51
|
Low-frequency stimulation inhibits epileptogenesis by modulating the early network of the limbic system as evaluated in amygdala kindling model. Brain Struct Funct 2013; 219:1685-96. [DOI: 10.1007/s00429-013-0594-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 06/03/2013] [Indexed: 12/29/2022]
|
52
|
Abstract
Despite advances in the medical and surgical therapy for epilepsy, about 30% of patients do not achieve full seizure control. In the past 5 years new antiepileptic drugs have been approved for clinical use. Some of these drugs have unique, novel mechanisms of action. Overall efficacy of these agents, however, seems similar to other antiepileptic drugs. Vagus nerve stimulation is a well-established palliative therapy for medically resistant epilepsy. Neurostimulation, with newer devices and targets becoming available, is a rapidly expanding field in epileptology. Considerable development and research are still necessary before these newer techniques become the standard of care for the treatment of epilepsy.
Collapse
Affiliation(s)
- Jorge J Asconapé
- Department of Neurology, Stritch School of Medicine, Loyola University Chicago, Maguire Center, Suite 2700, 2160 South First Avenue, Maywood, IL 60153, USA.
| |
Collapse
|
53
|
Chen N, Yan N, Liu C, Ge Y, Zhang JG, Meng FG. Neuroprotective effects of electrical stimulation of the anterior nucleus of the thalamus for hippocampus neurons in intractable epilepsy. Med Hypotheses 2013; 80:517-9. [PMID: 23481284 DOI: 10.1016/j.mehy.2013.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 11/28/2022]
Abstract
Epilepsy and Parkinson's disease (PD) are common neurological disorders. Both epilepsy and PD are potentially progressive disabling diseases that can be treated with the established therapy of deep brain stimulation (DBS). The difference in therapy is target selection and stimulation parameter modulation. The anterior nucleus of the thalamus (ANT) is chosen for intractable epilepsy and the subthalamic nucleus (STN) is chosen for PD. Long-term stable symptom control of STN-DBS can be seen in PD patients while the positive effect of ANT-DBS can be observed in epilepsy patients. Experimental data and clinical evidence have been reported that indicate the neuroprotective property of STN-DBS could be found in PD patients. Therefore, we hypothesize that the neuroprotective benefits of ANT-DBS may be present in epilepsy patients.
Collapse
Affiliation(s)
- Ning Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | | | | | | | | | | |
Collapse
|
54
|
Electrical stimulation of left anterior thalamic nucleus with high-frequency and low-intensity currents reduces the rate of pilocarpine-induced epilepsy in rats. Seizure 2013; 22:221-9. [PMID: 23313409 DOI: 10.1016/j.seizure.2012.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/24/2012] [Accepted: 12/26/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Bilateral electrical stimulation of anterior nuclei of thalamus (ANT) has shown promising effects on epileptic seizures. However, bilateral implantation increases the risk of surgical complications and side effects. This study was undertaken to access the effectiveness of a stimulation paradigm involving high frequency and low intensity currents to stimulate the left ANT in rats. METHODS Male Sprague-Dawley rats were implanted with electroencephalogram (EEG) electrodes, and an additional concentric bipolar stimulation electrode into either the left or right ANT. The stimulus was a train of pulses (90 μs duration each) delivered with a frequency of 200 Hz and a current intensity of 50 μA. Thalamic stimuli were started 1 h before the first intraperitoneal pilocarpine injection (i.p., 300 mg/kg), and were applied for 5 h. RESULTS EEG documented seizure activity and status epilepticus (SE) developed in 87.5% of rats treated with no ANT stimulation after a single dose of pilocarpine. Left ANT stimulation significantly increased the tolerance threshold for pilocarpine-induced EEG seizure activity; 20% of rats developed their EEG documented seizure activity after receiving the first dose, whereas 50%, 10% and 20% of rats did not develop seizure activity until they had received the 2nd, 3rd and 4th pilocarpine injection at 1-h intervals. Moreover, left thalamic stimulation reduced the occurrences of both EEG documented seizure activity and SE induced by single-dose pilocarpine to 25%. However, our result demonstrated that little effect on the occurrence rate of seizures and SE was found when rats received right ANT stimulation. CONCLUSIONS These results suggest that continuously 5-h left ANT stimulation with high frequency and low intensity currents, beginning from 1h before the pilocarpine administration, may successfully reduce the occurrence rate of EEG documented seizure activity and SE development in rats.
Collapse
|
55
|
Abstract
Deep brain stimulation for seizures has been applied to cerebellum, caudate, locus coeruleus, subthalamic nucleus, mammillary bodies, centromedian thalamus, anterior nucleus of thalamus, hippocampus and amygdala, hippocampal commissure, corpus callosum, neocortex, and occasionally to other sites. Animal and clinical studies have primarily investigated seizure prevention and, to a lessersmaller extent, seizure interruption. No studies have yet shown stimulation able to cure epilepsy. A wide variety of stimulation parameters have been employed in multiple different combinations of frequencies, amplitudes, and durations. Literature review identifies at least 52 clinical studies of brain stimulation for epilepsy in 817 patients. Two studies were large, randomized, and controlled, one in the anterior nucleus of thalamus and another at the cortical or hippocampal seizure focus; both of these studies showed efficacy and tolerability of stimulation. Many questions remain. We do not know the mechanisms, the best stimulation parameters, the best patient population, or how to predict benefit in advance. We do not know why benefit of neurostimulation for epilepsy seems to increase over time or whether there are long-term deleterious effects. All of these questions may be answerable with a combination of laboratory research and clinical experience.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
56
|
Shigeto H, Boongird A, Baker K, Kellinghaus C, Najm I, Lüders H. Systematic study of the effects of stimulus parameters and stimulus location on afterdischarges elicited by electrical stimulation in the rat. Epilepsy Res 2012; 104:17-25. [PMID: 23148865 DOI: 10.1016/j.eplepsyres.2012.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/02/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
Electrical brain stimulation is used in a variety of clinical situations, including cortical mapping for epilepsy surgery, cortical stimulation therapy to terminate seizure activity in the cortex, and in deep brain stimulation therapy. However, the effects of stimulus parameters are not fully understood. In this study, we systematically tested the impact of various stimulation parameters on the generation of motor symptoms and afterdischarges (ADs). Focal electrical stimulation was delivered at subdural cortical, intracortical, and hippocampal sites in a rat model. The effects of stimulus parameter on the generation of motor symptoms and on the occurrence of ADs were examined. The effect of stimulus irregularity was tested using random or regular 50Hz stimulation through subdural electrodes. Hippocampal stimulation produced ADs at lower thresholds than neocortical stimulation. Hippocampal stimulation also produced significantly longer ADs. Both in hippocampal and cortical stimulation, when the total current was kept constant with changing pulse width, the threshold for motor symptom or AD was lowest between 50 and 100Hz and higher at both low and high frequencies. However, if the pulse width was fixed, the threshold did not increase above 100Hz and it apparently continued to decrease through 800Hz even if the difference did not reach statistical significance. There was no significant difference between random and regular stimulation. Overall, these results indicate that electrode location and several stimulus parameters including frequency, pulse width, and total electricity are important in electrical stimulation to produce motor symptoms and ADs.
Collapse
Affiliation(s)
- Hiroshi Shigeto
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Liu HG, Yang AC, Meng DW, Chen N, Zhang JG. Stimulation of the anterior nucleus of the thalamus induces changes in amino acids in the hippocampi of epileptic rats. Brain Res 2012; 1477:37-44. [PMID: 22902771 DOI: 10.1016/j.brainres.2012.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/17/2022]
Abstract
We investigated the changes in the levels of amino acids during high frequency stimulation (HFS) of the anterior nucleus of the thalamus (ANT) in epileptic rats, which had seizures induced by unilaterally stereotactic administration of kainic acid (KA). Thirty-six adult male Wistar rats were divided into three groups: the KA-stim group (KA rats received ipsilateral ANT stimulation), the KA-sham group (KA rats received sham stimulation) and the control group, which underwent stereotactic administration of saline and received ipsilateral ANT stimulation. Microdialysis probes were unilaterally lowered into the CA3 region of the hippocampus, but probes were implanted bilaterally in the KA-stim group. The concentrations of glutamate (Glu), taurine (Tau), aspartate (Asp) and γ-aminobutyric acid (GABA) in the dialysate samples were determined by high-performance liquid chromatography. The concentrations of Glu, Asp and Tau in the hippocampi of KA rats were significantly higher than that found in control rats; however, no difference in the concentrations of GABA were found. In the ipsilateral hippocampi (KA-injected) of rats in the KA-stim group, stimulation of the ANT caused decreases in concentrations of Glu and Asp, an increase in the concentration of GABA and no significant change in the concentration of Tau. Unilateral ANT stimulation did not influence the amino acids in the contralateral hippocampus. In control rats, extracellular Tau significantly increased during and after stimulation. This study demonstrated that unilateral ANT stimulation inhibited the hyperactivation of the excitatory process and promoted the inhibitory process in the ipsilateral hippocampus of KA rats.
Collapse
Affiliation(s)
- Huan-Guang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tian Tan Xi Li, Beijing 100050, China
| | | | | | | | | |
Collapse
|
58
|
Zhang Q, Wu ZC, Yu JT, Yu NN, Zhong XL, Tan L. Mode-dependent effect of high-frequency electrical stimulation of the anterior thalamic nucleus on amygdala-kindled seizures in rats. Neuroscience 2012; 217:113-22. [PMID: 22588003 DOI: 10.1016/j.neuroscience.2012.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Deep brain stimulation (DBS) is an emerging treatment of epilepsy. Anterior nucleus of the thalamus (ANT) is considered to be an attractive target due to its close connection to the limbic structures and wide regions of neocortex. The present study aimed to investigate the effects of high frequency stimulation (HFS) targeting the ANT on amygdala-kindled seizures in Wistar rats in two different stimulation modes i.e. pre-treatment and post-treatment stimulations, mimicking the scheduled and responsive stimulations in clinical use respectively. When fully-kindled seizures were achieved by daily amygdala kindling (1 s train of 1 ms pulses at 60 Hz), HFS (15 min train of 100 μs pulses at 150 Hz and 450-800 μA) was applied in two modes for 10 days. Bilateral post-treatment with HFS reduced the incidence of generalized seizures and the mean behavioral seizure stage and shortened average afterdischarge duration (ADD) and generalized seizure duration (GSD), while bilateral pre-treatment with HFS resulted in a similar but much weaker inhibition of seizures. On the other hand, we also found the two stimulation modes both increased the afterdischarge threshold (ADT) and the differences of current intensity between ADT and generalized seizure threshold (GST) i.e. Δ(GST-ADT). However, Δ(GST-ADT) increased by at least 20 μA in bilateral post-treatment group, while less in bilateral pre-treatment group. Additionally, unilateral post-treatment with HFS failed to inhibit seizures. Our data show that anti-epileptic effect of bilateral post-treatment with HFS of ANT is much stronger than that of bilateral pre-treatment HFS, indicating bilateral responsive stimulation might be more appropriate for clinical anti-epileptic treatment of ANT HFS.
Collapse
Affiliation(s)
- Q Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, PR China
| | | | | | | | | | | |
Collapse
|
59
|
Anticonvulsant effect of unilateral anterior thalamic high frequency electrical stimulation on amygdala-kindled seizures in rat. Brain Res Bull 2011; 87:221-6. [PMID: 22178354 DOI: 10.1016/j.brainresbull.2011.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 12/27/2022]
Abstract
Deep brain stimulation (DBS) is an emerging treatment of epilepsy. Anterior nucleus of the thalamus (ANT) is considered to be an attractive target due to its close connection to the limbic structures and wide regions of neocortex. In this study, we examined the effect of unilateral high frequency stimulation (HFS) of the ANT on amygdala-kindled seizures in Wistar rats. When fully-kindled seizures were achieved by daily amygdala kindling, HFS (15 min train of 100 μs pulses at 200 Hz and 450-800 μA) was delivered to the ipsilateral or contralateral ANT immediately before the kindling stimulation for 15 days. HFS of the ipsilateral ANT significantly decreased the incidence of generalized seizures and the mean behavioral seizure stage and afterdischarge duration (ADD), and shortened cumulative ADD and cumulative generalized seizure duration. Furthermore, HFS of the ipsilateral ANT significantly increased the afterdischarge threshold (ADT). Our data suggest that unilateral HFS of the ANT may be an effective method of inhibiting kindled seizures by suppressing the susceptibility to seizures and generating long lasting anti-epileptic effect preventing the recurrence of kindled seizures, providing an alternative to bilateral ANT DBS for refractory epilepsy.
Collapse
|
60
|
HAMANI CLEMENT, ANDRADE DANIELLE, HODAIE MOJGAN, WENNBERG RICHARD, LOZANO ANDRES. DEEP BRAIN STIMULATION FOR THE TREATMENT OF EPILEPSY. Int J Neural Syst 2011; 19:213-26. [DOI: 10.1142/s0129065709001975] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During the last decade, deep brain stimulation (DBS) has been used to treat several neurologic disorders, including epilepsy. Promising results have been reported with stimulation in different brain regions. At present however, several issues remain unanswered. As an example, it is still unclear whether particular seizure types and syndromes should be treated with DBS in different targets or with different stimulation parameters. In addition, clinical, electrophysiological and anatomical features capable of predicting a good postoperative outcome are still unknown. We review the published literature on DBS, cortical and cerebellar stimulation for the treatment of epilepsy focusing predominantly on the rationale and clinical outcome in each target.
Collapse
Affiliation(s)
- CLEMENT HAMANI
- Division of Neurosurgery Toronto Western Hospital — University of Toronto, Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street 4th floor WW, Toronto, ON, Canada
| | - DANIELLE ANDRADE
- Division of Neurology Toronto Western Hospital — University of, Toronto
| | - MOJGAN HODAIE
- Division of Neurosurgery Toronto Western Hospital — University of Toronto, Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street 4th floor WW, Toronto, ON, Canada
| | - RICHARD WENNBERG
- Division of Neurology Toronto Western Hospital — University of, Toronto
| | - ANDRES LOZANO
- Division of Neurosurgery Toronto Western Hospital — University of Toronto, Division of Neurosurgery, Toronto Western Hospital, 399 Bathurst Street 4th floor WW, Toronto, ON, Canada
| |
Collapse
|
61
|
|
62
|
Zhong XL, Lv KR, Zhang Q, Yu JT, Xing YY, Wang ND, Tan L. Low-frequency stimulation of bilateral anterior nucleus of thalamus inhibits amygdale-kindled seizures in rats. Brain Res Bull 2011; 86:422-7. [PMID: 21893168 DOI: 10.1016/j.brainresbull.2011.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022]
Abstract
Brain stimulation with low-frequency is emerging as an alternative treatment for refractory epilepsy. The anterior nucleus thalamus (ANT) is thought to be a key structure in the circuits of seizure generation and propagation. The present study aimed to investigate the effects of low frequency stimulation (LFS) targeting ANT on amygdala-kindled seizures in Sprague-Dawley rats. Electrodes were implanted into the right basolateral amygdala and the right or bilateral ANT of Sprague-Dawley rats. When fully kindled seizures were achieved by daily electrical stimulation of the amygdala, LFS (15 min train of 0.1 ms pulses at 1 Hz and 200-500 μA) was applied to the unilateral or bilateral ANT immediately before the kindling stimulation (pre-treatment). Our study showed that LFS of the bilateral ANT significantly decreased the incidence of generalized seizures (GS) and seizure stage, as well as shortened duration of afterdischarge and GS demonstrating an inhibition of the severity of seizures. Moreover, LFS elevated the afterdischarge threshold (ADT) and GS threshold indicating an inhibition of susceptibility to seizures. On the other hand, LFS of the unilateral ANT failed to show any significance in inhibiting seizures. Our study demonstrated that bilateral LFS in ANT could significantly inhibit amygdala-kindled seizures by preventing both afterdischarge generation and propagation. It provided further evidence for clinical use of LFS in ANT.
Collapse
Affiliation(s)
- Xiao-Ling Zhong
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 5 Donghai Middle Road, Qingdao 266071, China
| | | | | | | | | | | | | |
Collapse
|
63
|
Deep brain stimulation for epilepsy in clinical practice and in animal models. Brain Res Bull 2011; 85:81-8. [DOI: 10.1016/j.brainresbull.2011.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 11/21/2022]
|
64
|
Stypulkowski PH, Giftakis JE, Billstrom TM. Development of a large animal model for investigation of deep brain stimulation for epilepsy. Stereotact Funct Neurosurg 2011; 89:111-22. [PMID: 21336007 DOI: 10.1159/000323343] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/02/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND/OBJECTIVES To better understand the mechanism of action of deep brain stimulation (DBS) for epilepsy and to investigate implantable device features, it is desirable to have a large animal model to evaluate clinical-grade systems. This study assessed the suitability of an ovine model of epilepsy for this purpose. METHODS Animals were anesthetized for surgery and 1.5 T MRIs collected. Unilateral anterior thalamic DBS leads, hippocampal depth electrodes and catheters were implanted using a frameless stereotactic system. Evoked responses and local field potentials were collected and stored for off-line analysis. RESULTS Despite limited neuroanatomic information for this species, it was possible to reliably implant leads into the target structures using MR-guided techniques. Stimulation of these regions produced robust evoked potentials within this circuit that were dependent on stimulus location and parameters. High-frequency thalamic DBS produced a clear inhibition of both spontaneous and penicillin-induced ictal activity in the hippocampus which far outlasted the duration of the stimulation. CONCLUSIONS These preliminary results suggest that the sheep model may be useful for further investigation of DBS for epilepsy. The demonstration of marked suppression of network excitability with high-frequency stimulation supports a potential therapeutic mechanism for this DBS therapy.
Collapse
|
65
|
Hamani C, Dubiela FP, Soares JCK, Shin D, Bittencourt S, Covolan L, Carlen PL, Laxton AW, Hodaie M, Stone SSD, Ha Y, Hutchison WD, Lozano AM, Mello LE, Oliveira MGM. Anterior thalamus deep brain stimulation at high current impairs memory in rats. Exp Neurol 2010; 225:154-62. [PMID: 20558163 DOI: 10.1016/j.expneurol.2010.06.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/29/2010] [Accepted: 06/07/2010] [Indexed: 11/26/2022]
Abstract
Deep brain stimulation (DBS) of the anterior thalamic nucleus (AN), an important relay in the circuitry of memory, is currently being proposed as a treatment for epilepsy. Despite the encouraging results with the use of this therapy, potential benefits and adverse effects are yet to be determined. We show that AN stimulation at relatively high current disrupted the acquisition of contextual fear conditioning and impaired performance on a spatial alternating task in rats. This has not been observed at parameters generating a charge density that approximated the one used in clinical practice. At settings that impaired behavior, AN stimulation induced a functional depolarization block nearby the electrode, increased c-Fos expression in cerebral regions projecting to and receiving projections from the AN, and influenced hippocampal activity. This suggests that complex mechanisms might be involved in the effects of AN DBS, including a local target inactivation and the modulation of structures at a distance. Though translating data from animals to humans has to be considered with caution, our study underscores the need for carefully monitoring memory function while selecting stimulation parameters during the clinical evaluation of AN DBS.
Collapse
Affiliation(s)
- Clement Hamani
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Microinjection of GABAergic agents into the anterior nucleus of the thalamus modulates pilocarpine-induced seizures and status epilepticus. Seizure 2010; 19:242-6. [DOI: 10.1016/j.seizure.2010.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/12/2009] [Accepted: 02/26/2010] [Indexed: 01/01/2023] Open
|
67
|
|
68
|
|
69
|
Anterior thalamic nucleus stimulation modulates regional cerebral metabolism: an FDG-MicroPET study in rats. Neurobiol Dis 2009; 34:477-83. [PMID: 19303441 DOI: 10.1016/j.nbd.2009.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/25/2009] [Accepted: 03/04/2009] [Indexed: 11/22/2022] Open
Abstract
The mechanism underlying the antiepileptic function of deep brain stimulation (DBS) of the anterior thalamic nucleus (ATN) remains unknown, presumably related to functional lesioning of target. We measured the regional normalized cerebral metabolic rate of glucose (nCMRglc) with (18)F-fluorodeoxyglucose (FDG)-MicroPET in animals receiving either ATN stimulation or lesioning. Bilateral ATN stimulation reversibly increased glucose uptake in the target region, the thalamus and hippocampus, and decreased glucose uptake in the cingulate cortex and frontal cortex. However, bilateral ATN lesioning decreased glucose uptake only in the target region. Animals with bilateral ATN lesions showed no metabolic changes after ATN stimulation. Thus, bilateral DBS of the ATN reversibly induces metabolic activation of the target area and modulates energy metabolism in remote brain regions via efferent or afferent fibers in non-epileptic rats. DBS of the ATN may work by a different mechanism than ATN lesioning.
Collapse
|
70
|
Hamani C, Hodaie M, Chiang J, del Campo M, Andrade DM, Sherman D, Mirski M, Mello LE, Lozano AM. Deep brain stimulation of the anterior nucleus of the thalamus: Effects of electrical stimulation on pilocarpine-induced seizures and status epilepticus. Epilepsy Res 2008; 78:117-23. [DOI: 10.1016/j.eplepsyres.2007.09.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 08/10/2007] [Accepted: 09/22/2007] [Indexed: 11/16/2022]
|
71
|
Takebayashi S, Hashizume K, Tanaka T, Hodozuka A. Anti-convulsant effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal limbic seizure in rats. Epilepsy Res 2007; 74:163-70. [DOI: 10.1016/j.eplepsyres.2007.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/26/2007] [Accepted: 03/15/2007] [Indexed: 11/15/2022]
|