51
|
Lawrence J, Kimbel WH. Morphological integration of the canine region within the hominine alveolar arch. J Hum Evol 2021; 154:102942. [PMID: 33838563 DOI: 10.1016/j.jhevol.2020.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 11/26/2022]
Abstract
The early hominin record is characterized by numerous shifts in dental proportions (e.g., canine reduction and megadontia) linked to changes in diet and social behavior. Recent studies suggest that hominins exhibit a reduction in the magnitude of covariation between the anterior and posterior dental components compared with other extant great apes. They point toward, but do not directly test, the relative independence of canine morphology within the hominin alveolar arch. This study focuses specifically on the how the canine region covaries with other regions of the dental arch because the canine region has drastically reduced in size and changed in shape across human evolution. We examine extant primate species most commonly used as a comparative framework for fossil hominin morphology: Gorilla gorilla (n = 27), Pan troglodytes (n = 27), and Homo sapiens (n = 30). We used geometric morphometric methods to test for size and shape covariation between the canine region with other dental regions. We also examined the influence of sexual dimorphism and allometry on intraspecific and interspecific patterns of covariation. The analysis of size and shape covariation between the mandibular canine and other individual tooth regions elucidated complex, species-specific, and sex-specific morphological relationships in the mandibular alveolar arch. There was little evidence to support different patterns of morphological integration between humans on the one hand and nonhuman apes on the other. Canine region morphology was relatively independent from other dental regions across species based on shape and did not significantly covary more with either the incisor or postcanine region in any species. The size correlations between the canine and other dental regions were moderate to high. The species-specific results of this study question the ability to make a priori assumptions about morphological integration in the extant hominin mandibular alveolar arch and its application to the fossil record.
Collapse
Affiliation(s)
- Julie Lawrence
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85287, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA.
| | - William H Kimbel
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85287, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
52
|
Mitchell MJ, Goswami A, Felice RN. Cranial integration in the ring-necked parakeet, Psittacula krameri (Psittaciformes: Psittaculidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The study of integration and modularity aims to describe the organization of components that make up organisms, and the evolutionary, developmental and functional relationships among them. Both have been studied at the interspecific (evolutionary) and intraspecific (phenotypic and ontogenetic) levels to different degrees across various clades. Although evolutionary modularity and integration are well-characterized across birds, knowledge of intraspecific patterns is lacking. Here, we use a high-density, three-dimensional geometric morphometric approach to investigate patterns of integration and modularity in Psittacula krameri, a highly successful invasive parrot species that exhibits the derived vertical palate and cranio-facial hinge of the Psittaciformes. Showing a pattern of nine distinct cranial modules, our results support findings from recent research that uses similar methods to investigate interspecific integration in birds. Allometry is not a significant influence on cranial shape variation within this species; however, within-module integration is significantly negatively correlated with disparity, with high variation concentrated in the weakly integrated rostrum, palate and vault modules. As previous studies have demonstrated differences in beak shape between invasive and native populations, variation in the weakly integrated palate and rostrum may have facilitated evolutionary change in these parts of the skull, contributing to the ring-necked parakeet’s success as an invasive species.
Collapse
Affiliation(s)
- Matthew J Mitchell
- Department of Life Sciences, Natural History Museum, Kensington, London, UK
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, Bloomsbury, London, UK
| | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, Kensington, London, UK
| | - Ryan N Felice
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, Bloomsbury, London, UK
| |
Collapse
|
53
|
Katsube M, Yamada S, Utsunomiya N, Yamaguchi Y, Takakuwa T, Yamamoto A, Imai H, Saito A, Vora SR, Morimoto N. A 3D analysis of growth trajectory and integration during early human prenatal facial growth. Sci Rep 2021; 11:6867. [PMID: 33767268 PMCID: PMC7994314 DOI: 10.1038/s41598-021-85543-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/26/2021] [Indexed: 01/03/2023] Open
Abstract
Significant shape changes in the human facial skeleton occur in the early prenatal period, and understanding this process is critical for studying a myriad of congenital facial anomalies. However, quantifying and visualizing human fetal facial growth has been challenging. Here, we applied quantitative geometric morphometrics (GM) to high-resolution magnetic resonance images of human embryo and fetuses, to comprehensively analyze facial growth. We utilized non-linear growth estimation and GM methods to assess integrated epigenetic growth between masticatory muscles and associated bones. Our results show that the growth trajectory of the human face in the early prenatal period follows a curved line with three flexion points. Significant antero-posterior development occurs early, resulting in a shift from a mandibular prognathic to relatively orthognathic appearance, followed by expansion in the lateral direction. Furthermore, during this time, the development of the zygoma and the mandibular ramus is closely integrated with the masseter muscle.
Collapse
Affiliation(s)
- Motoki Katsube
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Natsuko Utsunomiya
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yutaka Yamaguchi
- Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tetsuya Takakuwa
- Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hirohiko Imai
- Department of Systems Science, Kyoto University Graduate School of Informatics, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsushi Saito
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Siddharth R Vora
- Oral Health Sciences, University of British Columbia, JBM 372-2199 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
54
|
Indencleef K, Hoskens H, Lee MK, White JD, Liu C, Eller RJ, Naqvi S, Wehby GL, Moreno Uribe LM, Hecht JT, Long RE, Christensen K, Deleyiannis FW, Walsh S, Shriver MD, Richmond S, Wysocka J, Peeters H, Shaffer JR, Marazita ML, Hens G, Weinberg SM, Claes P. The Intersection of the Genetic Architectures of Orofacial Clefts and Normal Facial Variation. Front Genet 2021; 12:626403. [PMID: 33692830 PMCID: PMC7937973 DOI: 10.3389/fgene.2021.626403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023] Open
Abstract
Unaffected relatives of individuals with non-syndromic cleft lip with or without cleft palate (NSCL/P) show distinctive facial features. The presence of this facial endophenotype is potentially an expression of underlying genetic susceptibility to NSCL/P in the larger unselected population. To explore this hypothesis, we first partitioned the face into 63 partially overlapping regions representing global-to-local facial morphology and then defined endophenotypic traits by contrasting the 3D facial images from 264 unaffected parents of individuals with NSCL/P versus 3,171 controls. We observed distinct facial features between parents and controls across 59 global-to-local facial segments at nominal significance (p ≤ 0.05) and 52 segments at Bonferroni corrected significance (p < 1.2 × 10-3), respectively. Next, we quantified these distinct facial features as univariate traits in another dataset of 8,246 unaffected European individuals and performed a genome-wide association study. We identified 29 independent genetic loci that were associated (p < 5 × 10-8) with at least one of the tested endophenotypic traits, and nine genetic loci also passed the study-wide threshold (p < 8.47 × 10-10). Of the 29 loci, 22 were in proximity of loci previously associated with normal facial variation, 18 were near genes that show strong evidence in orofacial clefting (OFC), and another 10 showed some evidence in OFC. Additionally, polygenic risk scores for NSCL/P showed associations with the endophenotypic traits. This study thus supports the hypothesis of a shared genetic architecture of normal facial development and OFC.
Collapse
Affiliation(s)
- Karlijne Indencleef
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Hanne Hoskens
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Myoung Keun Lee
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julie D. White
- Department of Anthropology, Pennsylvania State University, State College, PA, United States
| | - Chenxing Liu
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ryan J. Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - George L. Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Lina M. Moreno Uribe
- Department of Orthodontics & The Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, United States
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School and School of Dentistry, UT Health at Houston, Houston, TX, United States
| | - Ross E. Long
- Lancaster Cleft Palate Clinic, Lancaster, PA, United States
| | - Kaare Christensen
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | | | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Mark D. Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, United States
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - John R. Shaffer
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mary L. Marazita
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Greet Hens
- Department of Otorhinolaryngology, KU Leuven, Leuven, Belgium
| | - Seth M. Weinberg
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
55
|
Galbán A, Cuezzo F, Torréns J. The Pronotum of Worker of Camponotus borellii Emery (Hymenoptera: Formicidae): How Can It Affect Performance of the Head, Work Division, and Development of the Worker Caste? NEOTROPICAL ENTOMOLOGY 2021; 50:78-89. [PMID: 33501632 DOI: 10.1007/s13744-020-00828-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
In polymorphic ants, whose workers display continuous size distribution, each subcaste occupies a phenotypic space, usually with diffuse morphological boundaries. These morphological differences are closely associated to size by allometry although the environment also plays a key role that affects the fitness of the species. In Camponotus borellii Emery, the species selected as a study model, workers exhibit a continuous increase in size; geometric morphometric (GM) was used over four morphological traits: head capsule, clypeus, pronotum, and mesosoma, in order to assess (1) changes in shape, among the worker caste; (2) the influence of allometry on such changes; and (3) pronotum shape in respect to the head so as to infer which factors may influence the polymorphic development of the worker caste. The results indicated that the pronotum is organized into two highly integrated functional modules (neck and shield), corresponding to one developmental module. GM shows a similar pattern to that obtained for linear morphometry, though the worker ratio was different along continuous size distribution due to shape changes in two traits, with are also useful for delimiting modular units: (1) rounded shape of the posterior region of the head in minor workers; (2) shape of the pronotum, especially its anterior region, henceforth, neck, which widens as a consequence of the higher development of its central region, henceforth, shield, in major workers. The relevance of these results is discussed regarding functional morphology (pronotum in relation to the head), work division, and development of the worker caste.
Collapse
Affiliation(s)
- Alvaro Galbán
- Instituto Superior de Entomología "Dr. Abraham Willink" (INSUE), Fac. de Cs. Nat. e IML-UNT- CONICET, San Miguel de Tucumán, Tucumán, Argentina.
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina.
| | - Fabiana Cuezzo
- Instituto Superior de Entomología "Dr. Abraham Willink" (INSUE), Fac. de Cs. Nat. e IML-UNT- CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Javier Torréns
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina
| |
Collapse
|
56
|
White JD, Indencleef K, Naqvi S, Eller RJ, Hoskens H, Roosenboom J, Lee MK, Li J, Mohammed J, Richmond S, Quillen EE, Norton HL, Feingold E, Swigut T, Marazita ML, Peeters H, Hens G, Shaffer JR, Wysocka J, Walsh S, Weinberg SM, Shriver MD, Claes P. Insights into the genetic architecture of the human face. Nat Genet 2021; 53:45-53. [PMID: 33288918 PMCID: PMC7796995 DOI: 10.1038/s41588-020-00741-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/23/2020] [Indexed: 01/28/2023]
Abstract
The human face is complex and multipartite, and characterization of its genetic architecture remains challenging. Using a multivariate genome-wide association study meta-analysis of 8,246 European individuals, we identified 203 genome-wide-significant signals (120 also study-wide significant) associated with normal-range facial variation. Follow-up analyses indicate that the regions surrounding these signals are enriched for enhancer activity in cranial neural crest cells and craniofacial tissues, several regions harbor multiple signals with associations to different facial phenotypes, and there is evidence for potential coordinated actions of variants. In summary, our analyses provide insights into the understanding of how complex morphological traits are shaped by both individual and coordinated genetic actions.
Collapse
Affiliation(s)
- Julie D White
- Department of Anthropology, Pennsylvania State University, State College, PA, USA.
| | - Karlijne Indencleef
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan J Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Hanne Hoskens
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jasmien Roosenboom
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Myoung Keun Lee
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiarui Li
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Jaaved Mohammed
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, UK
| | - Ellen E Quillen
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Heather L Norton
- Department of Anthropology, University of Cincinnati, Cincinnati, OH, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mary L Marazita
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Greet Hens
- Department of Neurosciences, Experimental Oto-Rhino-Laryngology, KU Leuven, Leuven, Belgium
| | - John R Shaffer
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Seth M Weinberg
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
57
|
Alba V, Carthew JE, Carthew RW, Mani M. Global constraints within the developmental program of the Drosophila wing. eLife 2021; 10:66750. [PMID: 34180394 PMCID: PMC8257256 DOI: 10.7554/elife.66750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Organismal development is a complex process, involving a vast number of molecular constituents interacting on multiple spatio-temporal scales in the formation of intricate body structures. Despite this complexity, development is remarkably reproducible and displays tolerance to both genetic and environmental perturbations. This robustness implies the existence of hidden simplicities in developmental programs. Here, using the Drosophila wing as a model system, we develop a new quantitative strategy that enables a robust description of biologically salient phenotypic variation. Analyzing natural phenotypic variation across a highly outbred population and variation generated by weak perturbations in genetic and environmental conditions, we observe a highly constrained set of wing phenotypes. Remarkably, the phenotypic variants can be described by a single integrated mode that corresponds to a non-intuitive combination of structural variations across the wing. This work demonstrates the presence of constraints that funnel environmental inputs and genetic variation into phenotypes stretched along a single axis in morphological space. Our results provide quantitative insights into the nature of robustness in complex forms while yet accommodating the potential for evolutionary variations. Methodologically, we introduce a general strategy for finding such invariances in other developmental contexts.
Collapse
Affiliation(s)
- Vasyl Alba
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States,NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| | - James E Carthew
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Richard W Carthew
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States,Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Madhav Mani
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States,NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States,Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
58
|
Galluccio G, Caridi V, Impellizzeri A, Chudan AP, Vernucci R, Barbato E. Familiar occurrence of facial asymmetry: a pilot study. MINERVA STOMATOLOGICA 2020; 69:349-359. [PMID: 32744442 DOI: 10.23736/s0026-4970.20.04346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND The point at which "normal" asymmetry becomes "abnormal" can be defined by an aesthetic limit and a functional limit. The underlying causes are still not fully discovered; the etiology includes congenital disorders, acquired diseases, and traumatic and developmental deformities. Our purpose was to investigate the possible genetic liability in the transmissibility of the asymmetric traits, through an analysis developed by twofold approach: 1) exploring and recording the family history through the use of a specific questionnaire; and 2) examining differences in laterality between the patients and their corresponding parent by a facial analysis. METHODS A total of 52 Italian subjects (57% females, 43% males; mean age: 11.7 years), showing a clinically detectable asymmetry, were selected. Individuals in the sample were selected according to the diagnosis of facial asymmetry, non-syndromic patients, participation by informed consent, and negative medical history of the maxillo-facial complex. A specifically designed questionnaire was used to investigate the presence of the asymmetric trait in the family. Differences in length between distance from the anthropometric points to the facial midline and to horizontal reference were measured on a frontal facial photograph. For all the subjects recruited the same analysis was performed on the frontal facial photographs of both the parents. A descriptive and interferential statistical analysis was performed on the data. RESULTS Concerning the linear measurement, in a high percentage of parent-child pairs there is a correspondence of laterality of asymmetry traits, with a more common relation with the maternal trait. Sixty-five percent of parents with correspondence of laterality reported a positive family history of asymmetry. CONCLUSIONS The analysis of the obtained data shows that the mother is the parent most involved in the correspondence of laterality. Further analysis would be appropriate to investigate this result.
Collapse
Affiliation(s)
- Gabriella Galluccio
- Department of Oral and Maxillo-Facial Sciences, Sapienza University, Rome, Italy -
| | | | | | - Anazoly P Chudan
- Department of Oral and Maxillo-Facial Sciences, Sapienza University, Rome, Italy
| | - Roberto Vernucci
- Department of Oral and Maxillo-Facial Sciences, Sapienza University, Rome, Italy
| | - Ersilia Barbato
- Department of Oral and Maxillo-Facial Sciences, Sapienza University, Rome, Italy
| |
Collapse
|
59
|
Taylor-Cox ED, Macgregor CJ, Corthine A, Hill JK, Hodgson JA, Saccheri IJ. Wing morphological responses to latitude and colonisation in a range expanding butterfly. PeerJ 2020; 8:e10352. [PMID: 33240660 PMCID: PMC7680626 DOI: 10.7717/peerj.10352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/22/2020] [Indexed: 11/20/2022] Open
Abstract
Populations undergoing rapid climate-driven range expansion experience distinct selection regimes dominated both by increased dispersal at the leading edges and steep environmental gradients. Characterisation of traits associated with such expansions provides insight into the selection pressures and evolutionary constraints that shape demographic and evolutionary responses. Here we investigate patterns in three components of wing morphology (size, shape, colour) often linked to dispersal ability and thermoregulation, along latitudinal gradients of range expansion in the Speckled Wood butterfly (Pararge aegeria) in Britain (two regions of expansion in England and Scotland). We measured 774 males from 54 sites spanning 799 km with a 10-year mean average temperature gradient of 4 °C. A geometric morphometric method was used to investigate variation in size and shape of forewings and hindwings; colour, pattern, and contrast of the wings were examined using a measure of lightness (inverse degree of melanism). Overall, wing size increased with latitude by ∼2% per 100 km, consistent with Bergmann’s rule. Forewings became more rounded and hindwings more elongated with history of colonisation, possibly reflecting selection for increased dispersal ability. Contrary to thermal melanism expectations, wing colour was lighter where larvae developed at cooler temperatures and unrelated to long-term temperature. Changes in wing spot pattern were also detected. High heterogeneity in variance among sites for all of the traits studied may reflect evolutionary time-lags and genetic drift due to colonisation of new habitats. Our study suggests that temperature-sensitive plastic responses for size and colour interact with selection for dispersal traits (wing size and shape). Whilst the plastic and evolutionary responses may in some cases act antagonistically, the rapid expansion of P. aegeria implies an overall reinforcing effect between these two mechanisms.
Collapse
Affiliation(s)
- Evelyn D Taylor-Cox
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Callum J Macgregor
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, York, United Kingdom.,Energy and Environment Institute, University of Hull, Hull, United Kingdom
| | - Amy Corthine
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Jane K Hill
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, York, United Kingdom
| | - Jenny A Hodgson
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Ilik J Saccheri
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
60
|
Michaud M, Veron G, Fabre AC. Phenotypic integration in feliform carnivores: Covariation patterns and disparity in hypercarnivores versus generalists. Evolution 2020; 74:2681-2702. [PMID: 33085081 DOI: 10.1111/evo.14112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 08/01/2020] [Accepted: 10/03/2020] [Indexed: 01/01/2023]
Abstract
The skeleton is a complex arrangement of anatomical structures that covary to various degrees depending on both intrinsic and extrinsic factors. Among the Feliformia, many species are characterized by predator lifestyles providing a unique opportunity to investigate the impact of highly specialized hypercarnivorous diet on phenotypic integration and shape diversity. To do so, we compared the shape of the skull, mandible, humerus, and femur of species in relation to their feeding strategies (hypercarnivorous vs. generalist species) and prey preference (predators of small vs. large prey) using three-dimensional geometric morphometric techniques. Our results highlight different degrees of morphological integration in the Feliformia depending on the functional implication of the anatomical structure, with an overall higher covariation of structures in hypercarnivorous species. The skull and the forelimb are not integrated in generalist species, whereas they are integrated in hypercarnivores. These results can potentially be explained by the different feeding strategies of these species. Contrary to our expectations, hypercarnivores display a higher disparity for the skull than generalist species. This is probably due to the fact that a specialization toward high-meat diet could be achieved through various phenotypes. Finally, humeri and femora display shape variations depending on relative prey size preference. Large species feeding on large prey tend to have robust long bones due to higher biomechanical constraints.
Collapse
Affiliation(s)
- Margot Michaud
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, 75231 cedex 05, France
| | - Géraldine Veron
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, 75231 cedex 05, France
| | - Anne-Claire Fabre
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, United Kingdom
| |
Collapse
|
61
|
Urošević A, Ajduković M, Arntzen JW, Ivanović A. Morphological integration and serial homology: A case study of the cranium and anterior vertebrae in salamanders. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aleksandar Urošević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković” National Institute of Republic of Serbia University of Belgrade Belgrade Serbia
| | - Maja Ajduković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković” National Institute of Republic of Serbia University of Belgrade Belgrade Serbia
| | | | - Ana Ivanović
- Naturalis Biodiversity Center Leiden The Netherlands
- Institute of Zoology Faculty of Biology University of Belgrade Belgrade Serbia
| |
Collapse
|
62
|
Abstract
Abstract
Background
Organisms show an incredibly diverse array of body and organ shapes that are both unique to their taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the many processes that transform single cells into complex organs, and regulating their growth so that they can function within a fully-formed body.
Main text
Conceptually, body and organ shape can be separated in two categories, although in practice these categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs, grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on the other hand, is defined as the geometric features of an organ’s component parts excluding its size. Characterization of organ shape is frequently described by the relative position of homologous features, known as landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics.
Conclusion
In this review, we discuss the methods of characterizing body and organ shape, the developmental programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape might overlap, and provide our perspective on future avenues of research.
Collapse
|
63
|
Del Bove A, Profico A, Riga A, Bucchi A, Lorenzo C. A geometric morphometric approach to the study of sexual dimorphism in the modern human frontal bone. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:643-654. [PMID: 33025582 DOI: 10.1002/ajpa.24154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVES We analyzed the main anatomical traits found in the human frontal bone by using a geometric morphometric approach. The objectives of this study are to explore how the frontal bone morphology varies between the sexes and to detect which part of the frontal bone are sexually dimorphic. MATERIALS AND METHODS The sample is composed of 161 skulls of European and North American individuals of known sex. For each cranium, we collected 3D landmarks and semilandmarks on the frontal bone, to examine the entire morphology and separate modules (frontal squama, supraorbital ridges, glabellar region, temporal lines, and mid-sagittal profile). We used Procrustes ANOVAs and LDAs (linear discriminant analyses) to evaluate the relation between frontal bone morphology and sexual dimorphism and to calculate precision and accuracy in the classification of sex. RESULTS All the frontal bone traits are influenced by sexual dimorphism, though each in a different manner. Variation in shape and size differs between the sexes, and this study confirmed that the supraorbital ridges and glabella are the most important regions for sex determination, although there is no covariation between them. The variable size does not contribute significantly to the discrimination between sexes. Thanks to a geometric morphometric analysis, it was found that the size variable is not an important element for the determination of sex in the frontal bone. CONCLUSION The usage of geometric morphometrics in analyzing the frontal bone has led to new knowledge on the morphological variations due to sexual dimorphism. The proposed protocol permits to quantify morphological covariation between modules, to calculate the shape variations related to sexual dimorphism including or omitting the variable size.
Collapse
Affiliation(s)
- Antonietta Del Bove
- Àrea de Prehistòria, Facultat de Lletres, Universitat Rovira i Virgili, Tarragona, Spain.,Catalan Institute of Human Paleoecology and Social Evolution IPHES, Tarragona, Spain
| | - Antonio Profico
- PalaeoHub-Department of Archaeology, University of York, York, UK
| | - Alessandro Riga
- Department of Biology, University of Florence, Florence, Italy.,Laboratory of Archaeoanthropology, SABAP-FI, Scandicci, Italy
| | - Ana Bucchi
- Àrea de Prehistòria, Facultat de Lletres, Universitat Rovira i Virgili, Tarragona, Spain.,Catalan Institute of Human Paleoecology and Social Evolution IPHES, Tarragona, Spain
| | - Carlos Lorenzo
- Àrea de Prehistòria, Facultat de Lletres, Universitat Rovira i Virgili, Tarragona, Spain.,Catalan Institute of Human Paleoecology and Social Evolution IPHES, Tarragona, Spain
| |
Collapse
|
64
|
Examination of Sample Size Determination in Integration Studies Based on the Integration Coefficient of Variation (ICV). Evol Biol 2020. [DOI: 10.1007/s11692-020-09514-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
65
|
Covariation of fetal skull and maternal pelvis during the perinatal period in rhesus macaques and evolution of childbirth in primates. Proc Natl Acad Sci U S A 2020; 117:21251-21257. [PMID: 32817513 DOI: 10.1073/pnas.2002112117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A large brain combined with an upright posture in humans has resulted in a high cephalopelvic proportion and frequently obstructed labor. Fischer and Mitteroecker [B. Fischer, P. Mitteroecker, Proc. Natl. Acad. Sci. U.S.A. 112, 5655-5660 (2015)] proposed that the morphological covariations between the skull and pelvis could have evolved to ameliorate obstructed labor in humans. The availability of quantitative data of such covariation, especially of the fetal skull and maternal pelvis, however, is still scarce. Here, we present direct evidence of morphological covariations between the skull and pelvis using actual mother-fetus dyads during the perinatal period of Macaca mulatta, a species that exhibits cephalopelvic proportions comparable to modern humans. We analyzed the covariation of the three-dimensional morphology of the fetal skull and maternal pelvis using computed tomography-based models. The covariation was mostly observed at the pelvic locations related to the birth canal, and the forms of the birth canal and fetal skull covary in such a way that reduces obstetric difficulties. Therefore, cephalopelvic covariation could have evolved not only in humans, but also in other primate taxa in parallel, or it could have evolved already in the early catarrhines.
Collapse
|
66
|
Vrdoljak J, Sanchez KI, Arreola-Ramos R, Diaz Huesa EG, Villagra A, Avila LJ, Morando M. Testing repeatability, measurement error and species differentiation when using geometric morphometrics on complex shapes: a case study of Patagonian lizards of the genus Liolaemus (Squamata: Liolaemini). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The repeatability of findings is the key factor behind scientific reliability, and the failure to reproduce scientific findings has been termed the ‘replication crisis’. Geometric morphometrics is an established tool in evolutionary biology. However, different operators (and/or different methods) could act as large sources of variation in the data obtained. Here, we investigated inter-operator error in geometric morphometric protocols on complex shapes of Liolaemus lizards, as well as measurement error in three taxa varying in their difficulty of digitalization. We also examined the potential for these protocols to discriminate among complex shapes in closely related species. We found a wide range of inter-operator error, contributing between 19.5% and 60% to the total variation. Moreover, measurement error increased with the complexity of the quantified shape. All protocols were able to discriminate between species, but the use of more landmarks did not imply better performance. We present evidence that complex shapes reduce repeatability, highlighting the need to explore different sources of variation that could lead to such low repeatability. Lastly, we suggest some recommendations to improve the repeatability and reliability of geometric morphometrics results.
Collapse
Affiliation(s)
- Juan Vrdoljak
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Kevin Imanol Sanchez
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Roberto Arreola-Ramos
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Emilce Guadalupe Diaz Huesa
- Instituto de Diversidad y Evolución Austral, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEAUS-CONICET), Puerto Madryn, Chubut, Argentina
| | - Alejandro Villagra
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn, Chubut, Argentina
| | - Luciano Javier Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
67
|
A Registration and Deep Learning Approach to Automated Landmark Detection for Geometric Morphometrics. Evol Biol 2020; 47:246-259. [PMID: 33583965 DOI: 10.1007/s11692-020-09508-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Geometric morphometrics is the statistical analysis of landmark-based shape variation and its covariation with other variables. Over the past two decades, the gold standard of landmark data acquisition has been manual detection by a single observer. This approach has proven accurate and reliable in small-scale investigations. However, big data initiatives are increasingly common in biology and morphometrics. This requires fast, automated, and standardized data collection. We combine techniques from image registration, geometric morphometrics, and deep learning to automate and optimize anatomical landmark detection. We test our method on high-resolution, micro-computed tomography images of adult mouse skulls. To ensure generalizability, we use a morphologically diverse sample and implement fundamentally different deformable registration algorithms. Compared to landmarks derived from conventional image registration workflows, our optimized landmark data show up to a 39.1% reduction in average coordinate error and a 36.7% reduction in total distribution error. In addition, our landmark optimization produces estimates of the sample mean shape and variance-covariance structure that are statistically indistinguishable from expert manual estimates. For biological imaging datasets and morphometric research questions, our approach can eliminate the time and subjectivity of manual landmark detection whilst retaining the biological integrity of these expert annotations.
Collapse
|
68
|
Skull-shape variation and modularity in two Japanese field mice, Apodemus speciosus and Apodemus argenteus (Rodentia: Muridae). ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
69
|
Prieto‐Márquez A, Garcia‐Porta J, Joshi SH, Norell MA, Makovicky PJ. Modularity and heterochrony in the evolution of the ceratopsian dinosaur frill. Ecol Evol 2020; 10:6288-6309. [PMID: 32724514 PMCID: PMC7381594 DOI: 10.1002/ece3.6361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
The fossil record provides compelling examples of heterochrony at macroevolutionary scales such as the peramorphic giant antlers of the Irish elk. Heterochrony has also been invoked in the evolution of the distinctive cranial frill of ceratopsian dinosaurs such as Triceratops. Although ceratopsian frills vary in size, shape, and ornamentation, quantitative analyses that would allow for testing hypotheses of heterochrony are lacking. Here, we use geometric morphometrics to examine frill shape variation across ceratopsian diversity and within four species preserving growth series. We then test whether the frill constitutes an evolvable module both across and within species, and compare growth trajectories of taxa with ontogenetic growth series to identify heterochronic processes. Evolution of the ceratopsian frill consisted primarily of progressive expansion of its caudal and caudolateral margins, with morphospace occupation following taxonomic groups. Although taphonomic distortion represents a complicating factor, our data support modularity both across and within species. Peramorphosis played an important role in frill evolution, with acceleration operating early in neoceratopsian evolution followed by progenesis in later diverging cornosaurian ceratopsians. Peramorphic evolution of the ceratopsian frill may have been facilitated by the decoupling of this structure from the jaw musculature, an inference that predicts an expansion of morphospace occupation and higher evolutionary rates among ceratopsids as indeed borne out by our data. However, denser sampling of the meager record of early-diverging taxa is required to test this further.
Collapse
Affiliation(s)
- Albert Prieto‐Márquez
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaBarcelonaSpain
- Integrative Research CenterField Museum of Natural HistoryChicagoILUSA
| | - Joan Garcia‐Porta
- CREAFBarcelonaSpain
- Department of BiologyWashington UniversitySt. LouisMOUSA
| | - Shantanu H. Joshi
- Department of Neurology and Ahmanson Lovelace Brain Mapping CenterUniversity of California, Los AngelesLos AngelesCAUSA
| | - Mark A. Norell
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Peter J. Makovicky
- Integrative Research CenterField Museum of Natural HistoryChicagoILUSA
- Department of Earth and Environmental SciencesUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
70
|
Paoloni V, Gastaldi G, Franchi L, De Razza FC, Cozza P. Evaluation of the morphometric covariation between palatal and craniofacial skeletal morphology in class III malocclusion growing subjects. BMC Oral Health 2020; 20:152. [PMID: 32460800 PMCID: PMC7251885 DOI: 10.1186/s12903-020-01140-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Background To study the covariation between palatal and craniofacial skeletal morphology in Class III growing patients through geometric morphometric analysis (GMM). Methods In this retrospective study, 54 Class III subjects (24F,30M;7.6 ± 0.8yy) were enrolled following these inclusion criteria: European ancestry, Class III skeletal and dental relationship, early mixed dentition, prepubertal skeletal maturation, familiarity for Class III malocclusion, no pseudo Class III malocclusion. Each patient provided upper digital cast and cephalogram before starting the therapy. Landmarks and semilandmarks were digitized (239 on the casts;121 on the lateral radiographs) and GMM was used. Procrustes analysis and principal component analysis (PCA) were applied to show the principal components of palatal and craniofacial skeletal shape variation. Two-block partial least squares analysis (PLS) was used to assess pattern of covariation between palatal and craniofacial morphology. Results Regarding palatal shape variation, PC with largest variance (PC1) described morphological changes in the three space dimensions, while, concerning the craniofacial complex components, PC1 revealed morphological differences along the vertical plane. A significant covariation was found between palatal and craniofacial shape. PLS1 accounted for more than 61,7% of the whole covariation, correlating the craniofacial divergence to palatal height and width. Conclusions In Class III subjects increments of angle divergence are related to a narrow and high palate.
Collapse
Affiliation(s)
- V Paoloni
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - G Gastaldi
- Department of Orthodontics, University Vita-Salute San Raffaele, Milan, Italy
| | - L Franchi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - F C De Razza
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - P Cozza
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
71
|
Segura V, Cassini GH, Prevosti FJ, Machado FA. Integration or Modularity in the Mandible of Canids (Carnivora: Canidae): a Geometric Morphometric Approach. J MAMM EVOL 2020. [DOI: 10.1007/s10914-020-09502-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
72
|
Abstract
Background: many papers investigate the role of the cranial base in facial development, but the results are not in agreement. This can be due to a difference between the central and lateral parts of the cranial base. The aim of the present study is to evaluate the relationship between the central and the lateral cranial base and the facial skeleton in pre-pubertal peak subjects and at the end of growth. Material/Methods: a total sample of 52 latero-lateral cranial teleradiographs were analyzed. To test the correlation between structures, the “Partial Least Square” analysis was performed. Geometric morphometric analysis were applied and partial least square analysis was used to test correlation. Integration was studied removing the effect of allometry. Results: facial skeleton has no significant relation with central cranial base. Facial skeleton has significant relationships with the lateral portion of the cranial base. This relationship is higher in the post-peak phase of growth. Conclusion: the Integration between facial structures and cranial base is significant. The Spatial orientation and shape of the facial structures are both influenced by cranial base. This is mainly due to the lateral portion of cranial base.
Collapse
|
73
|
|
74
|
Reich D, Berger A, von Balthazar M, Chartier M, Sherafati M, Schönenberger J, Manafzadeh S, Staedler YM. Modularity and evolution of flower shape: the role of function, development, and spandrels in Erica. THE NEW PHYTOLOGIST 2020; 226:267-280. [PMID: 31765023 PMCID: PMC7065081 DOI: 10.1111/nph.16337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/10/2019] [Indexed: 05/20/2023]
Abstract
Flowers have been hypothesized to contain either modules of attraction and reproduction, functional modules (pollination-effecting parts) or developmental modules (organ-specific). Do pollination specialization and syndromes influence floral modularity? In order to test these hypotheses and answer this question, we focused on the genus Erica: we gathered 3D data from flowers of 19 species with diverse syndromes via computed tomography, and for the first time tested the above-mentioned hypotheses via 3D geometric morphometrics. To provide an evolutionary framework for our results, we tested the evolutionary mode of floral shape, size and integration under the syndromes regime, and - for the first time - reconstructed the high-dimensional floral shape of their most recent common ancestor. We demonstrate that the modularity of the 3D shape of generalist flowers depends on development and that of specialists is linked to function: modules of pollen deposition and receipt in bird syndrome, and access-restriction to the floral reward in long-proboscid fly syndrome. Only size and shape principal component 1 showed multiple-optima selection, suggesting that they were co-opted during evolution to adapt flowers to novel pollinators. Whole floral shape followed an Ornstein-Uhlenbeck (selection-driven) evolutionary model, and differentiated relatively late. Flower shape modularity thus crucially depends on pollinator specialization and syndrome.
Collapse
Affiliation(s)
- Dieter Reich
- Department of Botany and Biodiversity ResearchDivision of Evolutionary and Systematic BotanyUniversity of ViennaRennweg 14Vienna1030Austria
| | - Andreas Berger
- Department of Botany and Biodiversity ResearchDivision of Evolutionary and Systematic BotanyUniversity of ViennaRennweg 14Vienna1030Austria
| | - Maria von Balthazar
- Department of Botany and Biodiversity ResearchDivision of Structural and Functional BotanyUniversity of ViennaRennweg 14Vienna1030Austria
| | - Marion Chartier
- Department of Botany and Biodiversity ResearchDivision of Structural and Functional BotanyUniversity of ViennaRennweg 14Vienna1030Austria
| | - Mahboubeh Sherafati
- Department of Plant BiologyFaculty of Biological SciencesTarbiat Modares UniversityTehran14115‐154Iran
| | - Jürg Schönenberger
- Department of Botany and Biodiversity ResearchDivision of Structural and Functional BotanyUniversity of ViennaRennweg 14Vienna1030Austria
| | - Sara Manafzadeh
- Department of Environmental Systems ScienceETH ZurichUniversitätstrasse 16Zürich8092Switzerland
| | - Yannick M. Staedler
- Department of Botany and Biodiversity ResearchDivision of Structural and Functional BotanyUniversity of ViennaRennweg 14Vienna1030Austria
| |
Collapse
|
75
|
Huang ST, Wang HR, Yang WQ, Si YC, Wang YT, Sun ML, Qi X, Bai Y. Phylogeny of Libellulidae (Odonata: Anisoptera): comparison of molecular and morphology-based phylogenies based on wing morphology and migration. PeerJ 2020; 8:e8567. [PMID: 32095371 PMCID: PMC7025703 DOI: 10.7717/peerj.8567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022] Open
Abstract
Background Establishing the species limits and resolving phylogenetic relationships are primary goals of taxonomists and evolutionary biologists. At present, a controversial question is about interspecific phylogenetic information in morphological features. Are the interspecific relationships established based on genetic information consistent with the traditional classification system? To address these problems, this study analyzed the wing shape structure of 10 species of Libellulidae, explored the relationship between wing shape and dragonfly behavior and living habits, and established an interspecific morphological relationship tree based on wing shape data. By analyzing the sequences of mitochondrial COI gene and the nuclear genes 18S, 28S rRNA and ITS in 10 species of dragonflies, the interspecific relationship was established. Method The wing shape information of the male forewings and hindwings was obtained by the geometric morphometrics method. The inter-species wing shape relationship was obtained by principal component analysis (PCA) in MorphoJ1.06 software. The inter-species wing shape relationship tree was obtained by cluster analysis (UPGMA) using Mesquite 3.2 software. The COI, 18S, ITS and 28S genes of 10 species dragonfly were blasted and processed by BioEdit v6 software. The Maximum Likelihood(ML) tree was established by raxmlGUI1.5b2 software. The Bayes inference (BI) tree was established by MrBayes 3.2.6 in Geneious software. Results The main difference in forewings among the 10 species of dragonfly was the apical, radial and discoidal regions dominated by the wing nodus. In contrast, the main difference among the hindwings was the apical and anal regions dominated by the wing nodus. The change in wing shape was closely related to the ability of dragonfly to migrate. The interspecific relationship based on molecular data showed that the species of Orthetrum genus branched independently of the other species. Compared to the molecular tree of 10 species, the wing shape clustering showed some phylogenetic information on the forewing shape (with large differences on the forewing shape tree vs. molecular tree), and there was no interspecific phylogenetic information of the hindwing shape tree vs. molecular tree. Conclusion The dragonfly wing shape characteristics are closely related to its migration ability. Species with strong ability to migrate have the forewing shape that is longer and narrower, and have larger anal region, whereas the species that prefer short-distance hovering or standing still for a long time have forewing that are wider and shorter, and the anal region is smaller. Integrating morphological and molecular data to evaluate the relationship among dragonfly species shows there is some interspecific phylogenetic information in the forewing shape and none in the hindwing shape. The forewing and hindwing of dragonflies exhibit an inconsistent pattern of morphological changes in different species.
Collapse
Affiliation(s)
- Shu-Ting Huang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Hai-Rui Wang
- Sports Science Institute, Taizhou University, Taizhou, Zhejiang, China
| | - Wan-Qin Yang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Ya-Chu Si
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Yu-Tian Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Meng-Lian Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Xin Qi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Yi Bai
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
76
|
Püschel TA, Friess M, Manríquez G. Morphological consequences of artificial cranial deformation: Modularity and integration. PLoS One 2020; 15:e0227362. [PMID: 31978063 PMCID: PMC6980596 DOI: 10.1371/journal.pone.0227362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
The cranium is an anatomically complex structure. One source of its complexity is due to its modular organization. Cranial modules are distinct and partially independent units that interact substantially during ontogeny thus generating morphological integration. Artificial Cranial Deformation (ACD) occurs when the human skull is intentionally deformed, through the use of different deforming devices applied to the head while it is developing. Hence, ACD provides an interesting example to assess the degree to which biomechanical perturbations of the developing neurocranium impact on the degree of morphological integration in the skull as a whole. The main objective of this study was to assess how ACD affects the morphological integration of the skull. This was accomplished by comparing a sample of non-deformed crania and two sets of deformed crania (i.e. antero-posterior and oblique). Both developmental and static modularity and integration were assessed through Generalized Procrustes Analysis by considering the symmetric and asymmetric components of variation in adults, using 3D landmark coordinates as raw data. The presence of two developmental modules (i.e. viscero and neurocranium) in the skull was tested. Then, in order to understand how ACD affects morphological integration, the covariation pattern between the neuro and viscerocranium was examined in antero-posterior, oblique and non-deformed cranial categories using Partial Least-Squares. The main objective of this study was to assess how ACD affects the morphological integration of the skull. This was accomplished by comparing a sample of deformed (i.e. antero-posterior and oblique) and non-deformed crania. Hence, differences in integration patterns were compared between groups. The obtained results support the modular organization of the human skull in the two analyzed modules. The integration analyses show that the oblique ACD style differentially affects the static morphological integration of the skull by increasing the covariance between neuro and viscerocranium in a more constrained way than in antero-posterior and non-deformed skulls. In addition, the antero-posterior ACD style seems to affect the developmental integration of the skull by directing the covariation pattern in a more defined manner as compared to the other cranial categories.
Collapse
Affiliation(s)
- Thomas A Püschel
- Primate Models for Behavioural Evolution, Institute of Cognitive and Evolutionary Anthropology, University of Oxford, Oxford, United Kingdom
| | - Martin Friess
- Département Homme et Environnement, Muséum National d'Histoire Naturelle, Paris, France
| | - Germán Manríquez
- Instituto de Investigación en Ciencias Odontológicas, Centro de Análisis Cuantitativo en Antropología Dental, Facultad de Odontología, Universidad de Chile, Santiago, Chile.,Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile
| |
Collapse
|
77
|
Lopes CF, Stefanello F, Bugs C, Stenert C, Maltchik L, Ribeiro JRI. Sexual dimorphism in Belostoma angustum Lauck (Insecta: Heteroptera: Belostomatidae) may be related to paternal care. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The structures involved in parental care are often dimorphic. Female Belostoma angustum water bugs lay eggs on the hemelytra of their mates, where the eggs are brooded until hatching. Males use their hind legs to carry, aerate and protect the eggs. After controlling for covariance between variables, we fitted a series of structural equation models (SEMs) and evaluated the existence of sexual dimorphism in the size of the body and hind legs, in the shape and centroid size of the hemelytrum, and among the static allometry slopes of the size-related differences. Landmarks were used to capture phenotypic variation, by eliminating all non-shape variations with a Procrustes superimposition. Neither the shape of the hemelytrum nor its centroid size was related significantly to the aforementioned linear body measurements. Instead, the differences in the size of the hind legs were mediated by body dimensions only in males. We also found that males were wider and had longer heads than females, according to the SEM intercept values. Our findings suggest that sexual dimorphism in B. angustum may be related to a balance between sexual role reversal and viability costs.
Collapse
Affiliation(s)
- Cassiane Furlan Lopes
- Laboratório de Estudos da Biodiversidade do Pampa (LEBIP), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Rio Grande do Sul State, Brazil
| | - Fabiano Stefanello
- Laboratório de Biologia Comparada e Abelhas, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, Ribeirão Preto, São Paulo, Brazil
| | - Christian Bugs
- Laboratório de Estudos da Biodiversidade do Pampa (LEBIP), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Rio Grande do Sul State, Brazil
| | - Cristina Stenert
- Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade do Vale do Rio dos Sinos, Av. Unisinos, Cristo Rei, São Leopoldo, Rio Grande do Sul State, Brazil
| | - Leonardo Maltchik
- Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade do Vale do Rio dos Sinos, Av. Unisinos, Cristo Rei, São Leopoldo, Rio Grande do Sul State, Brazil
| | - José Ricardo Inacio Ribeiro
- Laboratório de Estudos da Biodiversidade do Pampa (LEBIP), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Rio Grande do Sul State, Brazil
| |
Collapse
|
78
|
Adams DC, Collyer ML. Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 2019; 73:2352-2367. [PMID: 31657008 DOI: 10.1111/evo.13867] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/09/2019] [Indexed: 11/29/2022]
Abstract
The study of modularity is paramount for understanding trends of phenotypic evolution, and for determining the extent to which covariation patterns are conserved across taxa and levels of biological organization. However, biologists currently lack quantitative methods for statistically comparing the strength of modular signal across datasets, and a robust approach for evaluating alternative modular hypotheses for the same dataset. As a solution to these challenges, we propose an effect size measure ( Z CR ) derived from the covariance ratio, and develop hypothesis-testing procedures for their comparison. Computer simulations demonstrate that Z CR displays appropriate statistical properties and low levels of mis-specification, implying that it correctly identifies modular signal, when present. By contrast, alternative methods based on likelihood (EMMLi) and goodness of fit (MINT) suffer from high false positive rates and high model mis-specification rates. An empirical example in sigmodontine rodent mandibles is provided to illustrate the utility of Z CR for comparing modular hypotheses. Overall, we find that covariance ratio effect sizes are useful for comparing patterns of modular signal across datasets or for evaluating alternative modular hypotheses for the same dataset. Finally, the statistical philosophy for pairwise model comparisons using effect sizes should accommodate any future analytical developments for characterizing modular signal.
Collapse
Affiliation(s)
- Dean C Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| | - Michael L Collyer
- Department of Science, Chatham University, Pittsburgh, Pennsylvania, 15232
| |
Collapse
|
79
|
Fruciano C, Meyer A, Franchini P. Divergent Allometric Trajectories in Gene Expression and Coexpression Produce Species Differences in Sympatrically Speciating Midas Cichlid Fish. Genome Biol Evol 2019; 11:1644-1657. [PMID: 31124568 PMCID: PMC6563553 DOI: 10.1093/gbe/evz108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of speciation without geographic isolation (i.e., sympatric speciation) remain debated. This is due in part to the fact that the genomic landscape that could promote or hinder species divergence in the presence of gene flow is still largely unknown. However, intensive research is now centered on understanding the genetic architecture of adaptive traits associated with this process as well as how gene expression might affect these traits. Here, using RNA-Seq data, we investigated gene expression of sympatrically speciating benthic and limnetic Neotropical cichlid fishes at two developmental stages. First, we identified groups of coexpressed genes (modules) at each stage. Although there are a few large and well-preserved modules, most of the other modules are not preserved across life stages. Second, we show that later in development more and larger coexpression modules are associated with divergence between benthic and limnetic fish compared with the earlier life stage. This divergence between benthic and limnetic fish in coexpression mirrors divergence in overall expression between benthic and limnetic fish, which is more pronounced later in life. Our results reveal that already at 1-day posthatch benthic and limnetic fish diverge in (co)expression, and that this divergence becomes more substantial when fish are free-swimming but still unlikely to have divergent swimming and feeding habits. More importantly, our study describes how the coexpression of several genes through development, as opposed to individual genes, is associated with benthic–limnetic species differences, and how two morphogenetic trajectories diverge as fish grow older.
Collapse
Affiliation(s)
- Carmelo Fruciano
- Department of Biology, University of Konstanz, Germany.,Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS UMR 8197, Paris, France
| | - Axel Meyer
- Department of Biology, University of Konstanz, Germany
| | | |
Collapse
|
80
|
Arlegi M, Veschambre‐Couture C, Gómez‐Olivencia A. Evolutionary selection and morphological integration in the vertebral column of modern humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:17-36. [DOI: 10.1002/ajpa.23950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/03/2019] [Accepted: 09/26/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Mikel Arlegi
- Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco‐Euskal Herriko Unibertsitatea (UPV/EHU) Leioa Spain
- Université de Bordeaux, PACEA UMR 5199 Pessac France
| | | | - Asier Gómez‐Olivencia
- Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y TecnologíaUniversidad del País Vasco‐Euskal Herriko Unibertsitatea (UPV/EHU) Leioa Spain
- IKERBASQUE. Basque Foundation for Science Bizkaia Spain
- Centro UCM‐ISCIII de Investigación sobre Evolución y Comportamiento Humanos Madrid Spain
| |
Collapse
|
81
|
Ribeiro JRI, Stefanello F, Bugs C, Stenert C, Maltchik L, Guilbert E. Coevolution between male and female genitalia in Belostoma angustum Lauck, 1964 (Insecta, Heteroptera, Belostomatidae): disentangling size and shape. ZOOLOGY 2019; 137:125711. [PMID: 31634693 DOI: 10.1016/j.zool.2019.125711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/03/2019] [Accepted: 09/22/2019] [Indexed: 11/26/2022]
Abstract
Sexual and natural selection mechanisms might drive variation in the genitalia of male animals. All aforementioned mechanisms are known to predict the coevolution of male and female genital morphology. Belostoma angustum is known to have subtle variation in the male and female genitalia of its members. In this species, phallosoma with dorsal arms and ventral diverticulum are assumed to be intromittent male genital traits that interact with the female genital chamber. We thus evaluated the existence of variation after disentangling the size from the shape of male genitalia in B. angustum. Body and genitalia dimensions and photographs of phallosoma with dorsal arms, ventral diverticulum and lateral views of the right paramere (the non-intromittent part) were obtained. Semi-landmarks and landmarks were used to capture phenotypic variation, by eliminating all non-shape variation with a Procrustes superimposition. Male and female specimens collected from the same location or immediate vicinity were grouped, and 12 groups originating from 12 locations were used to conduct two block-Partial Least Squares analyses (PLS). Group structures were also taken into account by adopting a multilevel approach. The male and female genital traits had similarly shallow static allometry slopes, as well as the dispersion values around the mean (i.e. coefficient of variation) and the standard error of the estimate. The correlation between the pooled within-locality covariance matrix of the symmetric component of phallosoma with dorsal arms and the female genital chamber was significant (r-PLS=0.37), as well as that with male body dimensions (r-PLS=0.36), even after controlling for allometry. Specimens with lower PLS shape scores had narrower phallosoma with dorsal arms, with poorly curved outer margins of the dorsal arms, whereas specimens with higher PLS shape scores had slightly shorter dorsal arms, with strongly curved outer margins. Lower shape scores were associated with narrower and especially shorter and narrower female genital chambers. Similar shallow allometric curves among sexes and the correlation between intromittent male parts and the female genital chamber, as well as male dimensions, suggest the coevolution of these contact structures in size and in shape.
Collapse
Affiliation(s)
- José Ricardo Inacio Ribeiro
- Laboratório de Estudos da Biodiversidade do Pampa (LEBIP), Universidade Federal do Pampa, Campus São Gabriel, 97307-020, São Gabriel, Rio Grande do Sul State, Brazil.
| | - Fabiano Stefanello
- Laboratório de Estudos da Biodiversidade do Pampa (LEBIP), Universidade Federal do Pampa, Campus São Gabriel, 97307-020, São Gabriel, Rio Grande do Sul State, Brazil.
| | - Cristhian Bugs
- Laboratório de Estudos da Biodiversidade do Pampa (LEBIP), Universidade Federal do Pampa, Campus São Gabriel, 97307-020, São Gabriel, Rio Grande do Sul State, Brazil.
| | - Cristina Stenert
- Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, 93022-000, Cristo Rei, São Leopoldo, Rio Grande do Sul State, Brazil.
| | - Leonardo Maltchik
- Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, 93022-000, Cristo Rei, São Leopoldo, Rio Grande do Sul State, Brazil.
| | - Eric Guilbert
- Muséum national d'Histoire naturelle, MECADEV - UMR 7179 MNHN/CNRS, CP50-57, rue Cuvier, 75005, Paris, France.
| |
Collapse
|
82
|
Álvarez A, Ercoli MD, Verzi DH. Integration and diversity of the caviomorph mandible (Rodentia: Hystricomorpha): assessing the evolutionary history through fossils and ancestral shape reconstructions. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractCaviomorph rodents constitute a highly diverse clade of Neotropical mammals. They are recorded since at least the late Middle Eocene and have a long and complex evolutionary history. Using geometric morphometric data, we analysed the variation in mandibular shape of this clade through integration analyses, allometry and shape optimizations onto a phylogenetic tree of 104 extant and extinct species. The analyses of shape variation revealed a strong influence of phylogenetic structure and life habits. A remarkable allometric effect was observed for specific mandibular traits. Morphological changes occurring in the alveolar and muscular functional units were moderately associated. Interestingly, the coordinated evolution of these two functional units was decoupled in the clade of extant abrocomids. A sequential and nearly synchronic acquisition of convergent traits has occurred in chinchillids and derived cavioids since at least the early Middle Oligocene, probably derived from grass-feeding habits or similar adaptations to other abrasive items. Convergences between fossorial taxa evolved in two main events through the Oligocene and middle Late Miocene. Morphological analysis of the fossil representatives allowed a better understanding of the timing of trait acquisitions during the evolutionary history of caviomorphs and its relationship with global and regional palaeoenvironmental changes.
Collapse
Affiliation(s)
- Alicia Álvarez
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, IdGyM, San Salvador de Jujuy, Jujuy, Argentina
| | - Marcos D Ercoli
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, IdGyM, San Salvador de Jujuy, Jujuy, Argentina
| | - Diego H Verzi
- Sección Mastozoología, Museo de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
83
|
Nuzzolese E, Randolph-Quinney P, Randolph-Quinney J, Di Vella G. Geometric morphometric analysis of sexual dimorphism in the mandible from panoramic X-ray images. THE JOURNAL OF FORENSIC ODONTO-STOMATOLOGY 2019; 37:35-44. [PMID: 31589594 PMCID: PMC6981353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human mandible is routinely utilised as part of the assessment of biological identity in forensic anthropological and odontological practice. The research introduces a novel geometric morphometric technique to investigate and quantify shape variation in the morphology of the mandibular corpus and ascending ramus and consequently highlights the potential for forensic purposes. Human mandibles from digital clinical orthopantomogram X-ray images, based on a sample of 50 male and 50 female adults from a modern Italian population, were examined. Three fixed landmarks were applied to the symphysis and condyle and 50 semi-landmarks re-sampled along the inferior corpus and the posterior ramus. Symmetrical reflection was applied yielding 200 configurations of 53 landmarks. Shape analyses were undertaken via: Procrustes superimposition; principal components analysis to investigate patterns of variation; classification using linear discriminant analysis with leave-one-out cross-validation; partial least squares (PLS) to test for structural modularity; and finally, retitle page sampling and re-analysis following PLS to optimize shape classification criteria. Stepwise re-sampling of landmarks reached an optimum cross-validated classification of 94.0% based on 25 landmarks; the results are strongly significant and suggest that the shape relationship between the mandibular corpus and ramus offers significant potential for forensic identification purposes using this method.
Collapse
Affiliation(s)
- E Nuzzolese
- Human Identification Laboratory, University of Turin, Italy
| | | | | | - G Di Vella
- Human Identification Laboratory, University of Turin, Italy
| |
Collapse
|
84
|
Vukov T, Mirč M, Tomašević Kolarov N, Stamenković S. Urbanization and the common wall lizard (
Podarcis muralis
) in the Pannonian basin, Serbia: nowhere safe? J Zool (1987) 2019. [DOI: 10.1111/jzo.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- T. Vukov
- Department of Evolutionary Biology Institute for Biological Research ‘Siniša Stanković’ University of Belgrade Belgrade Serbia
| | - M. Mirč
- Department of Evolutionary Biology Institute for Biological Research ‘Siniša Stanković’ University of Belgrade Belgrade Serbia
| | - N. Tomašević Kolarov
- Department of Evolutionary Biology Institute for Biological Research ‘Siniša Stanković’ University of Belgrade Belgrade Serbia
| | - S. Stamenković
- Faculty of Biology University of Belgrade Belgrade Serbia
| |
Collapse
|
85
|
Goswami A, Watanabe A, Felice RN, Bardua C, Fabre AC, Polly PD. High-Density Morphometric Analysis of Shape and Integration: The Good, the Bad, and the Not-Really-a-Problem. Integr Comp Biol 2019; 59:669-683. [PMID: 31243431 PMCID: PMC6754122 DOI: 10.1093/icb/icz120] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The field of comparative morphology has entered a new phase with the rapid generation of high-resolution three-dimensional (3D) data. With freely available 3D data of thousands of species, methods for quantifying morphology that harness this rich phenotypic information are quickly emerging. Among these techniques, high-density geometric morphometric approaches provide a powerful and versatile framework to robustly characterize shape and phenotypic integration, the covariances among morphological traits. These methods are particularly useful for analyses of complex structures and across disparate taxa, which may share few landmarks of unambiguous homology. However, high-density geometric morphometrics also brings challenges, for example, with statistical, but not biological, covariances imposed by placement and sliding of semilandmarks and registration methods such as Procrustes superimposition. Here, we present simulations and case studies of high-density datasets for squamates, birds, and caecilians that exemplify the promise and challenges of high-dimensional analyses of phenotypic integration and modularity. We assess: (1) the relative merits of "big" high-density geometric morphometrics data over traditional shape data; (2) the impact of Procrustes superimposition on analyses of integration and modularity; and (3) differences in patterns of integration between analyses using high-density geometric morphometrics and those using discrete landmarks. We demonstrate that for many skull regions, 20-30 landmarks and/or semilandmarks are needed to accurately characterize their shape variation, and landmark-only analyses do a particularly poor job of capturing shape variation in vault and rostrum bones. Procrustes superimposition can mask modularity, especially when landmarks covary in parallel directions, but this effect decreases with more biologically complex covariance patterns. The directional effect of landmark variation on the position of the centroid affects recovery of covariance patterns more than landmark number does. Landmark-only and landmark-plus-sliding-semilandmark analyses of integration are generally congruent in overall pattern of integration, but landmark-only analyses tend to show higher integration between adjacent bones, especially when landmarks placed on the sutures between bones introduces a boundary bias. Allometry may be a stronger influence on patterns of integration in landmark-only analyses, which show stronger integration prior to removal of allometric effects compared to analyses including semilandmarks. High-density geometric morphometrics has its challenges and drawbacks, but our analyses of simulated and empirical datasets demonstrate that these potential issues are unlikely to obscure genuine biological signal. Rather, high-density geometric morphometric data exceed traditional landmark-based methods in characterization of morphology and allow more nuanced comparisons across disparate taxa. Combined with the rapid increases in 3D data availability, high-density morphometric approaches have immense potential to propel a new class of studies of comparative morphology and phenotypic integration.
Collapse
Affiliation(s)
- Anjali Goswami
- Life Sciences Department, Vertebrates Division, Natural History Museum, London, SW7 5BD, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Akinobu Watanabe
- Life Sciences Department, Vertebrates Division, Natural History Museum, London, SW7 5BD, UK
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Ryan N Felice
- Life Sciences Department, Vertebrates Division, Natural History Museum, London, SW7 5BD, UK
- Department of Cell and Developmental Biology, Centre for Integrative Anatomy, University College London, London, WC1E 6BT, UK
| | - Carla Bardua
- Life Sciences Department, Vertebrates Division, Natural History Museum, London, SW7 5BD, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Anne-Claire Fabre
- Life Sciences Department, Vertebrates Division, Natural History Museum, London, SW7 5BD, UK
| | - P David Polly
- Departments of Earth and Atmospheric Sciences, Biology, and Anthropology, Indiana University, 1001 E. 10 Street, Bloomington, IN 47405, USA
| |
Collapse
|
86
|
Goedert D, Calsbeek R. Experimental Evidence That Metamorphosis Alleviates Genomic Conflict. Am Nat 2019; 194:356-366. [DOI: 10.1086/704183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
87
|
Hedrick BP, Mutumi GL, Munteanu VD, Sadier A, Davies KTJ, Rossiter SJ, Sears KE, Dávalos LM, Dumont E. Morphological Diversification under High Integration in a Hyper Diverse Mammal Clade. J MAMM EVOL 2019. [DOI: 10.1007/s10914-019-09472-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
88
|
Neaux D, Wroe S, Ledogar JA, Heins Ledogar S, Sansalone G. Morphological integration affects the evolution of midline cranial base, lateral basicranium, and face across primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:37-47. [PMID: 31290149 DOI: 10.1002/ajpa.23899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The basicranium and face are two integrated bony structures displaying great morphological diversity across primates. Previous studies in hominids determined that the basicranium is composed of two independent modules: the midline basicranium, mostly influenced by brain size, and the lateral basicranium, predominantly associated with facial shape. To better assess how morphological integration impacts the evolution of primate cranial shape diversity, we test to determine whether the relationships found in hominids are retained across the order. MATERIALS AND METHODS Three-dimensional landmarks (29) were placed on 143 computed tomography scans of six major clades of extant primate crania. We assessed the covariation between midline basicranium, lateral basicranium, face, and endocranial volume using phylogenetically informed partial least squares analyses and phylogenetic generalized least squares models. RESULTS We found significant integration between lateral basicranium and face and between midline basicranium and face. We also described a significant correlation between midline basicranium and endocranial volume but not between lateral basicranium and endocranial volume. DISCUSSION Our findings demonstrate a significant and pervasive integration in the craniofacial structures across primates, differing from previous results in hominids. The uniqueness of module organization in hominids may explain this distinction. We found that endocranial volume is significantly integrated to the midline basicranium but not to the lateral basicranium. This finding underlines the significant effect of brain size on the shape of the midline structures of the cranial base in primates. With the covariations linking the studied features defined here, we suggest that future studies should focus on determining the causal links between them.
Collapse
Affiliation(s)
- Dimitri Neaux
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), UMR 7209, Muséum national d'Histoire naturelle-CNRS, Paris, France.,Function, Evolution & Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia.,Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie (PALEVOPRIM), UMR 7262, Université de Poitiers-CNRS, Poitiers, France
| | - Stephen Wroe
- Function, Evolution & Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Justin A Ledogar
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Sarah Heins Ledogar
- Department of Archaeology & Palaeoanthropology, School of Humanities, University of New England, Armidale, New South Wales, Australia
| | - Gabriele Sansalone
- Function, Evolution & Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia.,Department of Sciences, Roma Tre University, Rome, Italy.,Center for Evolutionary Ecology, Rome, Italy
| |
Collapse
|
89
|
Selba MC, Oechtering GU, Heng HG, DeLeon VB. The Impact of Selection for Facial Reduction in Dogs: Geometric Morphometric Analysis of Canine Cranial Shape. Anat Rec (Hoboken) 2019; 303:330-346. [DOI: 10.1002/ar.24184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/10/2019] [Accepted: 03/20/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Molly C. Selba
- Department of AnthropologyUniversity of Florida Gainesville Florida
| | | | | | | |
Collapse
|
90
|
3D Face Factorisation for Face Recognition Using Pattern Recognition Algorithms. CYBERNETICS AND INFORMATION TECHNOLOGIES 2019. [DOI: 10.2478/cait-2019-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The face is the preferable biometrics for person recognition or identification applications because person identifying by face is a human connate habit. In contrast to 2D face recognition, 3D face recognition is practically robust to illumination variance, facial cosmetics, and face pose changes. Traditional 3D face recognition methods describe shape variation across the whole face using holistic features. In spite of that, taking into account facial regions, which are unchanged within expressions, can acquire high performance 3D face recognition system. In this research, the recognition analysis is based on defining a set of coherent parts. Those parts can be considered as latent factors in the face shape space. Non-negative matrix Factorisation technique is used to segment the 3D faces to coherent regions. The best recognition performance is achieved when the vertices of 20 face regions are utilised as a feature vector for recognition task. The region-based 3D face recognition approach provides a 96.4% recognition rate in FRGCv2 dataset.
Collapse
|
91
|
Hosseini P, Tadavarthi Y, Martin‐Harris B, Pearson WG. Functional Modules of Pharyngeal Swallowing Mechanics. Laryngoscope Investig Otolaryngol 2019; 4:341-346. [PMID: 31236469 PMCID: PMC6580054 DOI: 10.1002/lio2.273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The present retrospective cohort study aims to test the hypothesis that elements of swallowing mechanics including hyoid movement, laryngeal elevation, tongue base retraction, pharyngeal shortening, pharyngeal constriction, and head and neck extension can be grouped into functional modules, and that these modules are predictably altered in disease states. METHODS Modified barium swallow video clips of a thick and a thin liquid swallow from 40 normal patients and 10 dysphagic post-treatment oropharyngeal head-and-neck cancer (HNC) patients were used in this study. Coordinate locations of 12 anatomical landmarks mapping pharyngeal swallowing mechanics were tracked on every frame during the pharyngeal phase of each swallow using a custom-made MATLAB tool. Morphometric modularity hypothesis testing was performed on these coordinate data to characterize the modular elements of swallowing function in each cohort using MorphoJ software. RESULTS The elements of normal swallowing can be grouped into four functional modules including bolus propulsion, pharyngeal shortening, airway protection, and head and neck posture. Modularity in HNC patient showed an intact airway protection module but altered bolus propulsion and pharyngeal shortening modules. To cross-validate the alteration in modules, a post hoc analysis was performed, which showed significantly increased vallecular (P < .04) and piriform (P < .05) residue but no significant change in aspiration status in the HNC cohort versus controls. CONCLUSIONS This study suggests that while pharyngeal swallowing mechanics is highly complex, the system is organized into functional modules, and that changes in modularity impacts swallowing performance. This approach to understanding swallowing function may help the patient care team better address swallowing difficulties. LEVEL OF EVIDENCE 2b.
Collapse
Affiliation(s)
- Pouria Hosseini
- Medical College of Georgia (MCG)Augusta UniversityAugustaGeorgiaU.S.A.
| | | | - Bonnie Martin‐Harris
- Department of Communication Sciences and DisordersSchool of Communication, Northwestern UniversityEvanstonIllinoisU.S.A.
- Department of Otolaryngology—Head and Neck SurgeryFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisU.S.A.
- Department of Radiation OncologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisU.S.A.
| | - William G. Pearson
- Department of Cellular Biology and AnatomyMCG, Augusta UniversityAugustaGeorgiaU.S.A.
- Department of OtolaryngologyMCG, Augusta UniversityAugustaGeorgiaU.S.A.
| |
Collapse
|
92
|
Quina AS, Durão AF, Muñoz-Muñoz F, Ventura J, da Luz Mathias M. Population effects of heavy metal pollution in wild Algerian mice (Mus spretus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:414-424. [PMID: 30639867 DOI: 10.1016/j.ecoenv.2018.12.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Heavy metal mining is one of the largest sources of environmental pollution. The analysis of different types of biomarkers in sentinel species living in contaminated areas provides a measure of the degree of the ecological impact of pollution and is thus a valuable tool for human and environmental risk assessments. In previous studies we found that specimens from two populations of the Algerian mice (Mus spretus) living in two abandoned heavy metal mines (Aljustrel and Preguiça, Portugal) had higher body burdens of heavy metals, which led to alterations in enzymatic activities and in haematological, histological and genotoxic parameters, than mice from a nearby reference population. We have now analysed individuals from the same sites at the biometric and genetic levels to get a broader portrayal of the impact of heavy metal pollution on biodiversity, from molecules to populations. Size and shape variations of the mouse mandible were searched by implementing the geometric morphometric method. Population genetic differentiation and diversity parameters (φST estimates; nucleotide and haplotype diversities) were studied using the mitochondrial cytochrome b gene (Cytb) and the control region (CR). The morphometric analyses revealed that animals from the three sites differed significantly in the shape of the mandible, but mandibular shape varied in a more resembling way within individuals of both mine sites, which is highly suggestive for an effect of environmental quality on normal development pathways in Algerian mice. Also, antisymmetry in mandible size and shape was detected in all populations, making these traits not reliable indicators of developmental instability. Overall little genetic differentiation was found among the three populations, although pairwise φST comparisons revealed that the Aljustrel and the Preguiça populations were each differentiated from the other two populations in Cytb and in CR, respectively. Genetic diversity parameters revealed higher genetic diversity for Cytb in the population from Aljustrel, while in the population from Preguiça diversity of the two markers changed in opposite directions, higher genetic diversity in CR and lower in Cytb, compared to the reference population. Demographic changes and increased mutation rates may explain these findings. We show that developmental patterns and genetic composition of wild populations of a small mammal can be affected by chronic heavy metal exposure within a relatively short time. Anthropogenic stress may thus influence the evolutionary path of natural populations, with largely unpredictable ecological costs.
Collapse
Affiliation(s)
- Ana Sofia Quina
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisboa, Portugal; Centro de Estudos do Ambiente e do Mar - Lisboa (CESAM; FCUL), Lisboa, Portugal.
| | - Ana Filipa Durão
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisboa, Portugal
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Spain
| | - Maria da Luz Mathias
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisboa, Portugal; Centro de Estudos do Ambiente e do Mar - Lisboa (CESAM; FCUL), Lisboa, Portugal
| |
Collapse
|
93
|
Laganà G, Palmacci D, Ruvolo G, Cozza P, Paoloni V. 3D evaluation of maxillary morphology in Marfan growing subjects: a controlled clinical study. Prog Orthod 2019; 20:12. [PMID: 30880370 PMCID: PMC6421354 DOI: 10.1186/s40510-019-0264-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/07/2019] [Indexed: 12/01/2022] Open
Abstract
Background Marfan syndrome is a rare autosomal dominant inherited disease of the connective tissue associated with various craniofacial abnormalities. Aim of the present study was to assess the variability of palatal shape in a sample of 31 Marfan patients compared to a control group of no syndromic subjects, in two stages of dentition, by using 3D geometric morphometric analysis. Methods Thirty one growing subjects with Marfan syndrome were selected and divided into two subgroups: MG1 with mixed dentition (10 M, 6F, mean age 7+/− 0.7 years), MG2 with permanent dentition (8 M, 7F, mean age 13+/− 0,5 years). Each subgroup was compared to a control group (CG1 mixed dentition, 9 M, 7F, mean age 7.6+/− 0.5 years; CG2 permanent dentition, 9 M, 6F, mean age 12.8+/− 0.7 years) matched on age, sex distribution, stage of dentition and skeletal maturation. Then the two subgroups were compared one to each other. For each patient maxillary dental casts were taken, scanned and digitized. 3D geometric morphometric methods were applied. Procrustes analysis was used and principal component analysis was performed to reveal the main patterns of palatal shape variation. Results Both Marfan subgroups showed important reductions in the transversal plane associated with a deep palatal vault when compared to the control groups (MG1 vs CG1 P = 0,003; MG2 vs CG2 P = 0,07). Moreover a statistically significant difference between the palatal shape of MG1 and MG2 was found (P = 0.017) showing a significant worsening of palatal depth and constriction from mixed to permanent dentition in Marfan subjects. Conclusion Marfan subjects showed a specific palatal morphology with maxillary constriction and deeper palatal vault when compared to a control group of healthy subjects. The constriction and the depth of the palatal vault in Marfan patients worsen from mixed dentition to permanent dentition more then in no syndromic subjects.
Collapse
Affiliation(s)
- Giuseppina Laganà
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy
| | - Daniel Palmacci
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy
| | - Giovanni Ruvolo
- Department of Cardiac Surgery Unit, Centre for Rare Diseases for Marfan Syndrome and Related Disorders, University of Tor Vergata General Hospital, Rome, Italy
| | - Paola Cozza
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy
| | - Valeria Paoloni
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
94
|
López-Aguirre C, Hand SJ, Koyabu D, Son NT, Wilson LAB. Postcranial heterochrony, modularity, integration and disparity in the prenatal ossification in bats (Chiroptera). BMC Evol Biol 2019; 19:75. [PMID: 30866800 PMCID: PMC6417144 DOI: 10.1186/s12862-019-1396-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/21/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Self-powered flight is one of the most energy-intensive types of locomotion found in vertebrates. It is also associated with a range of extreme morpho-physiological adaptations that evolved independently in three different vertebrate groups. Considering that development acts as a bridge between the genotype and phenotype on which selection acts, studying the ossification of the postcranium can potentially illuminate our understanding of bat flight evolution. However, the ontogenetic basis of vertebrate flight remains largely understudied. Advances in quantitative analysis of sequence heterochrony and morphogenetic growth have created novel approaches to study the developmental basis of diversification and the evolvability of skeletal morphogenesis. Assessing the presence of ontogenetic disparity, integration and modularity from an evolutionary approach allows assessing whether flight may have resulted in evolutionary differences in the magnitude and mode of development in bats. RESULTS We quantitatively compared the prenatal ossification of the postcranium (24 bones) between bats (14 species), non-volant mammals (11 species) and birds (14 species), combining for the first time prenatal sequence heterochrony and developmental growth data. Sequence heterochrony was found across groups, showing that bat postcranial development shares patterns found in other flying vertebrates but also those in non-volant mammals. In bats, modularity was found as an axial-appendicular partition, resembling a mammalian pattern of developmental modularity and suggesting flight did not repattern prenatal postcranial covariance in bats. CONCLUSIONS Combining prenatal data from 14 bat species, this study represents the most comprehensive quantitative analysis of chiropteran ossification to date. Heterochrony between the wing and leg in bats could reflect functional needs of the newborn, rather than ecological aspects of the adult. Bats share similarities with birds in the development of structures involved in flight (i.e. handwing and sternum), suggesting that flight altriciality and early ossification of pedal phalanges and sternum are common across flying vertebrates. These results indicate that the developmental modularity found in bats facilitates intramodular phenotypic diversification of the skeleton. Integration and disparity increased across developmental time in bats. We also found a delay in the ossification of highly adaptable and evolvable regions (e.g. handwing and sternum) that are directly associated with flight performance.
Collapse
Affiliation(s)
- Camilo López-Aguirre
- PANGEA Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Suzanne J. Hand
- PANGEA Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Daisuke Koyabu
- University Museum, University of Tokyo, Tokyo, Japan
- Department of Humanities and Sciences, Musashino Art University, Tokyo, Japan
| | - Nguyen Truong Son
- Department of Vertebrate Zoology, Institute of Ecology and Biological Resources, Vietnam Academy of Sciences and Technology, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Vietnam
| | - Laura A. B. Wilson
- PANGEA Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
95
|
Abstract
Morphological integration and modularity are important for understanding phenotypic evolution because they constrain variation subjected to selection and enable independent evolution of functional and developmental units. We report dental integration and modularity in representative otariid (Eumetopias jubatus, Callorhinus ursinus) and phocid (Phoca largha, Histriophoca fasciata) species of Pinnipedia. This is the first study of integration and modularity in a secondarily simplified dentition with simple occlusion. Integration was stronger in both otariid species than in either phocid species and related positively to dental occlusion and negatively to both modularity and tooth-size variability across all the species. The canines and third upper incisor were most strongly integrated, comprising a module that likely serves as occlusal guides for the postcanines. There was no or weak modularity among tooth classes. The reported integration is stronger than or similar to that in mammals with complex dentition and refined occlusion. We hypothesise that this strong integration is driven by dental occlusion, and that it is enabled by reduction of modularity that constrains overall integration in complex dentitions. We propose that modularity was reduced in pinnipeds during the transition to aquatic life in association with the origin of pierce-feeding and loss of mastication caused by underwater feeding.
Collapse
|
96
|
Taming extreme morphological variability through coupling of molecular phylogeny and quantitative phenotype analysis as a new avenue for taxonomy. Sci Rep 2019; 9:2429. [PMID: 30787369 PMCID: PMC6382794 DOI: 10.1038/s41598-019-38875-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/11/2019] [Indexed: 11/27/2022] Open
Abstract
Identification of animals is often hindered by decoupling of phenotypic and molecular evolutionary rates. The Acanthocyclops vernalis (Fischer, 1853) complex is arguably the most problematic group of cyclopoids and possibly of all copepods, with diversity estimates based on morphology ranging from 2 to 34 taxa. We reconstructed their phylogeny based on one nuclear and three mitochondrial markers, revealing only four species in the Holarctic and always the following sister-species pairs: vernalis–europensis sp. nov. and robustus–americanus. Landmarks for quantitative shape analyses were collected from 147 specimens on five structures commonly used to delineate cyclopoids. Procrustes ANOVA showed small directional asymmetry in all datasets, but large sexual dimorphism in shape and size. Allometry was also highly significant. Principal component analyses of size-corrected data almost completely separated species in morphospace based on the last exopodal and endopodal segments of the fourth leg. These two structures showed the highest amount of covariation, while modularity could not be proven and a phylogenetic signal was only observed in one structure. Spinules and sensilla have a limited use in delineating species here. Calculating mean shapes and the extent of inter and intraspecific phenotypic variability opens new horizons for modern taxonomy.
Collapse
|
97
|
Katsube M, Yamada S, Yamaguchi Y, Takakuwa T, Yamamoto A, Imai H, Saito A, Shimizu A, Suzuki S. Critical Growth Processes for the Midfacial Morphogenesis in the Early Prenatal Period. Cleft Palate Craniofac J 2019; 56:1026-1037. [PMID: 30773047 DOI: 10.1177/1055665619827189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Congenital midfacial hypoplasia often requires intensive treatments and is a typical condition for the Binder phenotype and syndromic craniosynostosis. The growth trait of the midfacial skeleton during the early fetal period has been assumed to be critical for such an anomaly. However, previous embryological studies using 2-dimensional analyses and specimens during the late fetal period have not been sufficient to reveal it. OBJECTIVE To understand the morphogenesis of the midfacial skeleton in the early fetal period via 3-dimensional quantification of the growth trait and investigation of the developmental association between the growth centers and midface. METHODS Magnetic resonance images were obtained from 60 human fetuses during the early fetal period. Three-dimensional shape changes in the craniofacial skeleton along growth were quantified and visualized using geometric morphometrics. Subsequently, the degree of development was computed. Furthermore, the developmental association between the growth centers and the midfacial skeleton was statistically investigated and visualized. RESULTS The zygoma expanded drastically in the anterolateral dimension, and the lateral part of the maxilla developed forward until approximately 13 weeks of gestation. The growth centers such as the nasal septum and anterior portion of the sphenoid were highly associated with the forward growth of the midfacial skeleton (RV = 0.589; P < .001). CONCLUSIONS The development of the midface, especially of the zygoma, before 13 weeks of gestation played an essential role in the midfacial development. Moreover, the growth centers had a strong association with midfacial forward growth before birth.
Collapse
Affiliation(s)
- Motoki Katsube
- 1 Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,2 Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigehito Yamada
- 2 Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,3 Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Yamaguchi
- 2 Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Takakuwa
- 3 Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Yamamoto
- 4 Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohiko Imai
- 5 Department of Systems Science, Kyoto University Graduate School of Informatics, Kyoto, Japan
| | - Atsushi Saito
- 6 Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akinobu Shimizu
- 6 Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shigehiko Suzuki
- 1 Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
98
|
Le Roy C, Cornette R, Llaurens V, Debat V. Effects of natural wing damage on flight performance in Morpho butterflies: what can it tell us about wing shape evolution? J Exp Biol 2019; 222:jeb.204057. [DOI: 10.1242/jeb.204057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
Flying insects frequently experience wing damage during their life. Such irreversible alterations of wing shape affect flight performance and ultimately fitness. Insects have been shown to compensate for wing damage through various behavioural adjustments, but the importance of damage location over the wings has been scarcely studied. Using natural variation in wing damage, here we tested how the loss of different wing parts affect flight performance. We quantified flight performance in two species of large butterflies, Morpho helenor and M. achilles, caught in the wild, and displaying large variation in the extent and location of wing damage. We artificially generated more severe wing damage in our sample to contrast natural vs. higher magnitude of wing loss. Wing shape alteration across our sample was quantified using geometric morphometrics to test the effect of different damage distributions on flight performance. Our results show that impaired flight performance clearly depends on damage location over the wings, pointing out a relative importance of different wing parts for flight. Deteriorated forewings leading edge most crucially affected flight performance, specifically decreasing flight speed and proportion of gliding flight. In contrast, most frequent natural damage such as scattered wing margin had no detectable effect on flight behaviour. Damages located on the hindwings – although having a limited effect on flight – were associated with reduced flight height, suggesting that fore- and hindwings play different roles in butterfly flight. By contrasting harmless and deleterious consequences of various types of wing damage, our study points at different selective regimes acting on morphological variations of butterfly wings.
Collapse
Affiliation(s)
- Camille Le Roy
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l’École de Médecine, 75006, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| |
Collapse
|
99
|
Szczygielski T, Słowiak J, Dróżdż D. Shell variability in the stem turtles Proterochersis spp. PeerJ 2019; 6:e6134. [PMID: 30595986 PMCID: PMC6305121 DOI: 10.7717/peerj.6134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background Turtle shells tend to exhibit frequent and substantial variability, both in bone and scute layout. Aside from secondary changes, caused by diseases, parasites, and trauma, this variability appears to be inherent and result from stochastic or externally induced flaws of developmental programs. It is, thus, expected to be present in fossil turtle species at least as prominently, as in modern populations. Descriptions of variability and ontogeny are, however, rare for fossil turtles, mainly due to rarity, incompleteness, damage, and post-mortem deformation of their remains. This paper is an attempt at description and interpretation of external shell variability in representatives of the oldest true turtles, Proterochersis robusta and Proterochersis porebensis (Proterochersidae, the sister group to all other known testudinatans) from the Late Triassic (Norian) of Germany and Poland. Methods All the available shell remains of Proterochersis robusta (13 specimens) and Proterochersis porebensis (275 specimens) were studied morphologically in order to identify any ontogenetic changes, intraspecific variability, sexual dimorphism, and shell abnormalities. To test the inferred sexual dimorphism, shape analyses were performed for two regions (gular and anal) of the plastron. Results Proterochersis spp. exhibits large shell variability, and at least some of the observed changes seem to be correlated with ontogeny (growth of gulars, extragulars, caudals, and marginals, disappearance of middorsal keel on the carapace). Several specimens show abnormal layout of scute sulci, several others unusual morphologies of vertebral scute areas, one has an additional pair of plastral scutes, and one extraordinarily pronounced, likely pathological, growth rings on the carapace. Both species are represented in a wide spectrum of sizes, from hatchlings to old, mature individuals. The largest fragmentary specimens of Proterochersis porebensis allow estimation of its maximal carapace length at approximately 80 cm, while Proterochersis robusta appears to have reached lower maximal sizes. Discussion This is the second contribution describing variability among numerous specimens of Triassic turtles, and the first to show evidence of unambiguous shell abnormalities. Presented data supplement the sparse knowledge of shell scute development in the earliest turtles and suggest that at least some aspects of the developmental programs governing scute development were already similar in the Late Triassic to these of modern forms.
Collapse
Affiliation(s)
- Tomasz Szczygielski
- Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland.,Department of Paleobiology and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Justyna Słowiak
- Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Dróżdż
- Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
100
|
Delgado MN, Pérez-Pérez A, Galbany J. Morphological variation and covariation in mandibular molars of platyrrhine primates. J Morphol 2018; 280:20-34. [PMID: 30556948 DOI: 10.1002/jmor.20907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 08/08/2018] [Accepted: 09/23/2018] [Indexed: 11/07/2022]
Abstract
Molars are highly integrated biological structures that have been used for inferring evolutionary relationships among taxa. However, parallel and convergent morphological traits can be affected by developmental and functional constraints. Here, we analyze molar shapes of platyrrhines in order to explore if platyrrhine molar diversity reflects homogeneous patterns of molar variation and covariation. We digitized 30 landmarks on mandibular first and second molars of 418 extant and 11 fossil platyrrhine specimens to determine the degree of integration of both molars when treated as a single module. We combined morphological and phylogenetic data to investigate the phylogenetic signal and to visualize the history of molar shape changes. All platyrrhine taxa show a common shape pattern suggesting that a relatively low degree of phenotypic variation is caused by convergent evolution, although molar shape carries significant phylogenetic signal. Atelidae and Pitheciidae show high levels of integration with low variation between the two molars, whereas the Cebinae/Saimiriinae, and especially Callitrichinae, show greater variation between molars and trend toward a modular organization. We hypothesize that biomechanical constraints of the masticatory apparatus, and the dietary profile of each taxon are the main factors that determine high covariation in molars. In contrast, low molar shape covariation may result from the fact that each molar exhibits a distinct ecological signal, as molars can be exposed to distinct occlusal loadings during food processing, suggesting that different selective pressures on molars can reduce overall molar integration.
Collapse
Affiliation(s)
- Mónica Nova Delgado
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Alejandro Pérez-Pérez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Jordi Galbany
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain.,Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
| |
Collapse
|