51
|
Familial hemiplegic migraine mutations affect Na,K-ATPase domain interactions. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2173-9. [PMID: 23954377 DOI: 10.1016/j.bbadis.2013.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 11/20/2022]
Abstract
Familial hemiplegic migraine (FHM) is a monogenic variant of migraine with aura. One of the three known causative genes, ATP1A2, which encodes the α2 isoform of Na,K-ATPase, causes FHM type 2 (FHM2). Over 50 FHM2 mutations have been reported, but most have not been characterized functionally. Here we study the molecular mechanism of Na,K-ATPase α2 missense mutations. Mutants E700K and P786L inactivate or strongly reduce enzyme activity. Glutamic acid 700 is located in the phosphorylation (P) domain and the mutation most likely disrupts the salt bridge with Lysine 35, thereby destabilizing the interaction with the actuator (A) domain. Mutants G900R and E902K are present in the extracellular loop at the interface of the α and β subunit. Both mutants likely hamper the interaction between these subunits and thereby decrease enzyme activity. Mutants E174K, R548C and R548H reduce the Na(+) and increase the K(+) affinity. Glutamic acid 174 is present in the A domain and might form a salt bridge with Lysine 432 in the nucleotide binding (N) domain, whereas Arginine 548, which is located in the N domain, forms a salt bridge with Glutamine 219 in the A domain. In the catalytic cycle, the interactions of the A and N domains affect the K(+) and Na(+) affinities, as observed with these mutants. Functional consequences were not observed for ATP1A2 mutations found in two sporadic hemiplegic migraine cases (Y9N and R879Q) and in migraine without aura (R51H and C702Y).
Collapse
|
52
|
Costa C, Prontera P, Sarchielli P, Tonelli A, Bassi MT, Cupini LM, Caproni S, Siliquini S, Donti E, Calabresi P. A novel ATP1A2 gene mutation in familial hemiplegic migraine and epilepsy. Cephalalgia 2013; 34:68-72. [PMID: 23918834 DOI: 10.1177/0333102413498941] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Familial hemiplegic migraine (FHM) is a rare autosomal dominant migraine subtype, characterized by fully reversible motor weakness as a specific symptom of aura. Mutations in the ion transportation coding genes CACNA1A , ATP1A2 and SCN1A are responsible for the FHM phenotype. Moreover, some mutations in ATP1A2 or SCN1A also may lead to epilepsy. CASE Here we report on a three-generation family with five patients having a novel ATP1A2 mutation on exon 19, causing guanine-to-adenine substitution (c.2620G>A, p.Gly874Ser) that co-segregated in the five living relatives with migraine, four of whom had hemiplegic migraine. Moreover, three patients presented with epilepsy, one of whom had generalized epilepsy with febrile seizures plus (GEFS+). CONCLUSIONS The present study provides further evidence on the involvement of ATP1A2 mutations in both migraine and epilepsy, underlying the relevance of genetic analysis in families with a comorbidity of both disorders.
Collapse
Affiliation(s)
- Cinzia Costa
- Clinica Neurologica, Università di Perugia, Ospedale S. Maria della Misericordia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Marquezan BP, Funck VR, Oliveira CV, Pereira LM, Araújo SM, Zarzecki MS, Royes LFF, Furian AF, Oliveira MS. Pentylenetetrazol-induced seizures are associated with Na+,K+-ATPase activity decrease and alpha subunit phosphorylation state in the mice cerebral cortex. Epilepsy Res 2013; 105:396-400. [DOI: 10.1016/j.eplepsyres.2013.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/18/2013] [Accepted: 03/20/2013] [Indexed: 11/27/2022]
|
54
|
Pisano T, Spiller S, Mei D, Guerrini R, Cianchetti C, Friedrich T, Pruna D. Functional characterization of a novel C-terminal ATP1A2 mutation causing hemiplegic migraine and epilepsy. Cephalalgia 2013; 33:1302-10. [DOI: 10.1177/0333102413495116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background We describe a four-generation Italian family with familial hemiplegic migraine (FHM) and epilepsy due to a novel ATP1A2 missense mutation (R1007W). Case results Mutational analysis revealed a heterozygous nucleotide substitution c.3019C>T resulting in the missense substitution p.Arg1007Trp (p.R1007W) in seven subjects: Three individuals had hemiplegic migraine, two exhibited a clinical overlap between migraine and epilepsy, one had migraine and one was unaffected. The identified ATP1A2 mutation was not found in an ethnically matched control population of 190 individuals and was not reported in a polymorphisms database. In two-electrode voltage-clamp experiments on Xenopus oocytes, the ATP1A2 R1007W mutant showed (i) reduced ion pumping activity due to a more profound voltage dependence and (ii) decreased apparent affinity for extracellular K+ at voltages around the cellular resting potential. This distinct type of loss of function has not been reported for other FHM2 mutations and can lead to impaired K+ clearance and elevated K+ levels in the CNS. Conclusions The functional data and clinical evidence suggest that in FHM2 migraine and epilepsy may originate from the same pathogenic mechanisms associated with genetically determined alterations of ion channels and pumps. Our data also support the hypothesis that the new mutation R1007W in our family may be a susceptibility factor for epilepsy.
Collapse
Affiliation(s)
- Tiziana Pisano
- Pediatric Neurology and Neurogenetics Unit, Children’s Hospital A. Meyer, University of Florence, Italy
| | - Susan Spiller
- Technical University of Berlin, Institute of Chemistry, Germany
| | - Davide Mei
- Pediatric Neurology and Neurogenetics Unit, Children’s Hospital A. Meyer, University of Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology and Neurogenetics Unit, Children’s Hospital A. Meyer, University of Florence, Italy
| | - Carlo Cianchetti
- Epilepsy Unit, Child Neurology and Psychiatry, Cagliari University Hospital, Italy
| | | | - Dario Pruna
- Epilepsy Unit, Child Neurology and Psychiatry, Cagliari University Hospital, Italy
| |
Collapse
|
55
|
Gritz SM, Radcliffe RA. Genetic effects of ATP1A2 in familial hemiplegic migraine type II and animal models. Hum Genomics 2013; 7:8. [PMID: 23561701 PMCID: PMC3639839 DOI: 10.1186/1479-7364-7-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/26/2013] [Indexed: 12/19/2022] Open
Abstract
Na+/K+-ATPase alpha 2 (Atp1a2) is an integral plasma membrane protein belonging to the P-type ATPase family that is responsible for maintaining the sodium (Na+) and potassium (K+) gradients across cellular membranes with hydrolysis of ATP. Atp1a2 contains two subunits, alpha and beta, with each having various isoforms and differential tissue distribution. In humans, mutations in ATP1A2 are associated with a rare form of hereditary migraines with aura known as familial hemiplegic migraine type II. Genetic studies in mice have revealed other neurological effects of Atp1a2 in mice including anxiety, fear, and learning and motor function disorders. This paper reviews the recent findings in the literature concerning Atp1a2.
Collapse
Affiliation(s)
- Stephanie M Gritz
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
56
|
Winawer MR, Connors R. Evidence for a shared genetic susceptibility to migraine and epilepsy. Epilepsia 2013; 54:288-95. [PMID: 23294289 DOI: 10.1111/epi.12072] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE Although epilepsy and migraine are known to co-occur within individuals, the contribution of a shared genetic susceptibility to this comorbidity remains unclear. We investigated the hypothesis of shared genetic effects on migraine and epilepsy in the Epilepsy Phenome/Genome Project (EPGP) cohort. METHODS We studied prevalence of a history of migraine in 730 EPGP participants aged ≥ 12 years with nonacquired focal epilepsy (NAFE) or generalized epilepsy (GE) from 501 families containing two or more individuals with epilepsy of unknown cause. Information on migraine without aura (MO) and migraine with aura (MA) was collected using an instrument validated for individuals ≥ 12 years. Because many individuals have both MO and MA, we considered two nonoverlapping groups of individuals with migraine: those who met criteria for MA in any of their headaches (MA), and those who did not ("MO-only"). EPGP participants were interviewed about the history of seizure disorders in additional nonenrolled family members. We evaluated associations of migraine prevalence in enrolled subjects with a family history of seizure disorders in additional nonenrolled relatives, using generalized estimating equations to control for the nonindependence of observations within families. KEY FINDINGS Prevalence of a history of MA (but not MO-only) was significantly increased in enrolled participants with two or more additional affected first-degree relatives. SIGNIFICANCE These findings support the hypothesis of a shared genetic susceptibility to epilepsy and MA.
Collapse
Affiliation(s)
- Melodie R Winawer
- GH Sergievsky Center, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
57
|
Di Lorenzo C, Grieco GS, Santorelli FM. Migraine headache: a review of the molecular genetics of a common disorder. J Headache Pain 2012; 13:571-80. [PMID: 22940869 PMCID: PMC3444547 DOI: 10.1007/s10194-012-0478-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/18/2012] [Indexed: 01/18/2023] Open
Abstract
This tutorial summarises the state-of-the-art on migraine genetics and looks at the possible future direction of this field of research. The view of migraine as a genetic disorder, initially based on epidemiological observations of transmission of the condition within families, was subsequently confirmed by the identification of monogenic forms of "syndromic" migraine, such as familial hemiplegic migraine. We are currently witnessing a change in the way genetic analysis is used in migraine research: rather than studying modalities of inheritance in non-monogenic forms of migraine and in the persistent modalities of migraine headache, researchers are now tending to focus on the search for genetic markers of dysfunction in biological systems. One example of the evolution of migraine genetic research is provided by the recent efforts to shed light on the pharmacogenomic mechanisms of drug response in migraineurs. In addition, novel molecular approaches about to be introduced are expected to further increase knowledge on this topic and improve patient management.
Collapse
Affiliation(s)
| | - Gaetano S. Grieco
- Laboratory of Neurogenetics, C. Mondino National Institute of Neurology Foundation, IRCCS, Pavia, Italy
| | - Filippo M. Santorelli
- Molecular Medicine and Neurodegenerative Diseases-IRCCS Stella Maris, Pisa, Italy
- Child Neurology, University of Pisa, Pisa, Italy
- Molecular Medicine, IRCCS Stella Maris, via dei Giacinti 2, 56128 Calambrone, Pisa Italy
| |
Collapse
|
58
|
Bøttger P, Doğanlı C, Lykke-Hartmann K. Migraine- and dystonia-related disease-mutations of Na+/K+-ATPases: relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans. Neurosci Biobehav Rev 2011; 36:855-71. [PMID: 22067897 DOI: 10.1016/j.neubiorev.2011.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
The two autosomal dominantly inherited neurological diseases: familial hemiplegic migraine type 2 (FHM2) and familial rapid-onset of dystonia-parkinsonism (Familial RDP) are caused by in vivo mutations of specific alpha subunits of the sodium-potassium pump (Na(+)/K(+)-ATPase). Intriguingly, patients with classical FHM2 and RDP symptoms additionally suffer from other manifestations, such as epilepsy/seizures and developmental disabilities. Recent studies of FHM2 and RDP mouse models provide valuable tools for dissecting the vital roles of the Na(+)/K(+)-ATPases, and we discuss their relevance to the complex patient symptoms and manifestations. Thus, it is interesting that mouse models targeting a specific α-isoform cause different, although still comparable, phenotypes consistent with classical symptoms and other manifestations observed in FHM2 and RDP patients. This review highlights that use of mouse models have broad potentials for future research concerning migraine and dystonia-related diseases, which will contribute towards understanding the, yet unknown, pathophysiologies.
Collapse
Affiliation(s)
- Pernille Bøttger
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Denmark; Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, Denmark
| | | | | |
Collapse
|
59
|
Podestà B, Briatore E, Boghi A, Marenco D, Calzolari S. Transient nonverbal learning disorder in a child suffering from Familial Hemiplegic Migraine. Cephalalgia 2011; 31:1497-502. [DOI: 10.1177/0333102411418260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: To study the link between nonverbal learning disorder and right cerebral hemisphere dysfunction due to migraine attack in a case of Familial Hemiplegic Migraine. Background: Familial Hemiplegic Migraine can cause neuropsychological deficits besides the motor ones. The nonverbal learning disorder is thought to be caused by a right hemisphere dysfunction. Methods: We describe a child with Familial Hemiplegic Migraine type 2 who showed a transient neuropsychological impairment featuring a nonverbal learning disorder during and after a Hemiplegic migraine attack. Results: Clinical and neuropsychological data showed a nonverbal learning disorder. A mutation in the ATP1A2 gene on chromosome 1q23 was found. Symptoms of nonverbal learning disorder outlasted the left hemiparesis. Two months later he showed a full recovery. Neurophysiological and neuroradiological evaluations were congruent with clinical course and with right hemisphere involvement. Conclusion: The link between nonverbal learning disorder and right cerebral hemisphere dysfunction due to migraine attack is confirmed. Familial Hemiplegic Migraine can cause transient complex neuropsychological syndromes that can be overlooked if not appropriately investigated.
Collapse
|
60
|
Leo L, Gherardini L, Barone V, De Fusco M, Pietrobon D, Pizzorusso T, Casari G. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet 2011; 7:e1002129. [PMID: 21731499 PMCID: PMC3121757 DOI: 10.1371/journal.pgen.1002129] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/30/2011] [Indexed: 11/18/2022] Open
Abstract
Familial hemiplegic migraine type 2 (FHM2) is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2R887/R887 mutants died just after birth, while heterozygous Atp1a2+/R887 mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD), the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger. We previously reported that mutations of the α2 subunit of the Na,K-ATPase cause familial hemiplegic migraine type 2 (FHM2), a dominant form of migraine with aura. This paper describes the first animal model of FHM2 and represents the further proceeding in this disease investigation. Homozygous knock-in mutant mice die just after birth, while heterozygous mice show no apparent clinical phenotype. However, in vivo analysis revealed a marked facilitation of cortical spreading depression (CSD), the phenomenon underlying migraine aura. Given the evidence for specific functional coupling between the glial α2 Na,K pump and glutamate transporters, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. We finally propose this FHM2 mouse as a valuable in vivo model to investigate migraine mechanisms and, possibly, treatments.
Collapse
Affiliation(s)
- Loredana Leo
- Vita-Salute San Raffaele University and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
- Italian Institute of Technology (IIT), Genoa, Italy
| | | | - Virginia Barone
- Vita-Salute San Raffaele University and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Maurizio De Fusco
- Vita-Salute San Raffaele University and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Pietrobon
- Department of Biomedical Sciences, University of Padua and CNR Institute of Neuroscience, Padua, Italy
| | - Tommaso Pizzorusso
- CNR Institute of Neuroscience, Pisa, Italy
- Department of Psychology, University of Florence, Florence, Italy
| | - Giorgio Casari
- Vita-Salute San Raffaele University and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
61
|
Russell MB, Ducros A. Sporadic and familial hemiplegic migraine: pathophysiological mechanisms, clinical characteristics, diagnosis, and management. Lancet Neurol 2011; 10:457-70. [DOI: 10.1016/s1474-4422(11)70048-5] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
62
|
Perucca P, Jacoby A, Marson AG, Baker GA, Lane S, Benn EKT, Thurman DJ, Hauser WA, Gilliam FG, Hesdorffer DC. Adverse antiepileptic drug effects in new-onset seizures: a case-control study. Neurology 2011; 76:273-9. [PMID: 21242496 DOI: 10.1212/wnl.0b013e318207b073] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Adverse effects (AEs) are a major concern when starting antiepileptic drug (AED) treatment. This study quantified the extent to which AE reporting in people with new-onset seizures started on AEDs is attributable to the medication per se, and investigated variables contributing to AE reporting. METHODS We pooled data from 2 large prospective studies, the Multicenter Study of Early Epilepsy and Single Seizures and the Northern Manhattan Study of incident unprovoked seizures, and compared adverse event profile (AEP) total and factor scores between adult cases prescribed AEDs for new-onset seizures and untreated controls, adjusting for several demographic and clinical variables. Differences in AEP scores were also tested across different AED monotherapies and controls, and between cases and controls grouped by number of seizures. RESULTS A total of 212 cases and 206 controls were identified. Most cases (94.2%) were taking low AED doses. AEP scores did not differ significantly between the 2 groups. Depression, female gender, symptomatic etiology, younger seizure onset age, ≥2 seizures, and history of febrile seizures were associated with higher AEP scores. There were no significant differences in AEP scores across different monotherapies and controls. AEP scores increased in both cases and controls with increasing number of seizures, the increment being more pronounced in cases. CONCLUSIONS When AED treatment is started at low doses following new-onset seizures, AE reporting does not differ from untreated individuals. Targeting specific factors affecting AE reporting could lead to improved tolerability of epilepsy treatment.
Collapse
Affiliation(s)
- P Perucca
- Institute of Neurology IRCCS C. Mondino Foundation, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Migraine and Epilepsy: A Focus on Overlapping Clinical, Pathophysiological, Molecular, and Therapeutic Aspects. Curr Pain Headache Rep 2010; 14:276-83. [DOI: 10.1007/s11916-010-0121-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
64
|
Ottman R, Hirose S, Jain S, Lerche H, Lopes-Cendes I, Noebels JL, Serratosa J, Zara F, Scheffer IE. Genetic testing in the epilepsies--report of the ILAE Genetics Commission. Epilepsia 2010; 51:655-70. [PMID: 20100225 DOI: 10.1111/j.1528-1167.2009.02429.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this report, the International League Against Epilepsy (ILAE) Genetics Commission discusses essential issues to be considered with regard to clinical genetic testing in the epilepsies. Genetic research on the epilepsies has led to the identification of more than 20 genes with a major effect on susceptibility to idiopathic epilepsies. The most important potential clinical application of these discoveries is genetic testing: the use of genetic information, either to clarify the diagnosis in people already known or suspected to have epilepsy (diagnostic testing), or to predict onset of epilepsy in people at risk because of a family history (predictive testing). Although genetic testing has many potential benefits, it also has potential harms, and assessment of these potential benefits and harms in particular situations is complex. Moreover, many treating clinicians are unfamiliar with the types of tests available, how to access them, how to decide whether they should be offered, and what measures should be used to maximize benefit and minimize harm to their patients. Because the field is moving rapidly, with new information emerging practically every day, we present a framework for considering the clinical utility of genetic testing that can be applied to many different syndromes and clinical contexts. Given the current state of knowledge, genetic testing has high clinical utility in few clinical contexts, but in some of these it carries implications for daily clinical practice.
Collapse
Affiliation(s)
- Ruth Ottman
- G. H. Sergievsky Center and Department of Epidemiology, Columbia University, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
de Vries B, Stam AH, Kirkpatrick M, Vanmolkot KRJ, Koenderink JB, van den Heuvel JJMW, Stunnenberg B, Goudie D, Shetty J, Jain V, van Vark J, Terwindt GM, Frants RR, Haan J, van den Maagdenberg AMJM, Ferrari MD. Familial hemiplegic migraine is associated with febrile seizures in an FHM2 family with a novel de novo ATP1A2 mutation. Epilepsia 2009; 50:2503-4. [PMID: 19874388 DOI: 10.1111/j.1528-1167.2009.02186.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
66
|
de Vries B, Frants RR, Ferrari MD, van den Maagdenberg AMJM. Molecular genetics of migraine. Hum Genet 2009; 126:115-32. [PMID: 19455354 DOI: 10.1007/s00439-009-0684-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/07/2009] [Indexed: 12/11/2022]
Abstract
Migraine is an episodic neurovascular disorder that is clinically divided into two main subtypes that are based on the absence or presence of an aura: migraine without aura (MO) and migraine with aura (MA). Current molecular genetic insight into the pathophysiology of migraine predominantly comes from studies of a rare monogenic subtype of migraine with aura called familial hemiplegic migraine (FHM). Three FHM genes have been identified, which all encode ion transporters, suggesting that disturbances in ion and neurotransmitter balances in the brain are responsible for this migraine type, and possibly the common forms of migraine. Cellular and animal models expressing FHM mutations hint toward neuronal hyperexcitability as the likely underlying disease mechanism. Additional molecular insight into the pathophysiology of migraine may come from other monogenic syndromes (for instance cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, which is caused by NOTCH3 mutations), in which migraine is prominent. Investigating patients with common forms of migraine has had limited successes. Except for 5',10'-methylenetetrahydrolate reductase, an enzyme in folate metabolism, the large majority of reported genetic associations with candidate migraine genes have not been convincingly replicated. Genetic linkage studies using migraine subtypes as an end diagnosis did not yield gene variants thus far. Clinical heterogeneity in migraine diagnosis may have hampered the identification of such variants. Therefore, the recent introduction of more refined methods of phenotyping, such as latent-class analysis and trait component analysis, may be certainly helpful. Combining the new phenotyping methods with genome-wide association studies may be a successful strategy toward identification of migraine susceptibility genes. Likely the identification of reliable biomarkers for migraine diagnosing will make these efforts even more successful.
Collapse
Affiliation(s)
- Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
67
|
Crompton DE, Berkovic SF. The borderland of epilepsy: clinical and molecular features of phenomena that mimic epileptic seizures. Lancet Neurol 2009; 8:370-81. [PMID: 19296920 DOI: 10.1016/s1474-4422(09)70059-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Paroxysmal losses of consciousness and other episodic neurological symptoms have many causes. Distinguishing epileptic from non-epileptic disorders is fundamental to diagnosis, but even this basic dichotomy is often challenging and is certainly not new. In 1907, the British neurologist William Richard Gowers published his book The Border-land of Epilepsy in which he discussed paroxysmal conditions "in the border-land of epilepsy-near it, but not of it" and their clinical differentiation from epilepsy itself. Now, a century later, we revisit the epilepsy borderland, focusing on syncope, migraine, vertigo, parasomnias, and some rarer paroxysmal disorders. For each condition, we review the clinical distinction from epileptic seizures. We then integrate current understanding of the molecular pathophysiology of these disorders into this clinical framework. This analysis shows that, although the clinical manifestations of paroxysmal disorders are highly heterogeneous, striking similarities in molecular pathophysiology are seen among many epileptic and non-epileptic paroxysmal phenomena.
Collapse
Affiliation(s)
- Douglas E Crompton
- Epilepsy Research Centre, Department of Medicine (Neurology), University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | | |
Collapse
|
68
|
Mechanisms of human inherited epilepsies. Prog Neurobiol 2009; 87:41-57. [DOI: 10.1016/j.pneurobio.2008.09.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/25/2008] [Accepted: 09/29/2008] [Indexed: 12/19/2022]
|
69
|
Eikermann-Haerter K, Dileköz E, Kudo C, Savitz SI, Waeber C, Baum MJ, Ferrari MD, van den Maagdenberg AM, Moskowitz MA, Ayata C. Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest 2009; 119:99-109. [PMID: 19104150 PMCID: PMC2613474 DOI: 10.1172/jci36059] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 10/08/2008] [Indexed: 11/17/2022] Open
Abstract
Familial hemiplegic migraine type 1 (FHM1) is an autosomal dominant subtype of migraine with aura that is associated with hemiparesis. As with other types of migraine, it affects women more frequently than men. FHM1 is caused by mutations in the CACNA1A gene, which encodes the alpha1A subunit of Cav2.1 channels; the R192Q mutation in CACNA1A causes a mild form of FHM1, whereas the S218L mutation causes a severe, often lethal phenotype. Spreading depression (SD), a slowly propagating neuronal and glial cell depolarization that leads to depression of neuronal activity, is the most likely cause of migraine aura. Here, we have shown that transgenic mice expressing R192Q or S218L FHM1 mutations have increased SD frequency and propagation speed; enhanced corticostriatal propagation; and, similar to the human FHM1 phenotype, more severe and prolonged post-SD neurological deficits. The susceptibility to SD and neurological deficits is affected by allele dosage and is higher in S218L than R192Q mutants. Further, female S218L and R192Q mutant mice were more susceptible to SD and neurological deficits than males. This sex difference was abrogated by ovariectomy and senescence and was partially restored by estrogen replacement, implicating ovarian hormones in the observed sex differences in humans with FHM1. These findings demonstrate that genetic and hormonal factors modulate susceptibility to SD and neurological deficits in FHM1 mutant mice, providing a potential mechanism for the phenotypic diversity of human migraine and aura.
Collapse
Affiliation(s)
- Katharina Eikermann-Haerter
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Ergin Dileköz
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Chiho Kudo
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Sean I. Savitz
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Christian Waeber
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Michael J. Baum
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Michel D. Ferrari
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Arn M.J.M. van den Maagdenberg
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Michael A. Moskowitz
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Cenk Ayata
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neurology, University of Duisburg-Essen, Essen,
Germany. Department of Neurology, University of Texas Medical School at
Houston, Houston, Texas, USA. Department of Biology, Boston University,
Boston, Massachusetts, USA. Department of Neurology and
Department of Human Genetics, Leiden University Medical Center, Leiden,
The Netherlands. Stroke Service and Neuroscience Intensive Care Unit,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| |
Collapse
|
70
|
Haan J, van den Maagdenberg AMJM, Brouwer OF, Ferrari MD. Migraine and epilepsy: genetically linked? Expert Rev Neurother 2008; 8:1307-11. [PMID: 18759542 DOI: 10.1586/14737175.8.9.1307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most molecular genetic knowledge in migraine so far comes from the study of a rare subtype, familial hemiplegic migraine (FHM). The three known FHM genes (CACNA1A, ATP1A2 and SCN1A) are ion transporter genes. Mutations in all three FHM genes can also be associated with epilepsy. Of the many epilepsy genes that have been discovered, an association with migraine has been reported only for SCN1A. There is probably a lack of systematic studies of migraine in epilepsy families. A genetically determined dysfunction of ion transporters seems to point, at least to certain extent, at a common underlying mechanism for both paroxysmal disorders. The effect of ion channel mutations on neuronal neurotransmitter release is probably of major importance. In this article, we will discuss the arguments for a genetic relationship between migraine and epilepsy. A possible genetic link could give insight into the pathophysiology of both syndromes, and offer possibilities to develop specific preventive treatment aimed at the underlying ion transporter dysfunction and its consequences.
Collapse
Affiliation(s)
- Joost Haan
- Department of Neurology K5Q, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW To highlight recent genetic findings in migraine and discuss, new mutations in hemiplegic migraine genes in familial and sporadic cases and relevant candidate gene association studies. Special attention will be given to comorbid diseases of migraine. RECENT FINDINGS Familial hemiplegic migraine (FHM) is genetically heterogeneous with mutations in the CACNA1A (FHM1), ATP1A2 (FHM2) and SCN1A (FHM3) genes. Nineteen novel ATP1A2 mutations were identified last year, eleven of them in FHM2 families. A systematic genetic analysis of patients with sporadic hemiplegic migraine revealed five mutations in this gene, which has implications for genetic counselling. The identification of a second FHM3 SCN1A mutation definitely established SCN1A as a migraine gene. The identification of TREX1 mutations in families with retinal vasculopathy and associated diseases such as migraine may provide new insights in migraine pathophysiology. SUMMARY Many novel ATP1A2 mutations were identified in patients with familial and sporadic hemiplegic migraine. In sporadic patients, ATP1A2 screening has the highest chance of finding a causal mutation. A second FHM3 mutation definitely established the epilepsy SCN1A gene as a migraine gene. The discovery of genes in monogenic diseases in which migraine is prominent may lead to new insights in the molecular pathways involved in migraine pathophysiology.
Collapse
|
72
|
A novel de novo nonsense mutation in ATP1A2 associated with sporadic hemiplegic migraine and epileptic seizures. J Neurol Sci 2008; 273:123-6. [PMID: 18644608 DOI: 10.1016/j.jns.2008.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 06/05/2008] [Indexed: 12/14/2022]
Abstract
Familial hemiplegic migraine (FHM) is a severe dominant form of migraine with aura associated with transient hemiparesis. Several other neurological signs and symptoms can be associated with FHM such as cerebellar abnormalities, cerebral edema and coma after minor head trauma, epileptic seizures and mental retardation. The sporadic form of hemiplegic migraine named SHM, presents with identical clinical symptoms. Here we report a case of a young hemiplegic migraine patient, 11 years old, who had the first hemiplegic attack at the age of 10 years. This patient has a clinical history of epileptic seizures in the childhood successfully controlled with drug therapy. No familiarity for any type of migraine or seizures can be observed within the paternal or maternal line. The patient who can therefore be considered a sporadic case, carries a novel de novo nonsense mutation p.Tyr1009X in the ATP1A2 gene (FHM2), leading to a truncated alpha-2 subunit of the Na+/K+-ATPase pump thus lacking the last 11 amino acids. The novel mutation identified confirms the role of FHM2 gene in forms of hemiplegic migraine associated with epilepsy with both familial and sporadic occurrence, and expands the spectrum of mutations related to these forms of the disease.
Collapse
|