51
|
Mondal NK, Sorensen EN, Hiivala NJ, Feller ED, Pham SM, Griffith BP, Wu ZJ. Intraplatelet reactive oxygen species, mitochondrial damage and platelet apoptosis augment non-surgical bleeding in heart failure patients supported by continuous-flow left ventricular assist device. Platelets 2014; 26:536-44. [PMID: 25167344 DOI: 10.3109/09537104.2014.948840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Non-surgical bleeding (NSB) is the most common clinical complication among heart failure (HF) patients supported by continuous-flow left ventricular assist devices (CF-LVADs). Understanding the role of platelet functionality contributing to NSB after CF-LVAD implantation is crucial for prevention and management of this adverse event. The aim of this study was to examine the role of intraplatelet reactive oxygen species (ROS) and platelet damage on the incidence of bleeding events after CF-LVAD implantation in HF patients. We recruited 25 HF patients implanted with CF-LVADs and 11 healthy volunteers as the control. Intraplatelet ROS generation, platelet mitochondrial damage and platelet apoptosis were quantified by flow cytometry. Among 25 patients, 8 patients developed non-surgical bleeding within one month after CF-LVAD implantation. Intraplatelet ROS, depolarized and apoptotic platelet were found to be pre-existing conditions in all baseline samples of the 25 HF patients when compared to the healthy volunteers. There was no significant difference in the levels of ROS between the non-bleeder and the bleeder groups prior to CF-LVAD implantation, although we noticed 2-fold and 1.5-fold rise in depolarized and apoptotic platelets, respectively, in the bleeder group compared to those in the non-bleeder group. Post implant levels of intraplatelet ROS, depolarized and apoptotic platelets increased and remained elevated in the bleeder group, whereas periodic decreases were noticed in the non-bleeder group, suggesting the potential role of platelet damage on bleeding incidence. ROS generation after CF-LVAD implantation positively associated with platelet apoptosis (ρ = 0.4263, p = 0.0023) and depolarized platelets (ρ = 0.4774, p = 0.0002), especially the latter. In conclusion, elevated intraplatelet ROS and platelet damage may be linked to the NSB among HF patients supported by CF-LVAD. These results provide mechanistic insights into the bleeding complication in patients with CF-LVAD support.
Collapse
Affiliation(s)
- Nandan K Mondal
- Department of Surgery, Artificial Organs Laboratory, University of Maryland School of Medicine , Baltimore, Maryland , USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Nanoceria protects from alterations in oxidative metabolism and calcium overloads induced by TNFα and cycloheximide in U937 cells: pharmacological potential of nanoparticles. Mol Cell Biochem 2014; 397:245-53. [DOI: 10.1007/s11010-014-2192-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022]
|
53
|
Propensity of crocin to offset Vipera russelli venom induced oxidative stress mediated neutrophil apoptosis: a biochemical insight. Cytotechnology 2014; 68:73-85. [PMID: 25149285 DOI: 10.1007/s10616-014-9752-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 06/07/2014] [Indexed: 10/24/2022] Open
Abstract
Viper envenomation results in inflammation at the bitten site as well as target organs. Neutrophils and other polymorphonuclear leukocytes execute inflammation resolving mechanism and will undergo apoptosis after completing the task. However, the target specific toxins induce neutrophil apoptosis at the bitten site and in circulation prior to their function, thus reducing their number. Circulating activated neutrophils are major source of inflammatory cytokines and leakage of reactive oxygen species (ROS)/other toxic intermediates resulting in aggravation of inflammatory response at the bitten/target site. Therefore, neutralization of venom induced neutrophil apoptosis reduces inflammation besides increasing the functional neutrophil population. Therefore, the present study investigates the venom induced perturbances in isolated human neutrophils and its neutralization by crocin (Crocus sativus) a potent antioxidant carotenoid. Human neutrophils on treatment with venom resulted in altered ROS generation, intracellular Ca(2+) mobilization, mitochondrial membrane depolarization, cyt-c translocation, caspase activation, phosphatidylserine externalization and DNA damage. On the other hand significant protection against oxidative stress and apoptosis were evidenced in crocin pre-treated groups. In conclusion the viper venom induces neutrophil apoptosis and results in aggravation of inflammation and tissue damage. The present study demands the necessity of an auxiliary therapy in addition to antivenin therapy to treat secondary/overlooked complications of envenomation.
Collapse
|
54
|
Nayak MK, Dash A, Singh N, Dash D. Aspirin delimits platelet life span by proteasomal inhibition. PLoS One 2014; 9:e105049. [PMID: 25126950 PMCID: PMC4134270 DOI: 10.1371/journal.pone.0105049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 07/20/2014] [Indexed: 11/17/2022] Open
Abstract
Aspirin is widely used in clinical settings as an anti-inflammatory and anti-platelet drug due its inhibitory effect on cyclooxygenase activity. Although the drug has long been considered to be an effective and safe therapeutic regime against inflammatory and cardiovascular disorders, consequences of its cyclooxygenase-independent attributes on platelets, the key players in thrombogenesis, beg serious investigation. In this report we explored the effect of aspirin on platelet lifespan in murine model and its possible cytotoxicity against human platelets in vitro. Aspirin administration in mice led to significant reduction in half-life of circulating platelets, indicative of enhanced rate of platelet clearance. Aspirin-treated human platelets were found to be phagocytosed more efficiently by macrophages, associated with attenuation in platelet proteasomal activity and upregulation of conformationally active Bax, which were consistent with enhanced platelet apoptosis. Although the dosage of aspirin administered in mice was higher than the therapeutic regimen against cardiovascular events, it is comparable with the recommended anti-inflammatory prescription. Thus, above observations provide cautionary framework to critically re-evaluate prophylactic and therapeutic dosage regime of aspirin in systemic inflammatory as well as cardiovascular ailments.
Collapse
Affiliation(s)
- Manasa K Nayak
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ayusman Dash
- Indian Institute of Science Education and Research, Kolkata, India
| | - Nitesh Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
55
|
Lannon SMR, Vanderhoeven JP, Eschenbach DA, Gravett MG, Adams Waldorf KM. Synergy and interactions among biological pathways leading to preterm premature rupture of membranes. Reprod Sci 2014; 21:1215-27. [PMID: 24840939 DOI: 10.1177/1933719114534535] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Preterm premature rupture of membranes (PPROM) occurs in 1% to 2% of births. Impact of PPROM is greatest in low- and middle-income countries where prematurity-related deaths are most common. Recent investigations identify cytokine and matrix metalloproteinase activation, oxidative stress, and apoptosis as primary pathways to PPROM. These biological processes are initiated by heterogeneous etiologies including infection/inflammation, placental bleeding, uterine overdistention, and genetic polymorphisms. We hypothesize that pathways to PPROM overlap and act synergistically to weaken membranes. We focus our discussion on membrane composition and strength, pathways linking risk factors to membrane weakening, and future research directions to reduce the global burden of PPROM.
Collapse
Affiliation(s)
- Sophia M R Lannon
- Department Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | | | - David A Eschenbach
- Department Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Michael G Gravett
- Department Obstetrics & Gynecology, University of Washington, Seattle, WA, USA Global Alliance to Prevent Prematurity & Stillbirth, Seattle, WA, USA
| | | |
Collapse
|
56
|
Garcia-Souza LF, Oliveira MF. Mitochondria: Biological roles in platelet physiology and pathology. Int J Biochem Cell Biol 2014; 50:156-60. [DOI: 10.1016/j.biocel.2014.02.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/01/2014] [Accepted: 02/16/2014] [Indexed: 12/19/2022]
|
57
|
Thushara RM, Hemshekhar M, Paul M, Shanmuga Sundaram M, Shankar RL, Kemparaju K, Girish KS. Crocin prevents sesamol-induced oxidative stress and apoptosis in human platelets. J Thromb Thrombolysis 2014; 38:321-30. [DOI: 10.1007/s11239-014-1056-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
58
|
Kumari S, Singh MK, Singh SK, Grácio JJA, Dash D. Nanodiamonds activate blood platelets and induce thromboembolism. Nanomedicine (Lond) 2014; 9:427-40. [DOI: 10.2217/nnm.13.23] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Aim: Nanodiamonds (NDs) have been evaluated for a wide range of biomedical applications. Thus, thorough investigation of the biocompatibility of NDs has become a research priority. Platelets are highly sensitive and are one of the most abundant cell types found in blood. They have a central role in hemostasis and arterial thrombosis. In this study, we aim to investigate the direct and acute effects of carboxylated NDs on platelet function. Methods: In this study, pro-coagulant parameters such as platelet aggregability, intracellular Ca2+ flux, mitochondrial transmembrane potential (ΔΨm), generation of reactive oxygen species, surface exposure of phosphatidylserine, electron microscopy, cell viability assay and in vivo thromboembolism were analyzed in great detail. Results: Carboxylated NDs evoked significant activation of human platelets. When administered intravenously in mice, NDs were found to induce widespread pulmonary thromboembolism, indicating the remarkable thrombogenic potential of this nanomaterial. Conclusion: Our findings raise concerns regarding the putative biomedical applications of NDs pertaining to diagnostics and therapeutics, and their toxicity and prothrombotic properties should be critically evaluated. Original submitted 15 June 2012; Revised submitted 22 January 2013; Published online 30 April 2013
Collapse
Affiliation(s)
- Sharda Kumari
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi – 221005, India
| | - Manoj K Singh
- Center for Mechanical Technology & Automation, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sunil K Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi – 221005, India
| | - José JA Grácio
- Center for Mechanical Technology & Automation, University of Aveiro, Aveiro 3810-193, Portugal
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi – 221005, India
| |
Collapse
|
59
|
González-Flores D, Rodríguez AB, Pariente JA. TNFα-induced apoptosis in human myeloid cell lines HL-60 and K562 is dependent of intracellular ROS generation. Mol Cell Biochem 2014; 390:281-7. [PMID: 24488173 DOI: 10.1007/s11010-014-1979-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/21/2014] [Indexed: 12/26/2022]
Abstract
The present study determines the role of reactive oxygen species (ROS) production and calcium signaling evoked by the tumor necrosis factor-alpha (TNFα) on apoptosis in the human leukemia HL-60 and K562 cell lines. The results show that treatment of both cell lines cells with 10 ng/mL TNFα resulted in a rise in the percentage of apoptotic cells after 6 h of treatment. It was also observed that the administration of 10 ng/mL TNFα increased intracellular ROS production, as well as a time-dependent increase in caspase-8, -3, and -9 activities. The present results also show that the pretreatment with well-known antioxidants such as trolox and N-acetyl cysteine partially reduced the caspase activation caused by the administration of TNFα. The findings suggest that TNFα-induced apoptosis is dependent on alterations in intracellular ROS generation in human leukemia HL-60 and K562 cells.
Collapse
Affiliation(s)
- D González-Flores
- Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, 06006, Badajoz, Spain,
| | | | | |
Collapse
|
60
|
Albarrán L, Lopez JJ, Dionisio N, Smani T, Salido GM, Rosado JA. Transient receptor potential ankyrin-1 (TRPA1) modulates store-operated Ca 2+ entry by regulation of STIM1-Orai1 association. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3025-3034. [DOI: 10.1016/j.bbamcr.2013.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 01/06/2023]
|
61
|
Rukoyatkina N, Mindukshev I, Walter U, Gambaryan S. Dual role of the p38 MAPK/cPLA2 pathway in the regulation of platelet apoptosis induced by ABT-737 and strong platelet agonists. Cell Death Dis 2013; 4:e931. [PMID: 24263105 PMCID: PMC3847335 DOI: 10.1038/cddis.2013.459] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 09/21/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
p38 Mitogen-activated protein (MAP) kinase is involved in the apoptosis of nucleated cells. Although platelets are anucleated cells, apoptotic proteins have been shown to regulate platelet lifespan. However, the involvement of p38 MAP kinase in platelet apoptosis is not yet clearly defined. Therefore, we investigated the role of p38 MAP kinase in apoptosis induced by a mimetic of BH3-only proteins, ABT-737, and in apoptosis-like events induced by such strong platelet agonists as thrombin in combination with convulxin (Thr/Cvx), both of which result in p38 MAP kinase phosphorylation and activation. A p38 inhibitor (SB202190) inhibited the apoptotic events induced by ABT-737 but did not influence those induced by Thr/Cvx. The inhibitor also reduced the phosphorylation of cytosolic phospholipase A2 (cPLA2), an established p38 substrate, induced by ABT-737 or Thr/Cvx. ABT-737, but not Thr/Cvx, induced the caspase 3-dependent cleavage and inactivation of cPLA2. Thus, p38 MAPK promotes ABT-737-induced apoptosis by inhibiting the cPLA2/arachidonate pathway. We also show that arachidonic acid (AA) itself and in combination with Thr/Cvx or ABT-737 at low concentrations prevented apoptotic events, whereas at high concentrations it enhanced such events. Our data support the hypothesis that the p38 MAPK-triggered arachidonate pathway serves as a defense mechanism against apoptosis under physiological conditions.
Collapse
Affiliation(s)
- N Rukoyatkina
- 1] Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg D-97080, Germany [2] Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg 194223, Russia
| | | | | | | |
Collapse
|
62
|
Thushara RM, Hemshekhar M, Sunitha K, Kumar MS, Naveen S, Kemparaju K, Girish KS. Sesamol induces apoptosis in human platelets via reactive oxygen species-mediated mitochondrial damage. Biochimie 2013; 95:2060-8. [PMID: 23933095 DOI: 10.1016/j.biochi.2013.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/17/2013] [Indexed: 12/21/2022]
Abstract
Platelets play an indispensable role in human health and disease. Platelets are very sensitive to oxidative stress, as it leads to the damage of mitochondrial DNA, which is the initial step of a sequence of events culminating in the cell death through the intrinsic pathway of apoptosis. Owing to a lot of reports on secondary complications arising from oxidative stress caused by therapeutic drug overdose, the present study concentrated on the influence of sesamol on oxidative stress-induced platelet apoptosis. Sesamol, a phenolic derivative present in sesame seeds is an exceptionally promising drug with lots of reports on its protective functions, including its inhibitory effects on platelet aggregation at concentrations below 100 μM, and its anti-cancer effect at 1 mM. However, the present study explored the toxic effects of sesamol on human platelets. Sesamol at the concentration of 0.25 mM and above induced platelet apoptosis through endogenous generation of ROS, depletion of thiol pool, and Ca(2+) mobilization. It also induced mitochondrial membrane potential depolarization, caspase activation, cytochrome c translocation and phosphatidylserine exposure, thus illustrating the pro-apoptotic effect of sesamol at higher concentration. However, even at high concentration of 2 mM sesamol effectively inhibited collagen/ADP/epinephrine-induced platelet aggregation. The study demonstrates that even though sesamol inhibits platelet aggregation, it has the tendency to elicit platelet apoptosis at higher concentrations. Sesamol has a potential as thrombolytic agent, nevertheless the current work highlights the significance of an appropriate dosage of sesamol when it is used as a therapeutic drug.
Collapse
Affiliation(s)
- R M Thushara
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore 570 006, Karnataka, India
| | | | | | | | | | | | | |
Collapse
|
63
|
Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem Soc Trans 2013; 41:118-23. [PMID: 23356269 DOI: 10.1042/bst20120327] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circulating blood platelets contain small numbers of fully functional mitochondria. Accumulating evidence demonstrates that these mitochondria regulate the pro-thrombotic function of platelets through not only energy generation, but also redox signalling and the initiation of apoptosis. Beyond its regulation of haemostasis, platelet mitochondrial function has also traditionally been used to identify and study mitochondrial dysfunction in human disease, owing to the easy accessibility of platelets compared with other metabolically active tissues. In the present article, we provide a brief overview of what is currently known about the function of mitochondria in platelets and review how platelet mitochondria have been used to study mitochondrial function in human disease.
Collapse
|
64
|
Platelet mitochondrial membrane potential correlates with severity in patients with systemic inflammatory response syndrome. J Trauma Acute Care Surg 2013; 74:411-7; discussion 418. [PMID: 23354232 DOI: 10.1097/ta.0b013e31827a34cf] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The role of mitochondrial dysfunction has not been thoroughly clarified in the pathogenesis of critically ill patients. The objective of this study was to investigate mitochondrial membrane potential (ΔΨm) and apoptosis in circulating platelets in patients with systemic inflammatory response syndrome (SIRS). METHODS This prospective observational study was conducted from May 2011 to February 2012. Criteria for inclusion were adult patients with SIRS. We used mitochondrial indicator JC-1 in conjunction with flow cytometry to measure ΔΨm and annexin V to evaluate apoptosis in peripheral blood platelets. ΔΨm was expressed as the percentage of platelets with altered ΔΨm. Severity of illness was assessed by SIRS score, Acute Physiology and Chronic Health Evaluation II score, and Sequential Organ Failure Assessment score. RESULTS This study was composed of 36 patients who met the inclusion criteria and 12 healthy controls. Causes of SIRS were sepsis in 13, trauma in 13, and others in 10 patients. Platelet ΔΨm depolarization was significantly enhanced in patients with SIRS versus that in controls (median [interquartile range], 10.6% [8.1-12.6%] vs. 7.1% [6.1-8.0%]; p < 0.001). The percentage of apoptotic platelets was significantly higher in patients with SIRS than in controls (8.7% [5.5-13.5%] vs. 5.4% [3.9-7.0%]; p = 0.006). Interestingly, ΔΨm depolarization increased significantly with the increase in SIRS scores (p < 0.001). There was a significant correlation between ΔΨm depolarization and severity of illness, as indicated by Acute Physiology and Chronic Health Evaluation II score, Sequential Organ Failure Assessment score, and serum lactate levels (all, p < 0.05). CONCLUSION We demonstrated that ΔΨm depolarization and apoptosis were enhanced in circulating platelets in patients with SIRS. Our findings suggest that ΔΨm depolarization may be associated with the progression of SIRS. LEVEL OF EVIDENCE Diagnostic study, level III.
Collapse
|
65
|
Santhosh MS, Thushara RM, Hemshekhar M, Sunitha K, Devaraja S, Kemparaju K, Girish KS. Alleviation of viper venom induced platelet apoptosis by crocin (Crocus sativus): implications for thrombocytopenia in viper bites. J Thromb Thrombolysis 2013; 36:424-32. [DOI: 10.1007/s11239-013-0888-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
66
|
Nayak MK, Kulkarni PP, Dash D. Regulatory role of proteasome in determination of platelet life span. J Biol Chem 2013; 288:6826-34. [PMID: 23329846 DOI: 10.1074/jbc.m112.403154] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Limit of platelet life span (8-10 days) is determined by the activity of a putative "internal clock" composed of Bcl-2 family proteins, whereas the role of other molecular players in this process remains obscure. Here, we sought to establish a central role of proteasome in platelet life span regulation. Administration of mice with inhibitors of proteasome peptidase activity induced significant thrombocytopenia. This was associated with enhanced clearance of biotin-labeled platelets from circulation and reduction in average platelet half-life from 66 to 37 h. Cells pretreated in vitro with proteasome inhibitors exhibited augmented annexin V binding and a drop in mitochondrial transmembrane potential indicative of apoptotic cell death and decreased platelet life span. These cells were preferentially phagocytosed by monocyte-derived macrophages, thus linking proteasome activity with platelet survival. The decisive role of proteasome in this process was underscored from enhanced expression of conformationally active Bax in platelets with attenuated proteasome activity, which was consistent with pro-apoptotic phenotype of these cells. The present study establishes a critical role of proteasome in delimiting platelet life span ostensibly through constitutive elimination of the conformationally active Bax. These findings bear potential implications in clinical settings where proteasome peptidase activities are therapeutically targeted.
Collapse
Affiliation(s)
- Manasa K Nayak
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
67
|
Winkler J, Rand ML, Schmugge M, Speer O. Omi/HtrA2 and XIAP are components of platelet apoptosis signalling. Thromb Haemost 2013; 109:532-9. [PMID: 23306356 DOI: 10.1160/th12-06-0404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/05/2012] [Indexed: 12/18/2022]
Abstract
Although platelets possess the hallmarks of apoptosis such as activation of caspases, cytochrome c release and depolarisation of the mitochondrial transmembrane potential (∆Ψm), their entire apoptotic-signalling pathway is not totally understood. Therefore we studied the expression of various apoptotic proteins and found that platelets contain the pro-apoptotic proteins Omi/HtrA2 and Smac/Diablo, as well as their target the X-linked inhibitor of apoptosis XIAP. Omi/HtrA2 and Smac/Diablo were released from mitochondria into the platelet cytosol together with cytochrome c after induction of apoptosis by the Ca2+ ionophore A23187 or the BH3 mimetic ABT-737, and to a lesser extent, after platelet stimulation with collagen and thrombin. Inhibition of Omi/HtrA2 led to decreased levels of activated caspase-3/7 and caspase-9, but did not abolish loss of ∆Ψm or prevent release of Omi/HtrA2 from mitochondria. These results indicate that platelets have a functional intrinsic apoptotic-signalling pathway including the pro-apoptotic protease Omi/HtrA2 and its target protein XIAP.
Collapse
Affiliation(s)
- Jeannine Winkler
- Division of Haematology and Children's Research Center, University Children's Hospital Zurich, and Zurich Center for Integrative Human Physiology, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | | | | | | |
Collapse
|
68
|
Crocin, a dietary additive protects platelets from oxidative stress-induced apoptosis and inhibits platelet aggregation. Mol Cell Biochem 2012; 373:73-83. [PMID: 23065381 DOI: 10.1007/s11010-012-1476-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Platelets are the key players in the development of cardiovascular diseases as the microparticles generated by apoptotic platelets and platelet aggregation contribute actively towards the disease propagation. Thus, the aim of this study was to demonstrate the effect of a phytochemical which can prevent these two processes and thereby project it as a cardio-protective compound. Crocin, a natural carotenoid exhibits a wide spectrum of therapeutic potentials through its antioxidant property. The study demonstrated its effects on cytoplasmic apoptotic events of mitochondrial pathway in platelets. Collagen/calcium ionophore-A23187 stimulated platelets were treated with crocin and endogenous generation of reactive oxygen species (ROS) and hydrogen peroxide (H(2)O(2)) were measured. H(2)O(2)-induced changes in crocin-pretreated platelets such as intracellular calcium, mitochondrial membrane potential (ΔΨm), caspase activity, phosphatidylserine exposure and cytochrome c translocation were determined. Crocin dose-dependently ameliorated collagen- and A23187-induced endogenous generation of ROS and H(2)O(2). It also abolished the H(2)O(2)-induced events of intrinsic pathway of apoptosis. Further, it hindered collagen-induced platelet aggregation and adhesion. The current piece of work clearly suggests its anti-apoptotic effect as well as inhibitory effects on platelet aggregation. Thus, crocin can be deemed as a prospective candidate in the treatment regime of platelet-associated diseases.
Collapse
|
69
|
Berna-Erro A, Galan C, Dionisio N, Gomez LJ, Salido GM, Rosado JA. Capacitative and non-capacitative signaling complexes in human platelets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1242-51. [DOI: 10.1016/j.bbamcr.2012.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/25/2022]
|
70
|
Perdomo J, Yan F, Chong BH. A megakaryocyte with no platelets: Anti-platelet antibodies, apoptosis, and platelet production. Platelets 2012; 24:98-106. [DOI: 10.3109/09537104.2012.669508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
71
|
Homers regulate calcium entry and aggregation in human platelets: a role for Homers in the association between STIM1 and Orai1. Biochem J 2012; 445:29-38. [DOI: 10.1042/bj20120471] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Homer is a family of cytoplasmic adaptor proteins that play different roles in cell function, including the regulation of G-protein-coupled receptors. These proteins contain an Ena (Enabled)/VASP (vasodilator-stimulated phosphoprotein) homology 1 domain that binds to the PPXXF sequence motif, which is present in different Ca2+-handling proteins such as IP3 (inositol 1,4,5-trisphosphate) receptors and TRPC (transient receptor potential canonical) channels. In the present study we show evidence for a role of Homer proteins in the STIM1 (stromal interaction molecule 1)–Orai1 association, as well as in the TRPC1–IP3RII (type II IP3 receptor) interaction, which might be of relevance in platelet function. Treatment of human platelets with thapsigargin or thrombin results in a Ca2+-independent association of Homer1 with TRPC1 and IP3RII. In addition, thapsigargin and thrombin enhanced the association of Homer1 with STIM1 and Orai1 in a Ca2+-dependent manner. Interference with Homer function by introduction of the synthetic PPKKFR peptide into cells, which emulates the proline-rich sequences of the PPXXF motif, reduced STIM1–Orai1 and TRPC1– IP3RII associations, as compared with the introduction of the inactive PPKKRR peptide. The PPKKFR peptide attenuates thrombin-evoked Ca2+ entry and the maintenance of thapsigargin-induced store-operated Ca2+ entry. Finally, the PPKKFR peptide attenuated thrombin-induced platelet aggregation. The findings of the present study support an important role for Homer proteins in thrombin-stimulated platelet function, which is likely to be mediated by the support of agonist-induced Ca2+ entry.
Collapse
|
72
|
Alexandru N, Popov D, Georgescu A. Intraplatelet oxidative/nitrative stress: inductors, consequences, and control. Trends Cardiovasc Med 2012; 20:232-8. [PMID: 22293024 DOI: 10.1016/j.tcm.2011.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This article provides an overview of the current knowledge on intraplatelet oxidative/nitrative stress, an abnormality associated with platelet activation and hyper-reactivity. The first issue discussed is related to induction of platelet endogenous stress by the molecules present within the circulating (extracellular) milieu that bathes these cells. The second issue concerns the intraplatelet oxidative/nitrative stress associated with specific pathologies or clinical procedures and action of particular molecules and platelet agonists as well as of the specialized intraplatelet milieu and its redox system; the biomarkers of endogenous oxidative/nitrative stress are also briefly outlined. Next, the association between intraplatelet oxidative/nitrative stress and the risk factors of the metabolic syndrome is presented. Then, the most recent strategies aimed at the control/regulation of platelet endogenous oxidative/nitrative stress, such as exploitation of circulating extracellular reactive oxygen species scavengers, manipulation of platelet molecules, and the use of antioxidants, are discussed. Finally, the results of studies on platelet-dependent redox mechanisms, which deserve immediate attention for potential clinical exploitation, are illustrated.
Collapse
Affiliation(s)
- Nicoleta Alexandru
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania. @icbp.ro
| | | | | |
Collapse
|
73
|
Gyulkhandanyan AV, Mutlu A, Freedman J, Leytin V. Markers of platelet apoptosis: methodology and applications. J Thromb Thrombolysis 2012; 33:397-411. [DOI: 10.1007/s11239-012-0688-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
74
|
Reid S, Johnson L, Woodland N, Marks DC. Pathogen reduction treatment of buffy coat platelet concentrates in additive solution induces proapoptotic signaling. Transfusion 2012; 52:2094-103. [PMID: 22320126 DOI: 10.1111/j.1537-2995.2011.03558.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pathogen reduction technology (PRT) can potentially reduce the risk of transfusion-transmitted infections. However, PRT treatment of platelet (PLT) concentrates also results in reduced PLT quality and increased markers of apoptosis during storage. The aim of this study was to investigate changes to the expression and activation of proteins involved in apoptosis signaling. STUDY DESIGN AND METHODS Samples from riboflavin and ultraviolet light PRT-treated and untreated (control) buffy coat-derived PCs in 70% SSP+ and 30% plasma were taken on Days 1, 5, and 7 of storage. Phosphatidylserine (PS) exposure, expression of Bcl-2 family proteins, cytochrome c release, and cleavage of caspase-3 and caspase-3 substrates were analyzed using flow cytometry and Western blotting. RESULTS Compared to untreated controls, markers of apoptosis signaling were increased after PRT and subsequent storage. PS exposure on the PLT outer membrane was significantly higher after PRT on Days 5 and 7 of storage (p < 0.05). Expression of proapoptotic Bak and Bax was higher after PRT and subsequent storage. Cytochrome c release and caspase-3 cleavage were also greater and occurred earlier in the PRT-treated PLTs. The cleavage of caspase-3 substrates gelsolin and ROCK I were also increased after PRT, compared to untreated controls. CONCLUSIONS This study demonstrated an increase in proapoptotic signaling during PLT storage, which was exacerbated by PRT. Many of these differences emerged outside the current 5-day storage period. These changes may not currently influence PLT transfusion quality, but will need to be carefully evaluated when considering extending PLT storage beyond 5 days.
Collapse
Affiliation(s)
- Samantha Reid
- Research and Development, Australian Red Cross Blood Service, and the School of Medical and Molecular Biosciences, University of Technology, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
75
|
Winkler J, Kroiss S, Rand ML, Azzouzi I, Annie Bang KW, Speer O, Schmugge M. Platelet apoptosis in paediatric immune thrombocytopenia is ameliorated by intravenous immunoglobulin. Br J Haematol 2011; 156:508-15. [DOI: 10.1111/j.1365-2141.2011.08973.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
76
|
Abstract
For many years, programmed cell death, known as apoptosis, was attributed exclusively to nucleated cells. Currently, however, apoptosis is also well-documented in anucleate platelets. This review describes extrinsic and intrinsic pathways of apoptosis in nucleated cells and in platelets, platelet apoptosis induced by multiple chemical stimuli and shear stresses, markers of platelet apoptosis, mitochodrial control of platelet apoptosis, and apoptosis mediated by platelet surface receptors PAR-1, GPIIbIIIa and GPIbα. In addition, this review presents data on platelet apoptosis provoked by aging of platelets in vitro during platelet storage, platelet apoptosis in pathological settings in humans and animal models, and inhibition of platelet apoptosis by cyclosporin A, intravenous immunoglobulin and GPIIbIIIa antagonist drugs.
Collapse
Affiliation(s)
- Valery Leytin
- Division of Transfusion Medicine, Department of Laboratory Medicine, The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
77
|
Kotwicka M, Jendraszak M, Skibinska I, Jedrzejczak P, Pawelczyk L. Decreased motility of human spermatozoa presenting phosphatidylserine membrane translocation-cells selection with the swim-up technique. Hum Cell 2011; 26:28-34. [PMID: 21725868 PMCID: PMC3595476 DOI: 10.1007/s13577-011-0024-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/09/2011] [Indexed: 01/22/2023]
Abstract
Phosphatidylserine membrane translocation (PST) is considered to be a marker of apoptosis; however, numerous studies have reported on its role in processes not related to cell death. The purpose of the study was to investigate: (1) what is the impact of PST on the motility of spermatozoa, and (2) does the swim-up isolation involve the percentage of cells presenting PST? Semen of 28 normozoospermic men (WHO criteria) was analyzed. High motility spermatozoa were isolated by the swim-up technique. The percentage of spermatozoa with PST in neat semen and after swim-up isolation was assessed with Annexin-V labeled with fluorescein, using flow cytometry technique. The spermatozoas’ motility was measured with a computer-assisted analysis system. The kinetic subpopulations of spermatozoa were identified with dedicated software and analyzed regarding PST. Vital spermatozoa with PST demonstrated progressive movement. The motion analysis system revealed a very strong positive correlation between the percentage of vital spermatozoa with PST and the percentage of spermatozoa belonging to the slow subpopulation (r = 0.83; p < 0.05), as well as a very strong negative correlation between the percentage of vital spermatozoa with PST and the percentage of spermatozoa belonging to the rapid subpopulation (r = −0.86; p < 0.05). After the swim-up isolation, the percentage of vital spermatozoa presenting PST significantly decreased (2.4 ± 2.1% vs. 5.2 ± 2.4%; p < 0.05). Spermatozoa with PST present progressive movement; however, their motility is decreased. Isolation of spermatozoa with the swim-up technique eliminates the cells with PST.
Collapse
Affiliation(s)
- Malgorzata Kotwicka
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznan, Poland.
| | | | | | | | | |
Collapse
|
78
|
|
79
|
Dionisio N, Galán C, Jardín I, Salido GM, Rosado JA. Lipid rafts are essential for the regulation of SOCE by plasma membrane resident STIM1 in human platelets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:431-7. [PMID: 21255618 DOI: 10.1016/j.bbamcr.2011.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/26/2010] [Accepted: 01/10/2011] [Indexed: 01/23/2023]
Abstract
STIM1 is a transmembrane protein essential for the activation of store-operated Ca²+ entry (SOCE), a major Ca²+ influx mechanism. STIM1 is either located in the endoplasmic reticulum, communicating the Ca²+ concentration in the stores to plasma membrane channels or in the plasma membrane, where it might sense the extracellular Ca²+ concentration. Plasma membrane-located STIM1 has been reported to mediate the SOCE sensitivity to extracellular Ca²+ through its interaction with Orai1. Here we show that plasma membrane lipid raft domains are essential for the regulation of SOCE by extracellular Ca²+. Treatment of platelets with the SERCA inhibitor thapsigargin (TG) induced Mn²+ entry, which was inhibited by increasing concentrations of extracellular Ca²+. Platelet treatment with methyl-β-cyclodextrin, which removes cholesterol and disrupts the lipid raft domains, impaired the inactivation of Ca²+ entry induced by extracellular Ca²+. Methyl-β-cyclodextrin also abolished translocation of STIM1 to the plasma membrane stimulated by treatment with TG and prevented TG-evoked co-immunoprecipitation between plasma membrane-located STIM1 and the Ca²+ permeable channel Orai1. These findings suggest that lipid raft domains are essential for the inactivation of SOCE by extracellular Ca²+ mediated by the interaction between plasma membrane-located STIM1 and Orai1.
Collapse
Affiliation(s)
- Natalia Dionisio
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, Cáceres, Spain
| | | | | | | | | |
Collapse
|
80
|
Galan C, Jardín I, Dionisio N, Salido G, Rosado JA. Role of oxidant scavengers in the prevention of Ca²+ homeostasis disorders. Molecules 2010; 15:7167-87. [PMID: 20953160 PMCID: PMC6259185 DOI: 10.3390/molecules15107167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/09/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023] Open
Abstract
A number of disorders, such as Alzheimer disease and diabetes mellitus, have in common the alteration of the redox balance, resulting in an increase in reactive oxygen species (ROS) generation that might lead to the development of apoptosis and cell death. It has long been known that ROS can significantly alter Ca²+ mobilization, an intracellular signal that is involved in the regulation of a wide variety of cellular functions. Cells have a limited capability to counteract the effects of oxidative stress, but evidence has been provided supporting the beneficial effects of exogenous ROS scavengers. Here, we review the effects of oxidative stress on intracellular Ca²+ homeostasis and the role of antioxidants in the prevention and treatment of disorders associated to abnormal Ca²+ mobilization induced by ROS.
Collapse
Affiliation(s)
| | | | | | | | - Juan A. Rosado
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34 927257139; Fax: +34 927257110
| |
Collapse
|
81
|
Lin KH, Chang HC, Lu WJ, Jayakumar T, Chou HC, Fong TH, Hsiao G, Sheu JR. Comparison of the relative activities of inducing platelet apoptosis stimulated by various platelet-activating agents. Platelets 2010; 20:575-81. [PMID: 19821801 DOI: 10.3109/09537100903315704] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Apoptosis-like events are known to occur in anuclear platelets. Although the mechanisms responsible for these events are still not completely understood, studies suggested that some platelet agonists can activate platelet apoptosis. However, the relative activities of various platelet agonists in inducing apoptosis have not yet been investigated. In the present study we explored this issue, and attempted to identify the correlation between platelet activation and apoptosis. In a platelet aggregation study, there were no significant differences respectively stimulated by arachidonic acid (AA; 100 microM), ADP (20 microM), collagen (10 microg/mL), thrombin (0.1 U/mL), U46619 (10 microM), and A23187 (5 microM). In a subsequent study, we fixed these concentrations of agonists to further compare their relative activities in inducing platelet apoptosis. Our results found that thrombin, U46619, and A23187 possess stronger activities than the other agonists in inducing platelet apoptosis (i.e., phosphatidylserine exposure, mitochondrial membrane potential depolarization, eukaryotic initiation factor (eIF)2alpha, and caspase activation). On the other hand, AA induced no apoptotic events in platelets. Based on this approach, we demonstrated for the first time that thrombin, U46619, and A23187, but not AA, possess stronger activity in inducing platelet apoptosis. In addition, we also found that platelet activation might not necessarily be associated with the occurrence of platelet apoptosis. The in vivo physiological function of the apoptotic machinery in platelets is not yet clearly understood, and needs to be further investigated in the future.
Collapse
Affiliation(s)
- Kuan H Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Leopold JA, Loscalzo J. Oxidative risk for atherothrombotic cardiovascular disease. Free Radic Biol Med 2009; 47:1673-706. [PMID: 19751821 PMCID: PMC2797369 DOI: 10.1016/j.freeradbiomed.2009.09.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/31/2009] [Accepted: 09/06/2009] [Indexed: 02/07/2023]
Abstract
In the vasculature, reactive oxidant species, including reactive oxygen, nitrogen, or halogenating species, and thiyl, tyrosyl, or protein radicals may oxidatively modify lipids and proteins with deleterious consequences for vascular function. These biologically active free radical and nonradical species may be produced by increased activation of oxidant-generating sources and/or decreased cellular antioxidant capacity. Once formed, these species may engage in reactions to yield more potent oxidants that promote transition of the homeostatic vascular phenotype to a pathobiological state that is permissive for atherothrombogenesis. This dysfunctional vasculature is characterized by lipid peroxidation and aberrant lipid deposition, inflammation, immune cell activation, platelet activation, thrombus formation, and disturbed hemodynamic flow. Each of these pathobiological states is associated with an increase in the vascular burden of free radical species-derived oxidation products and, thereby, implicates increased oxidant stress in the pathogenesis of atherothrombotic vascular disease.
Collapse
Affiliation(s)
- Jane A Leopold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
83
|
Lozano GM, Bejarano I, Espino J, González D, Ortiz A, García JF, Rodríguez AB, Pariente JA. Relationship between caspase activity and apoptotic markers in human sperm in response to hydrogen peroxide and progesterone. J Reprod Dev 2009; 55:615-21. [PMID: 19734695 DOI: 10.1262/jrd.20250] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis plays an essential role in normal spermatogenesis, but deregulations of this biological process, which is closely associated with male infertility, have been found. Whereas calcium homeostasis is a key regulator of cell survival, sustained elevation of intracellular calcium plays a role in apoptosis. The aim of this research was to determine the role of two different calcium mobilizing agents, hydrogen peroxide (H(2)O(2)) and the physiological agonist progesterone, on the apoptosis process of human ejaculated spermatozoa. Translocation of membrane phosphatidylserine was examined with an annexin V binding assay, DNA damage was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL assay) and caspase-3 activity was assessed using a fluorometric assay. After incubation of spermatozoa for 1 h with either 10 microM H(2)O(2) or 20 microM of progesterone, there was a significant increase in both caspase-3 activity and the percentage of annexin V-positive cells. Similarly, the TUNEL results were significantly higher 1 h after incubation with either 10 microM H(2)O(2) or 20 microM of progesterone. In fact, progesterone-treated cells showed a three-fold increase (from 17.6 to 52.9%) of TUNEL-positive cells compared to untreated cells, while H(2)O(2)-treated cells exhibited a two-fold increase (from 17.6 to 37.9%). In sum, our results suggest that spermatozoa treated with calcium mobilizing agents, such as H(2)O(2) and progesterone, seem to undergo an apoptosis process that is dependent on caspase-3 activation.
Collapse
Affiliation(s)
- Graciela M Lozano
- Extremadura Center of Human Assisted Reproduction, Infantile Hospital, Badajoz, Spain
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Arachiche A, Kerbiriou-Nabias D, Garcin I, Letellier T, Dachary-Prigent J. Rapid Procoagulant Phosphatidylserine Exposure Relies on High Cytosolic Calcium Rather Than on Mitochondrial Depolarization. Arterioscler Thromb Vasc Biol 2009; 29:1883-9. [DOI: 10.1161/atvbaha.109.190926] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Amal Arachiche
- From INSERM U688 and Université Victor Segalen (A.A., T.L., J.D.-P.), Bordeaux, INSERM U770 and Université Paris-Sud (A.A., D.K.-N.), Le Kremlin-Bicêtre, INSERM UMR-S757 and Université Paris-Sud (I.G.), Orsay, France
| | - Danièle Kerbiriou-Nabias
- From INSERM U688 and Université Victor Segalen (A.A., T.L., J.D.-P.), Bordeaux, INSERM U770 and Université Paris-Sud (A.A., D.K.-N.), Le Kremlin-Bicêtre, INSERM UMR-S757 and Université Paris-Sud (I.G.), Orsay, France
| | - Isabelle Garcin
- From INSERM U688 and Université Victor Segalen (A.A., T.L., J.D.-P.), Bordeaux, INSERM U770 and Université Paris-Sud (A.A., D.K.-N.), Le Kremlin-Bicêtre, INSERM UMR-S757 and Université Paris-Sud (I.G.), Orsay, France
| | - Thierry Letellier
- From INSERM U688 and Université Victor Segalen (A.A., T.L., J.D.-P.), Bordeaux, INSERM U770 and Université Paris-Sud (A.A., D.K.-N.), Le Kremlin-Bicêtre, INSERM UMR-S757 and Université Paris-Sud (I.G.), Orsay, France
| | - Jeanne Dachary-Prigent
- From INSERM U688 and Université Victor Segalen (A.A., T.L., J.D.-P.), Bordeaux, INSERM U770 and Université Paris-Sud (A.A., D.K.-N.), Le Kremlin-Bicêtre, INSERM UMR-S757 and Université Paris-Sud (I.G.), Orsay, France
| |
Collapse
|
85
|
Skripchenko A, Myrup A, Thompson-Montgomery D, Awatefe H, Moroff G, Wagner SJ. Periods without agitation diminish platelet mitochondrial function during storage. Transfusion 2009; 50:390-9. [PMID: 19874561 DOI: 10.1111/j.1537-2995.2009.02450.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Prolonged periods without agitation produce platelet (PLT) storage lesions that result in reduced in vitro assay parameters and an increase of apoptotic markers during storage. The aim of this study was to evaluate the influence of periods without agitation on PLT mitochondrial function, blood gases, and activation. STUDY DESIGN AND METHODS Apheresis PLT units (n = 12) were collected using a cell separator and each was equally divided among five storage bags (50 mL of PLT suspension in 300-mL nominal volume containers). Four bags were held without agitation for 24, 48, 72, and 96 hours in a standard shipping box at room temperature and the fifth bag was continuously agitated. PLTs were assayed for standard in vitro PLT assays as well as for mitochondrial membrane potential (MMP), accumulation of reactive oxygen species, Annexin V binding, mitochondrial mass, and activity of mitochondrial reduction power (MRP) immediately after removal of units from the shipping container on Days 1, 2, 3, 4, and 7. RESULTS Increasing periods without agitation resulted in increased superoxide anion generation and PLT activation as well as reduced PLT MMP and MRP. Increasing periods without agitation resulted in increasing Annexin V binding. PLTs that had undergone periods without agitation showed increased oxygen and carbon dioxide levels immediately after storage without agitation. The superoxide anion generation was highly correlated with the loss of MMP, increasing Annexin V binding, and pH decline. CONCLUSIONS PLTs, if stored without agitation, produce a lesion that leads PLTs to apoptosis. The severity of the lesion depends on the length of the period without agitation. Prolonged periods without agitation induce formation of superoxides and depolarization of MMP along with a presentation of apoptotic markers.
Collapse
Affiliation(s)
- Andrey Skripchenko
- American Red Cross Biomedical Services, Holland Laboratory, Blood Components Development, Rockville, Maryland 20855, USA.
| | | | | | | | | | | |
Collapse
|
86
|
López JJ, Redondo PC, Salido GM, Pariente JA, Rosado JA. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine induces apoptosis through the activation of caspases-3 and -8 in human platelets. A role for endoplasmic reticulum stress. J Thromb Haemost 2009; 7:992-9. [PMID: 19548908 DOI: 10.1111/j.1538-7836.2009.03431.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Apoptosis or programmed cell death involves a number of biochemical events, including the activation of caspases, which lead to specific cell morphology changes and ultimately cell death. Traditionally, two apoptotic pathways have been described: the cell-surface death receptor-dependent extrinsic pathway and the mitochondria-dependent intrinsic pathway. Alternatively, apoptosis has been reported to be induced by endoplasmic reticulum (ER) stress, which is mainly induced by a reduction in intraluminal free Ca(2+) concentration ([Ca(2+)](ER)). OBJECTIVES The present study aimed to investigate the development of apoptotic events after ER stress induced by N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), an ER Ca(2+) chelator, in human platelets. METHODS Changes in cytosolic free Ca(2+) concentration, caspase activity and phosphatidylserine externalization were determined by fluorimetric techniques. RESULTS Our results indicate that TPEN reduces the amount of free Ca(2+) releasable by the Ca(2+)-mobilizing agonist thrombin. TPEN induced activation of caspase-3, -8 and -9 and subsequent phosphatidylserine externalization. The ability of TPEN to induce phosphatidylserine externalization was smaller than that of thrombin. In addition, TPEN was able to induce phosphorylation of the eukaryotic initiation factor 2 alpha (eIF2 alpha). TPEN-mediated caspase-3 activation requires functional caspase-8, but is independent of H(2)O(2) generation. Activation of caspase-3 and -8 by TPEN was prevented by salubrinal, an agent that prevents ER stress-induced apoptosis. CONCLUSION These findings provide experimental evidence for the existence of ER stress-mediated apoptosis in human platelets, a process that might limit platelet life span upon prolonged stimulation with agonists.
Collapse
Affiliation(s)
- J J López
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | | | | | | |
Collapse
|
87
|
Brill A, Chauhan AK, Canault M, Walsh MT, Bergmeier W, Wagner DD. Oxidative stress activates ADAM17/TACE and induces its target receptor shedding in platelets in a p38-dependent fashion. Cardiovasc Res 2009; 84:137-44. [PMID: 19482949 DOI: 10.1093/cvr/cvp176] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Oxidative stress accompanies inflammatory and vascular diseases. The objective of this study was to explore whether reactive oxygen species can activate shedding of platelet receptors and thus suppress platelet function. METHODS AND RESULTS Hydrogen peroxide and glucose oxidase were chosen to model oxidative stress in vitro. We demonstrate that oxidative damage activated tumour necrosis factor-alpha-converting enzyme (TACE) and induced shedding of its targets, glycoprotein (GP) Ibalpha and GPV, in murine and human platelets. Also, 12-HpETE, a peroxide synthesized in the platelet lipoxygenase pathway, induced TACE-mediated receptor cleavage. The TACE activation was independent of platelet activation, as alpha-granule secretion, activation of alphaIIbbeta3, or phosphatidylserine expression was not observed. TACE activation induced by hydrogen peroxide was dependent on p38 mitogen-activated protein kinase signalling, whereas protein kinase C, phosphoinositide 3-kinase, and caspases were not involved. Inhibition of p38 cytoplasmic targets, phospholipase A(2) and heat shock protein 27, did not prevent shedding, whereas blocking 12-lipoxygenase or Src kinase slightly inhibited TACE activation. The loss of the GPIbalpha receptor induced by oxidative stress rendered platelets unable to incorporate into a growing thrombus in vivo. CONCLUSION Oxidative stress can render platelets functionally less active by shedding key adhesion receptors via the activation of p38. This suggests that oxidative injury of platelets may attenuate their function.
Collapse
Affiliation(s)
- Alexander Brill
- Immune Disease Institute, 3 Blackfan Circle, 3rd Floor, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
88
|
Abstract
There has recently been a dramatic expansion in research in the area of redox biology with systems that utilize thiols to perform redox chemistry being central to redox control. Thiol-based reactions occur in proteins involved in platelet function, including extracellular platelet proteins. The alphaIIbbeta3 fibrinogen receptor contains free thiols that are required for the activation of this receptor to a fibrinogen-binding conformation. This process is under enzymatic control, with protein disulfide isomerase playing a central role in the activation of alphaIIbbeta3. Other integrins, such as the alpha2beta1 collagen receptor on platelets, are also regulated by protein disulfide isomerase and thiol metabolism. Low molecular weight thiols that are found in blood regulate these processes by converting redox sensitive disulfide bonds to thiols and by providing the appropriate redox potential for these reactions. Additional mechanisms of redox control of platelets involve nitric oxide that inhibits platelet responses, and reactive oxygen species that potentiate platelet thrombus formation. Specific nitrosative or oxidative modifications of thiol groups in platelets may modulate platelet function. Since many biologic processes are regulated by redox reactions that involve surface thiols, the extracellular redox state can have an important influence on health and disease status and may be a target for therapeutic intervention.
Collapse
Affiliation(s)
- David W Essex
- Department of Medicine and the Sol Sherry Thrombosis Research Center, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
89
|
Leytin V, Allen DJ, Mutlu A, Gyulkhandanyan AV, Mykhaylov S, Freedman J. Mitochondrial control of platelet apoptosis: effect of cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. J Transl Med 2009; 89:374-84. [PMID: 19238135 DOI: 10.1038/labinvest.2009.13] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The role of the mitochondrial permeability transition pore (MPTP) in apoptosis of nucleated cells is well documented. In contrast, the role of MPTP in apoptosis of anucleated platelets is largely unknown. The aim of this study was to elucidate the contribution of MPTP in the control of different manifestations of platelet apoptosis by analyzing the effect of cyclosporin A (CsA), a potent inhibitor of MPTP formation. Using flow cytometry, we studied the effect of pretreatment of platelets with CsA on apoptotic responses in human platelets stimulated with calcium ionophore A23187. We found that CsA inhibited A23187-stimulated platelet apoptosis, completely preventing (i) depolarization of mitochondrial inner membrane potential (DeltaPsim), (ii) activation of cytosolic apoptosis executioner caspase-3, (iii) platelet shrinkage, and (iv) fragmentation of platelets to microparticles, but (v) only partially (approximately 25%), inhibiting phosphatidylserine (PS) exposure on the platelet surface. This study shows that MPTP formation is upstream of DeltaPsim depolarization, caspase-3 activation, platelet shrinkage and microparticle formation, and stringently controls these apoptotic events in A23187-stimulated platelets but is less involved in PS externalization. These data also indicate that CsA may rescue platelets from apoptosis, preventing caspase-3 activation and inhibiting the terminal cellular manifestations of platelet apoptosis, such as platelet shrinkage and degradation to microparticles. Furthermore, the results suggest a novel potentially useful application of CsA as an inhibitor of platelet demise through apoptosis in thrombocytopenias associated with enhanced platelet apoptosis.
Collapse
Affiliation(s)
- Valery Leytin
- Division of Transfusion Medicine, Department of Laboratory Medicine, The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, ON, Canada.
| | | | | | | | | | | |
Collapse
|
90
|
Borissoff JI, Spronk HMH, Heeneman S, ten Cate H. Is thrombin a key player in the 'coagulation-atherogenesis' maze? Cardiovasc Res 2009; 82:392-403. [PMID: 19228706 DOI: 10.1093/cvr/cvp066] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In addition to its established roles in the haemostatic system, thrombin is an intriguing coagulation protease demonstrating an array of effects on endothelial cells, vascular smooth muscle cells (VSMC), monocytes, and platelets, all of which are involved in the pathophysiology of atherosclerosis. There is mounting evidence that thrombin acts as a powerful modulator of many processes like regulation of vascular tone, permeability, migration and proliferation of VSMC, recruitment of monocytes into the atherosclerotic lesions, induction of diverse pro-inflammatory markers, and all of these are related to the progression of cardiovascular disease. Recent studies in transgenic mice models indicate that the deletion of the natural thrombin inhibitor heparin cofactor II promotes an accelerated atherogenic state. Moreover, the reduction of thrombin activity levels in apolipoprotein E-deficient mice, because of the administration of the direct thrombin inhibitor melagatran, attenuates plaque progression and promotes stability in advanced atherosclerotic lesions. The combined evidence points to thrombin as a pivotal contributor to vascular pathophysiology. Considering the clinical development of selective anticoagulants including direct thrombin inhibitors, it is a relevant moment to review the different thrombin-induced mechanisms that contribute to the initiation, formation, progression, and destabilization of atherosclerotic plaques.
Collapse
Affiliation(s)
- Julian Ilcheff Borissoff
- Laboratory for Clinical Thrombosis and Hemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+ (MUMC+), Maastricht, The Netherlands
| | | | | | | |
Collapse
|
91
|
Gupta A, Gerlitz B, Richardson MA, Bull C, Berg DT, Syed S, Galbreath EJ, Swanson BA, Jones BE, Grinnell BW. Distinct functions of activated protein C differentially attenuate acute kidney injury. J Am Soc Nephrol 2008; 20:267-77. [PMID: 19092124 DOI: 10.1681/asn.2008030294] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Administration of activated protein C (APC) protects from renal dysfunction, but the underlying mechanism is unknown. APC exerts both antithrombotic and cytoprotective properties, the latter via modulation of protease-activated receptor-1 (PAR-1) signaling. We generated APC variants to study the relative importance of the two functions of APC in a model of LPS-induced renal microvascular dysfunction. Compared with wild-type APC, the K193E variant exhibited impaired anticoagulant activity but retained the ability to mediate PAR-1-dependent signaling. In contrast, the L8W variant retained anticoagulant activity but lost its ability to modulate PAR-1. By administering wild-type APC or these mutants in a rat model of LPS-induced injury, we found that the PAR-1 agonism, but not the anticoagulant function of APC, reversed LPS-induced systemic hypotension. In contrast, both functions of APC played a role in reversing LPS-induced decreases in renal blood flow and volume, although the effects on PAR-1-dependent signaling were more potent. Regarding potential mechanisms for these findings, APC-mediated PAR-1 agonism suppressed LPS-induced increases in the vasoactive peptide adrenomedullin and infiltration of iNOS-positive leukocytes into renal tissue. However, the anticoagulant function of APC was responsible for suppressing LPS-induced stimulation of the proinflammatory mediators ACE-1, IL-6, and IL-18, perhaps accounting for its ability to modulate renal hemodynamics. Both variants reduced active caspase-3 and abrogated LPS-induced renal dysfunction and pathology. We conclude that although PAR-1 agonism is solely responsible for APC-mediated improvement in systemic hemodynamics, both functions of APC play distinct roles in attenuating the response to injury in the kidney.
Collapse
Affiliation(s)
- Akanksha Gupta
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285-0444, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Bejarano I, Lozano GM, Ortiz A, García JF, Paredes SD, Rodríguez AB, Pariente JA. Caspase 3 activation in human spermatozoa in response to hydrogen peroxide and progesterone. Fertil Steril 2008; 90:1340-7. [DOI: 10.1016/j.fertnstert.2007.08.069] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/30/2007] [Accepted: 08/30/2007] [Indexed: 11/27/2022]
|
93
|
Lopez JJ, Salido GM, Pariente JA, Rosado JA. Thrombin induces activation and translocation of Bid, Bax and Bak to the mitochondria in human platelets. J Thromb Haemost 2008; 6:1780-8. [PMID: 18665919 DOI: 10.1111/j.1538-7836.2008.03111.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Thrombin is a physiological platelet agonist that activates apoptotic events, including cytochrome c release and phosphatidylserine exposure; however, the mechanisms underlying these events remain unclear. OBJECTIVES The present study is aimed to investigate whether thrombin induces activation and mitochondrial translocation of Bid, Bax and Bak. METHODS Changes in the mitochondrial membrane potential were registered using the dye JC-1; Bid, Bax and Bak translocation to the mitochondria was detected by immunoprecipitation and Western blotting in samples from mitochondrial and cytosolic fractions. RESULTS Treatment of platelets with thrombin or ADP induces activation and mitochondrial association of active Bid, Bax and Bak. Translocation of Bid and Bax to the mitochondria was reduced by cytochalasin D, latrunculin A or jasplakinolide. Platelet exposure to exogenous H(2)O(2) (10 microm) results in activation of Bid and Bax, which was found to be similar to the effect of thrombin. Thrombin evokes mitochondrial membrane depolarization, which is attenuated by catalase. CONCLUSION Our results indicate that thrombin induces activation and mitochondrial translocation of Bid, Bax and Bak, which is likely to be one of the apoptotic events in human platelets.
Collapse
Affiliation(s)
- J J Lopez
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, Cáceres, Spain
| | | | | | | |
Collapse
|
94
|
Morgado S, Granados MP, Bejarano I, López JJ, Salido GM, González A, Pariente JA. Role of intracellular calcium on hydrogen peroxide-induced apoptosis in rat pancreatic acinar AR42J cells. J Appl Biomed 2008. [DOI: 10.32725/jab.2008.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
95
|
Cinnamtannin B-1 as an antioxidant and platelet aggregation inhibitor. Life Sci 2008; 82:977-82. [PMID: 18433795 DOI: 10.1016/j.lfs.2008.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/19/2008] [Accepted: 03/17/2008] [Indexed: 01/01/2023]
Abstract
Cinnamtannin B-1 is a naturally occurring trimeric A-type proanthocyanidin, present in a limited number of plants, which exhibits a large number of cellular actions mostly derived from its antioxidant properties. Cinnamtannin B-1 modulates several biological processes such as changes in cytosolic free Ca(2+) concentration, endogenous reactive oxygen species generation, protein tyrosine phosphorylation and platelet aggregation. Proanthocyanidins, such as cinnamtannin B-1, have been reported to exert antitumoral activity mediated by a selective proapoptotic action in a number of tumoral cell lines associated with antiapoptotic activity in normal cells. The opposite effects of proanthocyanidins in normal and tumoral cells suggest that these compounds might be the base for therapeutic strategies directed selectively against tumoral cells. In addition, cinnamtannin B-1 shows antithrombotic actions through inhibition, in platelets, of endogenous ROS generation, Ca(2+) mobilization and, subsequently, aggregation. This has been reported to be especially relevant in platelets from diabetic patients, where cinnamtannin B-1 reverses both platelet hypersensitivity and hyperactivity. Considering the large number of cellular effects of cinnamtannin B-1 the development of therapeutic strategies for thrombotic disorders or certain types of cancer deserves further studies. This review summarizes the current knowledge on the actions and relevance of the signalling pathways modulated by cinnamtannin B-1.
Collapse
|
96
|
|
97
|
Hydrogen peroxide activates calcium influx in human neutrophils. Mol Cell Biochem 2007; 309:151-6. [PMID: 18008137 DOI: 10.1007/s11010-007-9653-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 10/31/2007] [Indexed: 01/23/2023]
Abstract
The correlation between an increased production of reactive oxygen species (ROS) and an enhanced calcium entry in primed neutrophils stimulated with fMLP suggests that endogenous ROS could serve as an agonist to reinforce calcium signaling by positive feedback. This work shows that exogenous H2O2 produced a rapid influx of Mn2+ and an increase of intracellular calcium. The H2O2 was insufficient to produce significant changes in the absence of extracellular calcium but addition of Ca2+ to H2O2-treated cells suspended in a free Ca2+/EGTA buffer resulted in a great increase in [Ca2+]i reflecting influx of Ca2+ across the cell membrane. The increase of intracellular calcium was inhibited by Ni2+, La3+, and hyperosmotic solutions of mannitol and other osmolytes. This raises the possibility that the secretion of H2O2 by activated neutrophils could act as an autocrine regulator of neutrophil function through the activation of calcium entry.
Collapse
|