to detect acid as a noxious stimulus and thus plays an important role in nociception. ASIC3 is the only ASIC subunit that is inhibited by the sea anemone (Anthopleura elegantissima)-derived toxin APETx2. However, the molecular mechanism by which APETx2 interacts with ASIC3 remains largely unknown. In this study, we made a homology model of ASIC3 and used extensive protein-protein docking to predict for the first time, the probable sites of APETx2 interaction on ASIC3. Additionally, using computational alanine scanning, we also suggest the 'hot-spots' that are likely to be critical for ASIC3-APETx2 interaction.
Collapse
Affiliation(s)
- Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
52
|
Salinas M, Besson T, Delettre Q, Diochot S, Boulakirba S, Douguet D, Lingueglia E. Binding site and inhibitory mechanism of the mambalgin-2 pain-relieving peptide on acid-sensing ion channel 1a. J Biol Chem 2014; 289:13363-73. [PMID: 24695733 PMCID: PMC4036345 DOI: 10.1074/jbc.m114.561076] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are neuronal proton-gated cation channels associated with nociception, fear, depression, seizure, and neuronal degeneration, suggesting roles in pain and neurological and psychiatric disorders. We have recently discovered black mamba venom peptides called mambalgin-1 and mambalgin-2, which are new three-finger toxins that specifically inhibit with the same pharmacological profile ASIC channels to exert strong analgesic effects in vivo. We now combined bioinformatics and functional approaches to uncover the molecular mechanism of channel inhibition by the mambalgin-2 pain-relieving peptide. Mambalgin-2 binds mainly in a region of ASIC1a involving the upper part of the thumb domain (residues Asp-349 and Phe-350), the palm domain of an adjacent subunit, and the β-ball domain (residues Arg-190, Asp-258, and Gln-259). This region overlaps with the acidic pocket (pH sensor) of the channel. The peptide exerts both stimulatory and inhibitory effects on ASIC1a, and we propose a model where mambalgin-2 traps the channel in a closed conformation by precluding the conformational change of the palm and β-ball domains that follows proton activation. These data help to understand inhibition by mambalgins and provide clues for the development of new optimized blockers of ASIC channels.
Collapse
Affiliation(s)
- Miguel Salinas
- From the CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
- Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, 06560 Valbonne, France, and
- LabEx Ion Channel Science and Therapeutics, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France
| | - Thomas Besson
- From the CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
- Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, 06560 Valbonne, France, and
- LabEx Ion Channel Science and Therapeutics, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France
| | - Quentin Delettre
- From the CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
- Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, 06560 Valbonne, France, and
| | - Sylvie Diochot
- From the CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
- Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, 06560 Valbonne, France, and
- LabEx Ion Channel Science and Therapeutics, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France
| | - Sonia Boulakirba
- From the CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
- Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, 06560 Valbonne, France, and
| | - Dominique Douguet
- From the CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
- Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, 06560 Valbonne, France, and
| | - Eric Lingueglia
- From the CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
- Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, 06560 Valbonne, France, and
- LabEx Ion Channel Science and Therapeutics, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS and Université de Nice Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France
- To whom correspondence should be addressed: Inst. de Pharmacologie Moléculaire et Cellulaire, CNRS-UNS UMR7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France. Tel.: 33-4-93-95-34-23; Fax: 33-4-93-95-77-08; E-mail:
| |
Collapse
|
53
|
Rodríguez AA, Salceda E, Garateix AG, Zaharenko AJ, Peigneur S, López O, Pons T, Richardson M, Díaz M, Hernández Y, Ständker L, Tytgat J, Soto E. A novel sea anemone peptide that inhibits acid-sensing ion channels. Peptides 2014; 53:3-12. [PMID: 23764262 DOI: 10.1016/j.peptides.2013.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/01/2013] [Accepted: 06/03/2013] [Indexed: 12/19/2022]
Abstract
Sea anemones produce ion channels peptide toxins of pharmacological and biomedical interest. However, peptides acting on ligand-gated ion channels, including acid-sensing ion channel (ASIC) toxins, remain poorly explored. PhcrTx1 is the first compound characterized from the sea anemone Phymanthus crucifer, and it constitutes a novel ASIC inhibitor. This peptide was purified by gel filtration, ion-exchange and reversed-phase chromatography followed by biological evaluation on ion channels of isolated rat dorsal root ganglia (DRG) neurons using patch clamp techniques. PhcrTx1 partially inhibited ASIC currents (IC50∼100 nM), and also voltage-gated K(+) currents but the effects on the peak and on the steady state currents were lower than 20% in DRG neurons, at concentrations in the micromolar range. No significant effect was observed on Na(+) voltage-gated currents in DRG neurons. The N-terminal sequencing yielded 32 amino acid residues, with a molecular mass of 3477 Da by mass spectrometry. No sequence identity to other sea anemone peptides was found. Interestingly, the bioinformatic analysis of Cys-pattern and secondary structure arrangement suggested that this peptide presents an Inhibitor Cystine Knot (ICK) scaffold, which has been found in other venomous organisms such as spider, scorpions and cone snails. Our results show that PhcrTx1 represents the first member of a new structural group of sea anemones toxins acting on ASIC and, with much lower potency, on Kv channels. Moreover, this is the first report of an ICK peptide in cnidarians, suggesting that the occurrence of this motif in venomous animals is more ancient than expected.
Collapse
Affiliation(s)
| | - Emilio Salceda
- Instituto de Fisiología, Universidad Autónoma de Puebla, 14 sur 6301, CU, San Manuel, Puebla, Puebla CP 72750, Mexico.
| | | | | | - Steve Peigneur
- Laboratory of Toxicology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium.
| | - Omar López
- Instituto de Fisiología, Universidad Autónoma de Puebla, 14 sur 6301, CU, San Manuel, Puebla, Puebla CP 72750, Mexico.
| | - Tirso Pons
- Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Michael Richardson
- Fundação Ezequiel Dias-FUNED, Rua Conde Pereira Carneiro 80, CEP 30510-010 Belo Horizonte, MG, Brazil.
| | - Maylín Díaz
- Centro de Bioproductos Marinos (CEBIMAR), Loma y 37, Alturas del Vedado, CP 10400 Habana, Cuba.
| | - Yasnay Hernández
- Centro de Bioproductos Marinos (CEBIMAR), Loma y 37, Alturas del Vedado, CP 10400 Habana, Cuba.
| | - Ludger Ständker
- Kompetenzzentrum Ulm Peptide Pharmaceuticals (U-PEP), Universität Ulm (West), Albert-Einstein Allee 47, 89081 Ulm, Germany.
| | - Jan Tytgat
- Laboratory of Toxicology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium.
| | - Enrique Soto
- Instituto de Fisiología, Universidad Autónoma de Puebla, 14 sur 6301, CU, San Manuel, Puebla, Puebla CP 72750, Mexico.
| |
Collapse
|
54
|
Moshourab RA, Wetzel C, Martinez-Salgado C, Lewin GR. Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J Physiol 2013; 591:5555-74. [PMID: 23959680 PMCID: PMC3853495 DOI: 10.1113/jphysiol.2013.261180] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and their interaction partners of the stomatin family have all been implicated in sensory transduction. Single gene deletion of asic3, asic2, stomatin, or stoml3 all result in deficits in the mechanosensitivity of distinct cutaneous afferents in the mouse. Here, we generated asic3−/−:stomatin−/−, asic3−/−:stoml3−/− and asic2−/−:stomatin−/− double mutant mice to characterize the functional consequences of stomatin–ASIC protein interactions on sensory afferent mechanosensitivity. The absence of ASIC3 led to a clear increase in mechanosensitivity in rapidly adapting mechanoreceptors (RAMs) and a decrease in the mechanosensitivity in both Aδ- and C-fibre nociceptors. The increased mechanosensitivity of RAMs could be accounted for by a loss of adaptation which could be mimicked by local application of APETx2 a toxin that specifically blocks ASIC3. There is a substantial loss of mechanosensitivity in stoml3−/− mice in which ∼35% of the myelinated fibres lack a mechanosensitive receptive field and this phenotype was found to be identical in asic3−/−:stoml3−/− mutant mice. However, Aδ-nociceptors showed much reduced mechanosensitivity in asic3−/−:stoml3−/− mutant mice compared to asic3−/− controls. Interestingly, in asic2−/−:stomatin−/− mutant mice many Aδ-nociceptors completely lost their mechanosensitivity which was not observed in asic2−/− or stomatin−/− mice. Examination of stomatin−/−:stoml3−/− mutant mice indicated that a stomatin/STOML3 interaction is unlikely to account for the greater Aδ-nociceptor deficits in double mutant mice. A key finding from these studies is that the loss of stomatin or STOML3 in asic3−/− or asic2−/− mutant mice markedly exacerbates deficits in the mechanosensitivity of nociceptors without affecting mechanoreceptor function.
Collapse
Affiliation(s)
- Rabih A Moshourab
- G. R. Lewin: Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125, Berlin, Germany.
| | | | | | | |
Collapse
|
55
|
Yan J, Wei X, Bischoff C, Edelmayer RM, Dussor G. pH-evoked dural afferent signaling is mediated by ASIC3 and is sensitized by mast cell mediators. Headache 2013; 53:1250-61. [PMID: 23808707 DOI: 10.1111/head.12152] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Prior studies have shown that decreased meningeal pH activates dural afferents via opening of acid-sensing ion channels (ASICs), suggesting one pathophysiological mechanism for the generation of headaches. The studies described here further examined the ASIC subtype mediating pH-induced dural-afferent activation and examined whether sensitization influences pH responses. OBJECTIVE Given the potential importance of meningeal mast cells to headache, the goal of this study was to evaluate dural afferent responses to pH following sensitization with mast cell mediators. METHODS Cutaneous allodynia was measured in rats following stimulation of the dura with decreased pH alone or in combination with mast cell mediators. Trigeminal ganglion neurons retrogradely labeled from the dura were stained with an ASIC3 antibody using immunohistochemistry. Current and action potentials evoked by changes in pH alone or in combination with mast cell mediators were measured in retrogradely labeled dural afferents using patch-clamp electrophysiology. RESULTS pH-sensitive dural afferents generated currents in response to the ASIC3 activator 2-guanidine-4-methylquinazoline (GMQ), approximately 80% of these neurons express ASIC3 protein, and pH-evoked behavioral responses were inhibited by the ASIC3 blocker APETx2. Following exposure to mast cell mediators, dural afferents exhibited increased pH-evoked excitability, and cutaneous allodynia was observed at higher pH than with pH stimuli alone. CONCLUSIONS These data indicate that the predominant ASIC subtype responding to decreased meningeal pH is ASIC3. Additionally, they demonstrate that in the presence of inflammation, dural afferents respond to even smaller decreases in pH providing further support for the ability of small pH changes within the meninges to initiate afferent input leading to headache.
Collapse
Affiliation(s)
- Jin Yan
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
56
|
Abstract
Neuropathies caused by jellyfish stings are extremely rare and poorly studied. A 20-year-old female patient was stung on the volar aspect of the right forearm by an unidentified species of jellyfish. Local cutaneous reaction was followed within few days by severe median mononeuropathy, involving the motor and sensory branches to the hand and forearm but sparing the palmar branch. The patient had neuropathic pain relieved by pregabaline. Electrodiagnostic studies confirmed a demyelinating lesion. Ultrasound and magnetic resonance imaging of the median nerve revealed uniform swelling with mild uptake of contrast along the forearm. Within 2 months, strength improved significantly, pain subsided, and numbness partially resolved. Literature review and discussion of the possible mechanisms and implications of this rare effect of marine animal envenomation is presented. Jellyfish sting may cause focal mononeuropathies most probably because of the local effects of the toxins.
Collapse
|
57
|
|
58
|
Baron A, Diochot S, Salinas M, Deval E, Noël J, Lingueglia E. Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon 2013; 75:187-204. [PMID: 23624383 DOI: 10.1016/j.toxicon.2013.04.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/10/2013] [Indexed: 02/07/2023]
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent proton-gated cation channels that are largely expressed in the nervous system as well as in some non-neuronal tissues. In rodents, six different isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) can associate into homo- or hetero-trimers to form a functional channel. Specific polypeptide toxins targeting ASIC channels have been isolated from the venoms of spider (PcTx1), sea anemone (APETx2) and snakes (MitTx and mambalgins). They exhibit different and sometimes partially overlapping pharmacological profiles and are usually blockers of ASIC channels, except for MitTx, which is a potent activator. This review focuses on the use of these toxins to explore the structure-function relationships, the physiological and the pathophysiological roles of ASIC channels, illustrating at the same time the therapeutic potential of some of these natural compounds.
Collapse
Affiliation(s)
- Anne Baron
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560 Valbonne, France; Université de Nice-Sophia Antipolis, 06560 Valbonne, France; LabEx Ion Channel Science and Therapeutics, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
59
|
|
60
|
Peigneur S, Béress L, Möller C, Marí F, Forssmann W, Tytgat J. A natural point mutation changes both target selectivity and mechanism of action of sea anemone toxins. FASEB J 2012; 26:5141-51. [DOI: 10.1096/fj.12-218479] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Steve Peigneur
- Laboratory of ToxicologyUniversity of Leuven (Katholieke Universiteit Leuven)LeuvenBelgium
| | - László Béress
- Department of Immunology and RheumatologyHannover Medical UniversityHannoverGermany
- Pharis Biotec GmbHHannoverGermany
| | - Carolina Möller
- Department of Chemistry and BiochemistryFlorida Atlantic UniversityBoca RatonFloridaUSA
| | - Frank Marí
- Department of Chemistry and BiochemistryFlorida Atlantic UniversityBoca RatonFloridaUSA
| | - Wolf‐Georg Forssmann
- Department of Immunology and RheumatologyHannover Medical UniversityHannoverGermany
- Pharis Biotec GmbHHannoverGermany
| | - Jan Tytgat
- Laboratory of ToxicologyUniversity of Leuven (Katholieke Universiteit Leuven)LeuvenBelgium
| |
Collapse
|
61
|
Izumi M, Ikeuchi M, Ji Q, Tani T. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J Biomed Sci 2012; 19:77. [PMID: 22909215 PMCID: PMC3520115 DOI: 10.1186/1423-0127-19-77] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 08/16/2012] [Indexed: 01/20/2023] Open
Abstract
Background Recent data have suggested a relationship between acute arthritic pain and acid sensing ion channel 3 (ASIC3) on primary afferent fibers innervating joints. The purpose of this study was to clarify the role of ASIC3 in a rat model of osteoarthritis (OA) which is considered a degenerative rather than an inflammatory disease. Methods We induced OA via intra-articular mono-iodoacetate (MIA) injection, and evaluated pain-related behaviors including weight bearing measured with an incapacitance tester and paw withdrawal threshold in a von Frey hair test, histology of affected knee joint, and immunohistochemistry of knee joint afferents. We also assessed the effect of ASIC3 selective peptide blocker (APETx2) on pain behavior, disease progression, and ASIC3 expression in knee joint afferents. Results OA rats showed not only weight-bearing pain but also mechanical hyperalgesia outside the knee joint (secondary hyperalgesia). ASIC3 expression in knee joint afferents was significantly upregulated approximately twofold at Day 14. Continuous intra-articular injections of APETx2 inhibited weight distribution asymmetry and secondary hyperalgesia by attenuating ASIC3 upregulation in knee joint afferents. Histology of ipsilateral knee joint showed APETx2 worked chondroprotectively if administered in the early, but not late phase. Conclusions Local ASIC3 immunoreactive nerve is strongly associated with weight-bearing pain and secondary hyperalgesia in MIA-induced OA model. APETx2 inhibited ASIC3 upregulation in knee joint afferents regardless of the time-point of administration. Furthermore, early administration of APETx2 prevented cartilage damage. APETx2 is a novel, promising drug for OA by relieving pain and inhibiting disease progression.
Collapse
Affiliation(s)
- Masashi Izumi
- Department of Orthopaedic Surgery, Kochi University, Oko-cho Kohasu, Nankoku 783-8505, Japan.
| | | | | | | |
Collapse
|
62
|
Frazão B, Vasconcelos V, Antunes A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs 2012; 10:1812-1851. [PMID: 23015776 PMCID: PMC3447340 DOI: 10.3390/md10081812] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/09/2012] [Accepted: 07/25/2012] [Indexed: 01/20/2023] Open
Abstract
The Cnidaria phylum includes organisms that are among the most venomous animals. The Anthozoa class includes sea anemones, hard corals, soft corals and sea pens. The composition of cnidarian venoms is not known in detail, but they appear to contain a variety of compounds. Currently around 250 of those compounds have been identified (peptides, proteins, enzymes and proteinase inhibitors) and non-proteinaceous substances (purines, quaternary ammonium compounds, biogenic amines and betaines), but very few genes encoding toxins were described and only a few related protein three-dimensional structures are available. Toxins are used for prey acquisition, but also to deter potential predators (with neurotoxicity and cardiotoxicity effects) and even to fight territorial disputes. Cnidaria toxins have been identified on the nematocysts located on the tentacles, acrorhagi and acontia, and in the mucous coat that covers the animal body. Sea anemone toxins comprise mainly proteins and peptides that are cytolytic or neurotoxic with its potency varying with the structure and site of action and are efficient in targeting different animals, such as insects, crustaceans and vertebrates. Sea anemones toxins include voltage-gated Na⁺ and K⁺ channels toxins, acid-sensing ion channel toxins, Cytolysins, toxins with Kunitz-type protease inhibitors activity and toxins with Phospholipase A2 activity. In this review we assessed the phylogentic relationships of sea anemone toxins, characterized such toxins, the genes encoding them and the toxins three-dimensional structures, further providing a state-of-the-art description of the procedures involved in the isolation and purification of bioactive toxins.
Collapse
Affiliation(s)
- Bárbara Frazão
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; (B.F.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Vitor Vasconcelos
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; (B.F.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; (B.F.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
63
|
Mizuno M, Ito Y, Morgan BP. Exploiting the nephrotoxic effects of venom from the sea anemone, Phyllodiscus semoni, to create a hemolytic uremic syndrome model in the rat. Mar Drugs 2012; 10:1582-1604. [PMID: 22851928 PMCID: PMC3407933 DOI: 10.3390/md10071582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/29/2012] [Accepted: 07/12/2012] [Indexed: 01/22/2023] Open
Abstract
In the natural world, there are many creatures with venoms that have interesting and varied activities. Although the sea anemone, a member of the phylum Coelenterata, has venom that it uses to capture and immobilise small fishes and shrimp and for protection from predators, most sea anemones are harmless to man. However, a few species are highly toxic; some have venoms containing neurotoxins, recently suggested as potential immune-modulators for therapeutic application in immune diseases. Phyllodiscus semoni is a highly toxic sea anemone; the venom has multiple effects, including lethality, hemolysis and renal injuries. We previously reported that venom extracted from Phyllodiscus semoni induced acute glomerular endothelial injuries in rats resembling hemolytic uremic syndrome (HUS), accompanied with complement dysregulation in glomeruli and suggested that the model might be useful for analyses of pathology and development of therapeutic approaches in HUS. In this mini-review, we describe in detail the venom-induced acute renal injuries in rat and summarize how the venom of Phyllodiscus semoni could have potential as a tool for analyses of complement activation and therapeutic interventions in HUS.
Collapse
Affiliation(s)
- Masashi Mizuno
- Renal Replacement Therapy, Division of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan;
- Author to whom correspondence should be addressed; or ; Tel.: +81-52-744-2205; Fax: +81-52-744-2184
| | - Yasuhiko Ito
- Renal Replacement Therapy, Division of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan;
| | - B. Paul Morgan
- Complement Biology Group, Institute of Infection and Immunology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK;
| |
Collapse
|
64
|
Jensen JE, Mobli M, Brust A, Alewood PF, King GF, Rash LD. Cyclisation increases the stability of the sea anemone peptide APETx2 but decreases its activity at acid-sensing ion channel 3. Mar Drugs 2012; 10:1511-1527. [PMID: 22851922 PMCID: PMC3407927 DOI: 10.3390/md10071511] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/14/2012] [Accepted: 07/06/2012] [Indexed: 12/18/2022] Open
Abstract
APETx2 is a peptide isolated from the sea anemone Anthopleura elegantissima. It is the most potent and selective inhibitor of acid-sensing ion channel 3 (ASIC3) and it is currently in preclinical studies as a novel analgesic for the treatment of chronic inflammatory pain. As a peptide it faces many challenges in the drug development process, including the potential lack of stability often associated with therapeutic peptides. In this study we determined the susceptibility of wild-type APETx2 to trypsin and pepsin and tested the applicability of backbone cyclisation as a strategy to improve its resistance to enzymatic degradation. Cyclisation with either a six-, seven- or eight-residue linker vastly improved the protease resistance of APETx2 but substantially decreased its potency against ASIC3. This suggests that either the N- or C-terminus of APETx2 is involved in its interaction with the channel, which we confirmed by making N- and C-terminal truncations. Truncation of either terminus, but especially the N-terminus, has detrimental effects on the ability of APETx2 to inhibit ASIC3. The current work indicates that cyclisation is unlikely to be a suitable strategy for stabilising APETx2, unless linkers can be engineered that do not interfere with binding to ASIC3.
Collapse
Affiliation(s)
| | | | | | | | - Glenn F. King
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia; (J.E.J.); (M.M.); (A.B.); (P.F.A.)
| | - Lachlan D. Rash
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia; (J.E.J.); (M.M.); (A.B.); (P.F.A.)
| |
Collapse
|
65
|
Anangi R, Rash LD, Mobli M, King GF. Functional expression in Escherichia coli of the disulfide-rich sea anemone peptide APETx2, a potent blocker of acid-sensing ion channel 3. Mar Drugs 2012; 10:1605-1618. [PMID: 22851929 PMCID: PMC3407934 DOI: 10.3390/md10071605] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 12/19/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated sodium channels present in the central and peripheral nervous system of chordates. ASIC3 is highly expressed in sensory neurons and plays an important role in inflammatory and ischemic pain. Thus, specific inhibitors of ASIC3 have the potential to be developed as novel analgesics. APETx2, isolated from the sea anemone Anthopleura elegantissima, is the most potent and selective inhibitor of ASIC3-containing channels. However, the mechanism of action of APETx2 and the molecular basis for its interaction with ASIC3 is not known. In order to assist in characterizing the ASIC3-APETx2 interaction, we developed an efficient and cost-effective Escherichia coli periplasmic expression system for the production of APETx2. NMR studies on uniformly (13)C/(15)N-labelled APETx2 produced in E. coli showed that the recombinant peptide adopts the native conformation. Recombinant APETx2 is equipotent with synthetic APETx2 at inhibiting ASIC3 channels expressed in Xenopus oocytes. Using this system we mutated Phe15 to Ala, which caused a profound loss of APETx2's activity on ASIC3. These findings suggest that this expression system can be used to produce mutant versions of APETx2 in order to facilitate structure-activity relationship studies.
Collapse
Affiliation(s)
- Raveendra Anangi
- Authors to whom correspondence should be addressed; (R.A.); (G.F.K.); Tel.: +61-7-3346-2026 (R.A.); Fax: +61-7-3346-2090 (R.A.); Tel.: +61-7-3346-2025 (G.F.K.); Fax: +61-7-3346-2101 (G.F.K.)
| | | | | | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; (L.D.R.); (M.M.)
| |
Collapse
|