51
|
Iversen MW, Nordbø Ø, Gjerlaug-Enger E, Grindflek E, Lopes MS, Meuwissen T. Effects of heterozygosity on performance of purebred and crossbred pigs. Genet Sel Evol 2019; 51:8. [PMID: 30819106 PMCID: PMC6396501 DOI: 10.1186/s12711-019-0450-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/19/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In pigs, crossbreeding aims at exploiting heterosis, but heterosis is difficult to quantify. Heterozygosity at genetic markers is easier to measure and could potentially be used as an indicator of heterosis. The objective of this study was to investigate the effect of heterozygosity on various maternal and production traits in purebred and crossbred pigs. The proportion of heterozygosity at genetic markers across the genome for each individual was included in the prediction model as a fixed regression across or within breeds. RESULTS Estimates of regression coefficients of heterozygosity showed large effects for some traits. For maternal traits, regression coefficient estimates were always in a favourable direction, while for production, meat and slaughter quality traits, they were both favourable and unfavourable. Traits with the largest estimated effects of heterozygosity were total number born, litter weight at 3 weeks, weight at 150 days, and age at 40 kg. Estimates of regression coefficients on heterozygosity differed between breeds. Traits with the largest effect of heterozygosity also showed a significant (P < 0.05) increase in prediction accuracy when heterozygosity was included in the model compared to the model without heterozygosity. CONCLUSIONS For traits with the largest estimates of regression coefficients on heterozygosity, the inclusion of heterozygosity in the model improved prediction accuracy. Using models that include heterozygosity would result in selecting different animals for breeding, which has the potential to improve genetic gain for these traits. This is most beneficial when crossbreds or several breeds are included in the estimation of breeding values and is relevant to all species, not only pigs. Thus, our results show that including heterozygosity in the model is beneficial for some traits, likely due to dominant gene action.
Collapse
Affiliation(s)
- Maja Winther Iversen
- Norsvin R&D, Storhamargata 44, 2317 Hamar, Norway
- Norwegian University of Life Sciences, Postboks 5003 NMBU, 1432 Ås, Norway
| | - Øyvind Nordbø
- Norsvin R&D, Storhamargata 44, 2317 Hamar, Norway
- GENO SA, Storhamargata 44, 2317 Hamar, Norway
| | | | | | - Marcos Soares Lopes
- Topigs Norsvin Research Center, 6641 SZ Beuningen, The Netherlands
- Topigs Norsvin, Curitiba, 80420-210 Brazil
| | - Theo Meuwissen
- Norwegian University of Life Sciences, Postboks 5003 NMBU, 1432 Ås, Norway
| |
Collapse
|
52
|
Lemopoulos A, Prokkola JM, Uusi‐Heikkilä S, Vasemägi A, Huusko A, Hyvärinen P, Koljonen M, Koskiniemi J, Vainikka A. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness - Implications for brown trout conservation. Ecol Evol 2019; 9:2106-2120. [PMID: 30847096 PMCID: PMC6392366 DOI: 10.1002/ece3.4905] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
The conservation and management of endangered species requires information on their genetic diversity, relatedness and population structure. The main genetic markers applied for these questions are microsatellites and single nucleotide polymorphisms (SNPs), the latter of which remain the more resource demanding approach in most cases. Here, we compare the performance of two approaches, SNPs obtained by restriction-site-associated DNA sequencing (RADseq) and 16 DNA microsatellite loci, for estimating genetic diversity, relatedness and genetic differentiation of three, small, geographically close wild brown trout (Salmo trutta) populations and a regionally used hatchery strain. The genetic differentiation, quantified as F ST, was similar when measured using 16 microsatellites and 4,876 SNPs. Based on both marker types, each brown trout population represented a distinct gene pool with a low level of interbreeding. Analysis of SNPs identified half- and full-siblings with a higher probability than the analysis based on microsatellites, and SNPs outperformed microsatellites in estimating individual-level multilocus heterozygosity. Overall, the results indicated that moderately polymorphic microsatellites and SNPs from RADseq agreed on estimates of population genetic structure in moderately diverged, small populations, but RADseq outperformed microsatellites for applications that required individual-level genotype information, such as quantifying relatedness and individual-level heterozygosity. The results can be applied to other small populations with low or moderate levels of genetic diversity.
Collapse
Affiliation(s)
- Alexandre Lemopoulos
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Jenni M. Prokkola
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Silva Uusi‐Heikkilä
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anti Vasemägi
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Aquatic Resources, Institute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Estonian University of Life SciencesInstitute of Veterinary Medicine and Animal SciencesTartuEstonia
| | - Ari Huusko
- Natural Resources Institute Finland (Luke), Kainuu Fisheries Research StationPaltamoFinland
| | - Pekka Hyvärinen
- Natural Resources Institute Finland (Luke), Kainuu Fisheries Research StationPaltamoFinland
| | | | - Jarmo Koskiniemi
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Anssi Vainikka
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| |
Collapse
|
53
|
|
54
|
Fortin M, Vitet C, Souty-Grosset C, Richard FJ. How do familiarity and relatedness influence mate choice in Armadillidium vulgare? PLoS One 2018; 13:e0209893. [PMID: 30596784 PMCID: PMC6312335 DOI: 10.1371/journal.pone.0209893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022] Open
Abstract
Mate choice is an important process in sexual selection and usually prevents inbreeding depression in populations. In the terrestrial isopod Armadillidium vulgare, the close physical proximity between individuals may increase the risk of reproducing with siblings. Moreover, individuals of this species can be infected with the feminizing bacteria of Wolbachia, which influence male mate choice. However, little is known about the kinship or familiarity assessment of the selected partner that occurs when a male can choose between females with or without Wolbachia. To investigate the potential mechanisms leading to mate choice and the potential impact of the parasite, we performed behavioral choice tests on males where they could choose between sibling vs. nonsibling females, familiar vs. unfamiliar females, and sibling familiar vs. unfamiliar nonsibling females. To investigate the costs of inbreeding, we compared the reproductive success of both sibling and nonsibling mates. Our results revealed that male copulation attempts were higher for familiar females and for nonsibling females when both females were Wolbachia-infected, but the duration was longer when both females were Wolbachia-free. When males mated with a sibling female, their fecundity was severely decreased, consistent with inbreeding depression. Overall, we observed copulations with all types of females and demonstrated discrimination capacities and potential preferences. We highlight the complexity of the tradeoff between kinship, familiarity and parasite transmission assessment for mate choice.
Collapse
Affiliation(s)
- Margot Fortin
- Laboratoire Ecologie et Biologie des Interactions, Team Ecologie, Evolution, Symbiose, Université de Poitiers, Poitiers, France
| | - Camille Vitet
- Laboratoire Ecologie et Biologie des Interactions, Team Ecologie, Evolution, Symbiose, Université de Poitiers, Poitiers, France
| | - Catherine Souty-Grosset
- Laboratoire Ecologie et Biologie des Interactions, Team Ecologie, Evolution, Symbiose, Université de Poitiers, Poitiers, France
| | - Freddie-Jeanne Richard
- Laboratoire Ecologie et Biologie des Interactions, Team Ecologie, Evolution, Symbiose, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
55
|
Yu L, Nie Y, Yan L, Hu Y, Wei F. No evidence for MHC-based mate choice in wild giant pandas. Ecol Evol 2018; 8:8642-8651. [PMID: 30271533 PMCID: PMC6157678 DOI: 10.1002/ece3.4419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 11/10/2022] Open
Abstract
Major histocompatibility complex genes (MHC), a gene cluster that controls the immune response to parasites, are regarded as an important determinant of mate choice. However, MHC-based mate choice studies are especially rare for endangered animals. The giant panda (Ailuropoda melanoleuca), a flagship species, has suffered habitat loss and fragmentation. We investigated the genetic variation of three MHC class II loci, including DRB1, DQA1, and DQA2, for 19 mating-pairs and 11 parent-pairs of wild giant pandas based on long-term field behavior observations and genetic samples. We tested four hypotheses of mate choice based on this MHC variation. We found no supporting evidence for the MHC-based heterosis, genetic diversity, genetic compatibility and "good gene" hypotheses. These results suggest that giant pandas may not use MHC-based signals to select mating partners, probably because limited mating opportunities or female-biased natal dispersal restricts selection for MHC-based mate choice, acknowledging the caveat of the small sample size often encountered in endangered animal studies. Our study provides insight into the mate choice mechanisms of wild giant pandas and highlights the need to increase the connectivity and facilitate dispersal among fragmented populations and habitats.
Collapse
Affiliation(s)
- Lijun Yu
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yonggang Nie
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| | - Li Yan
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
56
|
Edworthy AB, Langmore NE, Heinsohn R. Native fly parasites are the principal cause of nestling mortality in endangered Tasmanian pardalotes. Anim Conserv 2018. [DOI: 10.1111/acv.12444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- A. B. Edworthy
- Research School of Biology Australian National University Canberra ACT Australia
| | - N. E. Langmore
- Research School of Biology Australian National University Canberra ACT Australia
| | - R. Heinsohn
- Fenner School of Environment and Society Australian National University Canberra ACT Australia
| |
Collapse
|
57
|
Brandies PA, Grueber CE, Ivy JA, Hogg CJ, Belov K. Disentangling the mechanisms of mate choice in a captive koala population. PeerJ 2018; 6:e5438. [PMID: 30155356 PMCID: PMC6108315 DOI: 10.7717/peerj.5438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/23/2018] [Indexed: 11/29/2022] Open
Abstract
Successful captive breeding programs are crucial to the long-term survival of many threatened species. However, pair incompatibility (breeding failure) limits sustainability of many captive populations. Understanding whether the drivers of this incompatibility are behavioral, genetic, or a combination of both, is crucial to improving breeding programs. We used 28 years of pairing data from the San Diego Zoo koala colony, plus genetic analyses using both major histocompatibility complex (MHC)-linked and non-MHC-linked microsatellite markers, to show that both genetic and non-genetic factors can influence mating success. Male age was reconfirmed to be a contributing factor to the likelihood of a koala pair copulating. This trend could also be related to a pair's age difference, which was highly correlated with male age in our dataset. Familiarity was reconfirmed to increase the probability of a successful copulation. Our data provided evidence that females select mates based on MHC and genome-wide similarity. Male heterozygosity at MHC class II loci was associated with both pre- and post-copulatory female choice. Genome-wide similarity, and similarity at the MHC class II DAB locus, were also associated with female choice at the post-copulatory level. Finally, certain MHC-linked alleles were associated with either increased or decreased mating success. We predict that utilizing a variety of behavioral and MHC-dependent mate choice mechanisms improves female fitness through increased reproductive success. This study highlights the complexity of mate choice mechanisms in a species, and the importance of ascertaining mate choice mechanisms to improve the success of captive breeding programs.
Collapse
Affiliation(s)
- Parice A. Brandies
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Catherine E. Grueber
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- San Diego Zoo Global, San Diego, CA, USA
| | | | - Carolyn J. Hogg
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
58
|
Velie BD, Jäderkvist Fegraeus K, Ihler CF, Lindgren G, Strand E. Competition lifespan survival analysis in the Norwegian‐Swedish Coldblooded Trotter racehorse. Equine Vet J 2018; 51:206-211. [DOI: 10.1111/evj.12989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 07/02/2018] [Indexed: 11/29/2022]
Affiliation(s)
- B. D. Velie
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | - K. Jäderkvist Fegraeus
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | - C. F. Ihler
- Department of Companion Animal Clinical Sciences Faculty of Veterinary Medicine Norwegian University of Life Sciences Oslo Norway
| | - G. Lindgren
- Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Uppsala Sweden
| | - E. Strand
- Department of Companion Animal Clinical Sciences Faculty of Veterinary Medicine Norwegian University of Life Sciences Oslo Norway
| |
Collapse
|
59
|
Dotsev AV, Deniskova TE, Okhlopkov IM, Mészáros G, Sölkner J, Reyer H, Wimmers K, Brem G, Zinovieva NA. Genome-wide SNP analysis unveils genetic structure and phylogeographic history of snow sheep ( Ovis nivicola) populations inhabiting the Verkhoyansk Mountains and Momsky Ridge (northeastern Siberia). Ecol Evol 2018; 8:8000-8010. [PMID: 30250679 PMCID: PMC6144981 DOI: 10.1002/ece3.4350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Insights into the genetic characteristics of a species provide important information for wildlife conservation programs. Here, we used the OvineSNP50 BeadChip developed for domestic sheep to examine population structure and evaluate genetic diversity of snow sheep (Ovis nivicola) inhabiting Verkhoyansk Range and Momsky Ridge. A total of 1,121 polymorphic SNPs were used to test 80 specimens representing five populations, including four populations of the Verkhoyansk Mountain chain: Kharaulakh Ridge-Tiksi Bay (TIK, n = 22), Orulgan Ridge (ORU, n = 22), the central part of Verkhoyansk Range (VER, n = 15), Suntar-Khayata Ridge (SKH, n = 13), and Momsky Ridge (MOM, n = 8). We showed that the studied populations were genetically structured according to a geographic pattern. Pairwise FST values ranged from 0.044 to 0.205. Admixture analysis identified K = 2 as the most likely number of ancestral populations. A Neighbor-Net tree showed that TIK was an isolated group related to the main network through ORU. TreeMix analysis revealed that TIK and MOM originated from two different ancestral populations and detected gene flow from MOM to ORU. This was supported by the f3 statistic, which showed that ORU is an admixed population with TIK and MOM/SKH heritage. Genetic diversity in the studied groups was increasing southward. Minimum values of observed (Ho) and expected (He) heterozygosity and allelic richness (Ar) were observed in the most northern population-TIK, and maximum values were observed in the most southern population-SKH. Thus, our results revealed clear genetic structure in the studied populations of snow sheep and showed that TIK has a different origin from MOM, SKH, and VER even though they are conventionally considered a single subspecies known as Yakut snow sheep (Ovis nivicola lydekkeri). Most likely, TIK was an isolated group during the Late Pleistocene glaciations of Verkhoyansk Range.
Collapse
Affiliation(s)
- Arsen V. Dotsev
- L.K. Ernst Federal Science Center for Animal HusbandryMoscow RegionPodolskRussian Federation
| | - Tatiana E. Deniskova
- L.K. Ernst Federal Science Center for Animal HusbandryMoscow RegionPodolskRussian Federation
| | | | - Gabor Mészáros
- Division of Livestock SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Johann Sölkner
- Division of Livestock SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Henry Reyer
- Institute of Genome BiologyLeibniz Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Klaus Wimmers
- Institute of Genome BiologyLeibniz Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal HusbandryMoscow RegionPodolskRussian Federation
- Institute of Animal Breeding and GeneticsUniversity of Veterinary Medicine (VMU)ViennaAustria
| | - Natalia A. Zinovieva
- L.K. Ernst Federal Science Center for Animal HusbandryMoscow RegionPodolskRussian Federation
| |
Collapse
|
60
|
RAD Sequencing and a Hybrid Antarctic Fur Seal Genome Assembly Reveal Rapidly Decaying Linkage Disequilibrium, Global Population Structure and Evidence for Inbreeding. G3-GENES GENOMES GENETICS 2018; 8:2709-2722. [PMID: 29954843 PMCID: PMC6071602 DOI: 10.1534/g3.118.200171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent advances in high throughput sequencing have transformed the study of wild organisms by facilitating the generation of high quality genome assemblies and dense genetic marker datasets. These resources have the potential to significantly advance our understanding of diverse phenomena at the level of species, populations and individuals, ranging from patterns of synteny through rates of linkage disequilibrium (LD) decay and population structure to individual inbreeding. Consequently, we used PacBio sequencing to refine an existing Antarctic fur seal (Arctocephalus gazella) genome assembly and genotyped 83 individuals from six populations using restriction site associated DNA (RAD) sequencing. The resulting hybrid genome comprised 6,169 scaffolds with an N50 of 6.21 Mb and provided clear evidence for the conservation of large chromosomal segments between the fur seal and dog (Canis lupus familiaris). Focusing on the most extensively sampled population of South Georgia, we found that LD decayed rapidly, reaching the background level by around 400 kb, consistent with other vertebrates but at odds with the notion that fur seals experienced a strong historical bottleneck. We also found evidence for population structuring, with four main Antarctic island groups being resolved. Finally, appreciable variance in individual inbreeding could be detected, reflecting the strong polygyny and site fidelity of the species. Overall, our study contributes important resources for future genomic studies of fur seals and other pinnipeds while also providing a clear example of how high throughput sequencing can generate diverse biological insights at multiple levels of organization.
Collapse
|
61
|
Brambilla A, Keller L, Bassano B, Grossen C. Heterozygosity-fitness correlation at the major histocompatibility complex despite low variation in Alpine ibex ( Capra ibex). Evol Appl 2018; 11:631-644. [PMID: 29875807 PMCID: PMC5979623 DOI: 10.1111/eva.12575] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023] Open
Abstract
Crucial for the long-term survival of wild populations is their ability to fight diseases. Disease outbreaks can lead to severe population size reductions, which makes endangered and reintroduced species especially vulnerable. In vertebrates, the major histocompatibility complex (MHC) plays an important role in determining the immune response. Species that went through severe bottlenecks often show very low levels of genetic diversity at the MHC. Due to the known link between the MHC and immune response, such species are expected to be at particular risk in case of disease outbreaks. However, so far, only few studies have shown that low MHC diversity is correlated with increased disease susceptibility in species after severe bottlenecks. We investigated genetic variation at the MHC and its correlations with disease resistance and other fitness-related traits in Alpine ibex (Capra ibex), a wild goat species that underwent a strong bottleneck in the last century and that is known to have extremely low genetic variability, both genome-wide and at the MHC. We studied MHC variation in male ibex of Gran Paradiso National Park, the population used as a source for all postbottleneck reintroductions. We found that individual MHC heterozygosity (based on six microsatellites) was not correlated with genome-wide neutral heterozygosity. MHC heterozygosity, but not genome-wide heterozygosity, was positively correlated with resistance to infectious keratoconjunctivitis and with body mass. Our results show that genetic variation at the MHC plays an important role in disease resistance and, hence, should be taken into account for successfully managing species conservation.
Collapse
Affiliation(s)
- Alice Brambilla
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurich (ZH)Switzerland
- Alpine Wildlife Research CentreGran Paradiso National ParkNoasca (TO)Italy
| | - Lukas Keller
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurich (ZH)Switzerland
| | - Bruno Bassano
- Alpine Wildlife Research CentreGran Paradiso National ParkNoasca (TO)Italy
| | - Christine Grossen
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurich (ZH)Switzerland
| |
Collapse
|
62
|
Van Nguyen D, Van Nguyen C, Bonsall D, Ngo TT, Carrique-Mas J, Pham AH, Bryant JE, Thwaites G, Baker S, Woolhouse M, Simmonds P. Detection and Characterization of Homologues of Human Hepatitis Viruses and Pegiviruses in Rodents and Bats in Vietnam. Viruses 2018; 10:v10030102. [PMID: 29495551 PMCID: PMC5869495 DOI: 10.3390/v10030102] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022] Open
Abstract
Rodents and bats are now widely recognised as important sources of zoonotic virus infections in other mammals, including humans. Numerous surveys have expanded our knowledge of diverse viruses in a range of rodent and bat species, including their origins, evolution, and range of hosts. In this study of pegivirus and human hepatitis-related viruses, liver and serum samples from Vietnamese rodents and bats were examined by PCR and sequencing. Nucleic acids homologous to human hepatitis B, C, E viruses were detected in liver samples of 2 (1.3%) of 157 bats, 38 (8.1%), and 14 (3%) of 470 rodents, respectively. Hepacivirus-like viruses were frequently detected (42.7%) in the bamboo rat, Rhizomys pruinosus, while pegivirus RNA was only evident in 2 (0.3%) of 638 rodent serum samples. Complete or near-complete genome sequences of HBV, HEV and pegivirus homologues closely resembled those previously reported from rodents and bats. However, complete coding region sequences of the rodent hepacivirus-like viruses substantially diverged from all of the currently classified variants and potentially represent a new species in the Hepacivirus genus. Of the viruses identified, their routes of transmission and potential to establish zoonoses remain to be determined.
Collapse
MESH Headings
- Animals
- Chiroptera/virology
- Genome, Viral
- Hepatitis Viruses/classification
- Hepatitis Viruses/genetics
- Hepatitis, Viral, Animal/diagnosis
- Hepatitis, Viral, Animal/epidemiology
- Hepatitis, Viral, Animal/virology
- Hepatitis, Viral, Human/diagnosis
- Hepatitis, Viral, Human/epidemiology
- Hepatitis, Viral, Human/virology
- Humans
- Phylogeny
- Public Health Surveillance
- RNA, Viral
- Rodentia/virology
- Vietnam/epidemiology
- Zoonoses/epidemiology
- Zoonoses/virology
Collapse
Affiliation(s)
- Dung Van Nguyen
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Cuong Van Nguyen
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
| | - David Bonsall
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Tue Tri Ngo
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
| | - Juan Carrique-Mas
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK.
| | - Anh Hong Pham
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
| | - Juliet E Bryant
- Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), 69365 Lyon CEDEX 07, France.
| | - Guy Thwaites
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK.
| | - Stephen Baker
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK.
- The London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
| | - Mark Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| |
Collapse
|
63
|
Judson JLM, Knapp CR, Welch ME. Age-dependent, negative heterozygosity-fitness correlations and local effects in an endangered Caribbean reptile, Iguana delicatissima. Ecol Evol 2018; 8:2088-2096. [PMID: 29468027 PMCID: PMC5817140 DOI: 10.1002/ece3.3826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023] Open
Abstract
Inbreeding depression can have alarming impacts on threatened species with small population sizes. Assessing inbreeding has therefore become an important focus of conservation research. In this study, heterozygosity-fitness correlations (HFCs) were measured by genotyping 7 loci in 83 adult and 184 hatchling Lesser Antillean Iguanas, Iguana delicatissima, at a communal nesting site in Dominica to assess the role of inbreeding depression on hatchling fitness and recruitment to the adult population in this endangered species. We found insignificant correlations between multilocus heterozygosity and multiple fitness proxies in hatchlings and adults. Further, multilocus heterozygosity did not differ significantly between hatchlings and adults, which suggests that the survivorship of homozygous hatchlings does not differ markedly from that of their heterozygous counterparts. However, genotypes at two individual loci were correlated with hatching date, a finding consistent with the linkage between specific marker loci and segregating deleterious recessive alleles. These results provide only modest evidence that inbreeding depression influences the population dynamics of I. delicatissima on Dominica.
Collapse
Affiliation(s)
| | - Charles R. Knapp
- San Diego Zoo Institute for Conservation ResearchEscondidoCAUSA
- Present address:
Daniel P. Haerter Center for Conservation and ResearchJohn G. Shedd AquariumChicagoILUSA
| | - Mark E. Welch
- Department of Biological SciencesMississippi State UniversityMississippi StateMSUSA
| |
Collapse
|
64
|
Nietlisbach P, Keller LF, Camenisch G, Guillaume F, Arcese P, Reid JM, Postma E. Pedigree-based inbreeding coefficient explains more variation in fitness than heterozygosity at 160 microsatellites in a wild bird population. Proc Biol Sci 2018; 284:rspb.2016.2763. [PMID: 28250184 DOI: 10.1098/rspb.2016.2763] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 01/14/2023] Open
Abstract
Although the pedigree-based inbreeding coefficient F predicts the expected proportion of an individual's genome that is identical-by-descent (IBD), heterozygosity at genetic markers captures Mendelian sampling variation and thereby provides an estimate of realized IBD. Realized IBD should hence explain more variation in fitness than their pedigree-based expectations, but how many markers are required to achieve this in practice remains poorly understood. We use extensive pedigree and life-history data from an island population of song sparrows (Melospiza melodia) to show that the number of genetic markers and pedigree depth affected the explanatory power of heterozygosity and F, respectively, but that heterozygosity measured at 160 microsatellites did not explain more variation in fitness than F This is in contrast with other studies that found heterozygosity based on far fewer markers to explain more variation in fitness than F Thus, the relative performance of marker- and pedigree-based estimates of IBD depends on the quality of the pedigree, the number, variability and location of the markers employed, and the species-specific recombination landscape, and expectations based on detailed and deep pedigrees remain valuable until we can routinely afford genotyping hundreds of phenotyped wild individuals of genetic non-model species for thousands of genetic markers.
Collapse
Affiliation(s)
- Pirmin Nietlisbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Glauco Camenisch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jane M Reid
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Erik Postma
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| |
Collapse
|
65
|
GIBSON AMANDAK, MORRAN LEVIT. A Model for Evolutionary Ecology of Disease: The Case for Caenorhabditis Nematodes and Their Natural Parasites. J Nematol 2018. [DOI: 10.21307/jofnem-2017-083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
66
|
Krause ET, Krüger O, Hoffman JI. The influence of inherited plumage colour morph on morphometric traits and breeding investment in zebra finches (Taeniopygia guttata). PLoS One 2017; 12:e0188582. [PMID: 29190647 PMCID: PMC5708660 DOI: 10.1371/journal.pone.0188582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022] Open
Abstract
Melanin-based plumage polymorphism occurs in many wild bird populations and has been linked to fitness variation in several species. These fitness differences often arise as a consequence of variation in traits such as behaviour, immune responsiveness, body size and reproductive investment. However, few studies have controlled for genetic differences between colour morphs that could potentially generate artefactual associations between plumage colouration and trait variation. Here, we used zebra finches (Taeniopygia guttata) as a model system in order to evaluate whether life-history traits such as adult body condition and reproductive investment could be influenced by plumage morph. To maximise any potential differences, we selected wild-type and white plumage morphs, which differ maximally in their extent of melanisation, while using a controlled three-generation breeding design to homogenise the genetic background. We found that F2 adults with white plumage colouration were on average lighter and had poorer body condition than wild-type F2 birds. However, they appeared to compensate for this by reproducing earlier and producing heavier eggs relative to their own body mass. Our study thus reveals differences in morphological and life history traits that could be relevant to fitness variation, although further studies will be required to evaluate fitness effects under natural conditions as well as to characterise any potential fitness costs of compensatory strategies in white zebra finches.
Collapse
Affiliation(s)
- E. Tobias Krause
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
- * E-mail:
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Joseph I. Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
67
|
Eastwood JR, Ribot RFH, Rollins LA, Buchanan KL, Walder K, Bennett ATD, Berg ML. Host heterozygosity and genotype rarity affect viral dynamics in an avian subspecies complex. Sci Rep 2017; 7:13310. [PMID: 29042596 PMCID: PMC5645371 DOI: 10.1038/s41598-017-13476-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/25/2017] [Indexed: 11/09/2022] Open
Abstract
Genetic diversity at community, population and individual levels is thought to influence the spread of infectious disease. At the individual level, inbreeding and heterozygosity are associated with increased risk of infection and disease severity. Host genotype rarity may also reduce infection risk if pathogens are co-adapted to common or local hosts, but to date, no studies have investigated the relative importance of genotype rarity and heterozygosity for infection in a wild, sexually reproducing vertebrate. With beak and feather disease virus (BFDV) infection in a wild parrot (Platycercus elegans), we show that both heterozygosity and genotype rarity of individual hosts predicted infection, but in contrasting ways. Heterozygosity was negatively associated with probability of infection, but not with infection load. In contrast, increased host genotype rarity was associated with lower viral load in infected individuals, but did not predict infection probability. These effects were largely consistent across subspecies, but were not evident at the population level. Subspecies and age were also strongly associated with infection. Our study provides novel insights into infection dynamics by quantifying rarity and diversity simultaneously. We elucidate roles that host genetic diversity can play in infection dynamics, with implications for understanding population divergence, intraspecific diversity and conservation.
Collapse
Affiliation(s)
- Justin R Eastwood
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Victoria, Australia. .,School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia.
| | - Raoul F H Ribot
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Victoria, Australia
| | - Lee Ann Rollins
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Victoria, Australia
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Victoria, Australia
| | - Ken Walder
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, 3216, Victoria, Australia
| | - Andrew T D Bennett
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Victoria, Australia
| | - Mathew L Berg
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Victoria, Australia
| |
Collapse
|
68
|
Is telomere length associated with mate choice in a songbird with a high rate of extra-pair paternity? PLoS One 2017; 12:e0182446. [PMID: 28783753 PMCID: PMC5544213 DOI: 10.1371/journal.pone.0182446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Telomere length is related to aging in many eukaryotes and the rate of telomere attrition has been suggested to reflect individual genetic quality. Telomere length could thus have implications for mate choice. We investigated telomere length variation in bluethroat Luscinia svecica families with mixed paternity, including social parents, extra-pair fathers and nestlings, testing whether telomere length is associated with social and/or extra-pair mate choice through assortative mating or selection of mates with relatively long telomeres. In adults, relative telomere length (rTL) did not differ between the sexes, nor between two age categories. In chicks, however, rTL decreased with body mass at sampling (an index of nestling age). We found a positive correlation between the rTL of social mates, suggesting assortative mating with respect to telomere length or a correlative thereof. However, extra-pair males did not differ from social mates in rTL, and accordingly there was also no difference between within- and extra-pair young (i.e. half-siblings) when controlling for the effect of mass. We found no relationships between telomere length, age and fitness-related traits in adults, but an intriguing year-difference in telomere length in both sexes. In conclusion, we found no support for the idea that females choose extra-pair males based on their telomere length, but social mate choice seems to be influenced by rTL, possibly through its co-variation with aspects reflecting individual quality, like early arrival at the breeding grounds.
Collapse
|
69
|
Low level of extra-pair paternity between nearest neighbors results from female preference for high-quality males in the yellow-rumped flycatcher (Ficedula zanthopygia). PLoS One 2017; 12:e0172713. [PMID: 28257431 PMCID: PMC5336208 DOI: 10.1371/journal.pone.0172713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 02/08/2017] [Indexed: 12/03/2022] Open
Abstract
Extra-pair copulation is considered to be a means by which females can modify their initial mate choice, and females might obtain indirect benefits to offspring fitness by engaging in this behavior. Here, we examined the patterns of extra-pair paternity and female preferences in the yellow-rumped flycatcher (Ficedula zanthopygia). We found that female yellow-rumped flycatchers are more likely to choose larger and relatively highly heterozygous males than their social mates as extra-pair mates, that the genetic similarity of pairs that produced mixed-paternity offspring did not differ from the similarity of pairs producing only within-pair offspring, and that extra-pair offspring were more heterozygous than their half-siblings. These findings support the good genes hypothesis but do not exclude the compatibility hypothesis. Most female yellow-rumped flycatchers attained extra-pair paternity with distant males rather than their nearest accessible neighboring males, and no differences in genetic and phenotypic characteristics were detected between cuckolded males and their nearest neighbors. There was no evidence that extra-pair mating by female flycatchers reduced inbreeding. Moreover, breeding density, breeding synchrony and their interaction did not affect the occurrence of extra-pair paternity in this species. Our results suggest that the variation in extra-pair paternity distribution between nearest neighbors in some passerine species might result from female preference for highly heterozygous males.
Collapse
|
70
|
Mitchell J, Cant MA, Vitikainen EIK, Nichols HJ. Smelling fit: scent marking exposes parasitic infection status in the banded mongoose. Curr Zool 2017; 63:237-247. [PMID: 29491982 PMCID: PMC5804179 DOI: 10.1093/cz/zox003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/19/2017] [Indexed: 12/02/2022] Open
Abstract
Preference for uninfected mates is presumed beneficial as it minimizes one’s risk of contracting an infection and infecting one’s offspring. In avian systems, visual ornaments are often used to indicate parasite burdens and facilitate mate choice. However, in mammals, olfactory cues have been proposed to act as a mechanism allowing potential mates to be discriminated by infection status. The effect of infection upon mammalian mate choice is mainly studied in captive rodents where experimental trials support preference for the odors of uninfected mates and some data suggest scent marking is reduced in individuals with high infection burdens. Nevertheless, whether such effects occur in nonmodel and wild systems remains poorly understood. Here, we investigate the interplay between parasite load (estimated using fecal egg counts) and scent marking behavior in a wild population of banded mongooses Mungos mungo. Focusing on a costly protozoan parasite of the genus Isospora and the nematode worm Toxocara, we first show that banded mongooses that engage in frequent, intensive scent marking have lower Isospora loads, suggesting marking behavior may be an indicator trait regarding infection status. We then use odor presentations to demonstrate that banded mongooses mark less in response to odors of opposite sexed individuals with high Isospora and Toxocara loads. As both of these parasites are known to have detrimental effects upon the health of preweaned young in other species, they would appear key targets to avoid during mate choice. Results provide support for scent as an important ornament and mechanism for advertising parasitic infection within wild mammals.
Collapse
Affiliation(s)
- Jessica Mitchell
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Michael A Cant
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, TR10 9FE, UK
| | - Emma I K Vitikainen
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, TR10 9FE, UK
| | - Hazel J Nichols
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|
71
|
Rochus CM, Johansson AM. Estimation of genetic diversity in Gute sheep: pedigree and microsatellite analyses of an ancient Swedish breed. Hereditas 2017; 154:4. [PMID: 28163665 PMCID: PMC5282709 DOI: 10.1186/s41065-017-0026-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/20/2017] [Indexed: 12/03/2022] Open
Abstract
Background Breeds with small population size are in danger of an increased inbreeding rate and loss of genetic diversity, which puts them at risk for extinction. In Sweden there are a number of local breeds, native breeds which have adapted to specific areas in Sweden, for which efforts are being made to keep them pure and healthy over time. One example of such a breed is the Swedish Gute sheep. The objective of this study was to estimate inbreeding and genetic diversity of Swedish Gute sheep. Results Three datasets were analysed: pedigree information of the whole population, pedigree information for 100 animals of the population, and microsatellite genotypes for 94 of the 100 animals. The average inbreeding coefficient for lambs born during a six year time period (2007–2012) did not increase during that time period. The inbreeding calculated from the entire pedigree (0.038) and for a sample of the population (0.018) was very low. Sheep were more heterozygous at the microsatellite markers than expected (average multilocus heterozygosity and Ritland inbreeding estimates 1.01845 and -0.03931) and five of seven microsatellite markers were not in Hardy Weinberg equilibrium due to heterozygosity excess. The total effective population size estimated from the pedigree information was 155.4 and the average harmonic mean effective population size estimated from microsatellites was 88.3. Pedigree and microsatellite genotype estimations of inbreeding were consistent with a breeding program with the purpose of reducing inbreeding. Conclusion Our results showed that current breeding programs of the Swedish Gute sheep are consistent with efforts of keeping this breed viable and these breeding programs are an example for other small local breeds in conserving breeds for the future. Electronic supplementary material The online version of this article (doi:10.1186/s41065-017-0026-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina M Rochus
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7023, Uppsala, SE-75007 Sweden.,UFR Génétique, Élevage et Reproduction; Sciences de la Vie et Santé, AgroParisTech, Université Paris-Saclay, Paris, France.,Génétique Physiologie Systèmes d'Elevage (GenPhySE), Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, France
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7023, Uppsala, SE-75007 Sweden
| |
Collapse
|
72
|
Widdig A, Muniz L, Minkner M, Barth Y, Bley S, Ruiz-Lambides A, Junge O, Mundry R, Kulik L. Low incidence of inbreeding in a long-lived primate population isolated for 75 years. Behav Ecol Sociobiol 2016; 71:18. [PMID: 28018027 PMCID: PMC5145906 DOI: 10.1007/s00265-016-2236-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022]
Abstract
ABSTRACT When close relatives mate, offspring are expected to suffer fitness consequences due to inbreeding depression. Inbreeding has previously been quantified in two ways: using a sufficiently large panel of markers or deep and complete pedigrees over several generations. However, the application of both approaches is still limited by the challenge of compiling such data for species with long generation times, such as primates. Here, we assess inbreeding in rhesus macaques living on Cayo Santiago (Puerto Rico), a population genetically isolated since 1938, but descendant of a large set of presumably unrelated founders. Using comprehensive genetic data, we calculated inbreeding coefficients (F) for 2669 individuals with complete three generation pedigrees and 609 individuals with complete four generation pedigrees. We found that 0.79 and 7.39% of individuals had an F > 0 when using data from three and four generation pedigrees, respectively. No evidence of an increase in inbreeding over the study period (up to 23 years) was found. Furthermore, the observed mean relatedness of breeding pairs differed significantly from the distribution of parental relatedness expected as simulated based on previous reproductive data, suggesting that kin generally avoid breeding with each other. Finally, inbreeding was not a predictor of early mortality measured as survival until weaning and sexual maturation, respectively. Our results remain consistent with three estimators of inbreeding (standardized heterozygosity, internal relatedness, and homozygosity by loci) using up to 42 highly polymorphic microsatellites for the same set of individuals. Together, our results demonstrate that close inbreeding may not be prevalent even in populations isolated over long periods when mechanisms of inbreeding avoidance can operate. SIGNIFICANCE STATEMENT When close relatives mate, offspring may suffer from such inbreeding, e.g., via lower survival and/or fertility. Using (i) a large panel of genetic markers and (ii) complete three or four generation pedigrees, respectively, we show that incidences of inbreeding in a long-lived primate population are rare, even after genetic isolation for 75 years. Moreover, our simulations suggest that kin in our population generally avoid breeding with each other. Finally, the few inbred individuals detected in our large sample did not suffer from lower survival. Given that many animal species face dramatic habitat loss combined with critical population declines, our study provides important implications for conservation biology in general and for population management in particular.
Collapse
Affiliation(s)
- Anja Widdig
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Research Group of Behavioural Ecology, Institute of Biology, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
- German Center for Integrative Biodiversity Research (iDiv), Deutscher Platz 5E, 04103 Leipzig, Germany
| | - Laura Muniz
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Research Group of Behavioural Ecology, Institute of Biology, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Mirjam Minkner
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Research Group of Behavioural Ecology, Institute of Biology, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Yvonne Barth
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Research Group of Behavioural Ecology, Institute of Biology, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Stefanie Bley
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Research Group of Behavioural Ecology, Institute of Biology, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Angelina Ruiz-Lambides
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Research Group of Behavioural Ecology, Institute of Biology, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
- Caribbean Primate Research Center, University of Puerto Rico, Medical Sciences Campus, Punta Santiago, PO Box 906, San Juan, PR 00741 USA
| | - Olaf Junge
- Institute of Medical Informatics and Statistics, University Medical Center Schleswig-Holstein, Campus Kiel, Brunswiker Straße 10, 24105 Kiel, Germany
| | - Roger Mundry
- Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Lars Kulik
- Junior Research Group of Primate Kin Selection, Department of Primatology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Research Group of Behavioural Ecology, Institute of Biology, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| |
Collapse
|
73
|
Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW. Genomics advances the study of inbreeding depression in the wild. Evol Appl 2016; 9:1205-1218. [PMID: 27877200 PMCID: PMC5108213 DOI: 10.1111/eva.12414] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022] Open
Abstract
Inbreeding depression (reduced fitness of individuals with related parents) has long been a major focus of ecology, evolution, and conservation biology. Despite decades of research, we still have a limited understanding of the strength, underlying genetic mechanisms, and demographic consequences of inbreeding depression in the wild. Studying inbreeding depression in natural populations has been hampered by the inability to precisely measure individual inbreeding. Fortunately, the rapidly increasing availability of high-throughput sequencing data means it is now feasible to measure the inbreeding of any individual with high precision. Here, we review how genomic data are advancing our understanding of inbreeding depression in the wild. Recent results show that individual inbreeding and inbreeding depression can be measured more precisely with genomic data than via traditional pedigree analysis. Additionally, the availability of genomic data has made it possible to pinpoint loci with large effects contributing to inbreeding depression in wild populations, although this will continue to be a challenging task in many study systems due to low statistical power. Now that reliably measuring individual inbreeding is no longer a limitation, a major focus of future studies should be to more accurately quantify effects of inbreeding depression on population growth and viability.
Collapse
Affiliation(s)
- Marty Kardos
- Department of Evolutionary BiologyEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | | | - Hans Ellegren
- Department of Evolutionary BiologyEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Gordon Luikart
- Division of Biological SciencesUniversity of MontanaMissoulaMTUSA
- Flathead Lake Biological StationDivision of Biological SciencesUniversity of MontanaPolsonMTUSA
| | | |
Collapse
|
74
|
Inbreeding depression by environment interactions in a free-living mammal population. Heredity (Edinb) 2016; 118:64-77. [PMID: 27876804 PMCID: PMC5176111 DOI: 10.1038/hdy.2016.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/06/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Experimental studies often find that inbreeding depression is more severe in harsh environments, but the few studies of in situ wild populations available to date rarely find strong support for this effect. We investigated evidence for inbreeding depression by environment interactions in nine traits in the individually monitored Soay sheep population of St Kilda, using genomic inbreeding coefficients based on 37 037 single-nucleotide polymorphism loci, and population density as an axis of environmental variation. All traits showed variation with population density and all traits showed some evidence for depression because of either an individual's own inbreeding or maternal inbreeding. However, only six traits showed evidence for an interaction in the expected direction, and only two interactions were statistically significant. We identify three possible reasons why wild population studies may generally fail to find strong support for interactions between inbreeding depression and environmental variation compared with experimental studies. First, for species with biparental inbreeding only, the amount of observed inbreeding in natural populations is generally low compared with that used in experimental studies. Second, it is possible that experimental studies sometimes actually impose higher levels of stress than organisms experience in the wild. Third, some purging of the deleterious recessive alleles that underpin interaction effects may occur in the wild.
Collapse
|
75
|
Ferrer ES, García-Navas V, Sanz JJ, Ortego J. The strength of the association between heterozygosity and probability of interannual local recruitment increases with environmental harshness in blue tits. Ecol Evol 2016; 6:8857-8869. [PMID: 28035274 PMCID: PMC5192745 DOI: 10.1002/ece3.2591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 02/02/2023] Open
Abstract
The extent of inbreeding depression and the magnitude of heterozygosity–fitness correlations (HFC) have been suggested to depend on the environmental context in which they are assayed, but little evidence is available for wild populations. We combine extensive molecular and capture–mark–recapture data from a blue tit (Cyanistes caeruleus) population to (1) analyze the relationship between heterozygosity and probability of interannual adult local recruitment and (2) test whether environmental stress imposed by physiologically suboptimal temperatures and rainfall influence the magnitude of HFC. To address these questions, we used two different arrays of microsatellite markers: 14 loci classified as neutral and 12 loci classified as putatively functional. We found significant relationships between heterozygosity and probability of interannual local recruitment that were most likely explained by variation in genomewide heterozygosity. The strength of the association between heterozygosity and probability of interannual local recruitment was positively associated with annual accumulated precipitation. Annual mean heterozygosity increased over time, which may have resulted from an overall positive selection on heterozygosity over the course of the study period. Finally, neutral and putatively functional loci showed similar trends, but the former had stronger effect sizes and seemed to better reflect genomewide heterozygosity. Overall, our results show that HFC can be context dependent, emphasizing the need to consider the role of environmental heterogeneity as a key factor when exploring the consequences of individual genetic diversity on fitness in natural populations.
Collapse
Affiliation(s)
- Esperanza S Ferrer
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM) Ciudad Real Spain; Departamento de Ciencias Ambientales Facultad de Ciencias Ambientales y Bioquímica Universidad de Castilla-La Mancha Toledo Spain
| | - Vicente García-Navas
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM) Ciudad Real Spain; Departamento de Ciencias Ambientales Facultad de Ciencias Ambientales y Bioquímica Universidad de Castilla-La Mancha Toledo Spain; Institute of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland; Department of Integrative Ecology Estación Biológica de Doñana (EBD-CSIC) Seville Spain
| | - Juan José Sanz
- Departamento de Ecología Evolutiva Museo Nacional de Ciencias Naturales (CSIC) Madrid Spain
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD-CSIC) Seville Spain
| |
Collapse
|
76
|
Sebasky ME, Keller SR, Taylor DR. Investigating past range dynamics for a weed of cultivation, Silene vulgaris. Ecol Evol 2016; 6:4800-11. [PMID: 27547314 PMCID: PMC4979708 DOI: 10.1002/ece3.2250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 11/05/2022] Open
Abstract
Since the last glacial maximum (LGM), many plant and animal taxa have expanded their ranges by migration from glacial refugia. Weeds of cultivation may have followed this trend or spread globally following the expansion of agriculture or ruderal habitats associated with human‐mediated disturbance. We tested whether the range expansion of the weed Silene vulgaris across Europe fit the classical model of postglacial expansion from southern refugia, or followed known routes of the expansion of human agricultural practices. We used species distribution modeling to predict spatial patterns of postglacial expansion and contrasted these with the patterns of human agricultural expansion. A population genetic analysis using microsatellite loci was then used to test which scenario was better supported by spatial patterns of genetic diversity and structure. Genetic diversity was highest in southern Europe and declined with increasing latitude. Locations of ancestral demes from genetic cluster analysis were consistent with areas of predicted refugia. Species distribution models showed the most suitable habitat in the LGM on the southern coasts of Europe. These results support the typical postglacial northward colonization from southern refugia while refuting the east‐to‐west agricultural spread as the main mode of expansion for S. vulgaris. We know that S. vulgaris has recently colonized many regions (including North America and other continents) through human‐mediated dispersal, but there is no evidence for a direct link between the Neolithic expansion of agriculture and current patterns of genetic diversity of S. vulgaris in Europe. Therefore, the history of range expansion of S. vulgaris likely began with postglacial expansion after the LGM, followed by more recent global dispersal by humans.
Collapse
Affiliation(s)
- Megan E Sebasky
- Department of Biology University of Virginia Charlottesville Virginia
| | - Stephen R Keller
- Department of Plant Biology University of Vermont Burlington Vermont
| | - Douglas R Taylor
- Department of Biology University of Virginia Charlottesville Virginia
| |
Collapse
|
77
|
Peters L, Humble E, Kröcker N, Fuchs B, Forcada J, Hoffman JI. Born blonde: a recessive loss-of-function mutation in the melanocortin 1 receptor is associated with cream coat coloration in Antarctic fur seals. Ecol Evol 2016; 6:5705-17. [PMID: 27547348 PMCID: PMC4983585 DOI: 10.1002/ece3.2290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023] Open
Abstract
Although the genetic basis of color variation has been extensively studied in humans and domestic animals, the genetic polymorphisms responsible for different color morphs remain to be elucidated in many wild vertebrate species. For example, hypopigmentation has been observed in numerous marine mammal species but the underlying mutations have not been identified. A particularly compelling candidate gene for explaining color polymorphism is the melanocortin 1 receptor (MC1R), which plays a key role in the regulation of pigment production. We therefore used Antarctic fur seals (Arctocephalus gazella) as a highly tractable marine mammal system with which to test for an association between nucleotide variation at the MC1R and melanin‐based coat color phenotypes. By sequencing 70 wild‐type individuals with dark‐colored coats and 26 hypopigmented individuals with cream‐colored coats, we identified a nonsynonymous mutation that results in the substitution of serine with phenylalanine at an evolutionarily highly conserved structural domain. All of the hypopigmented individuals were homozygous for the allele coding for phenylalanine, consistent with a recessive loss‐of‐function allele. In order to test for cryptic population structure, which can generate artefactual associations, and to evaluate whether homozygosity at the MC1R could be indicative of low genome‐wide heterozygosity, we also genotyped all of the individuals at 50 polymorphic microsatellite loci. We were unable to detect any population structure and also found that wild‐type and hypopigmented individuals did not differ significantly in their standardized multilocus heterozygosity. Such a lack of association implies that hypopigmented individuals are unlikely to suffer disproportionately from inbreeding depression, and hence, we have no reason to believe that they are at a selective disadvantage in the wider population.
Collapse
Affiliation(s)
- Lucy Peters
- Department of Animal Behaviour University of Bielefeld Postfach 100131 33501 Bielefeld Germany; College of Medical, Veterinary & Life Sciences University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Emily Humble
- Department of Animal Behaviour University of Bielefeld Postfach 100131 33501 Bielefeld Germany; British Antarctic Survey High Cross, Madingley Road Cambridge CB3 OET UK
| | - Nicole Kröcker
- Department of Animal Behaviour University of Bielefeld Postfach 100131 33501 Bielefeld Germany
| | - Birgit Fuchs
- Department of Animal Behaviour University of Bielefeld Postfach 100131 33501 Bielefeld Germany
| | - Jaume Forcada
- British Antarctic Survey High Cross, Madingley Road Cambridge CB3 OET UK
| | - Joseph I Hoffman
- Department of Animal Behaviour University of Bielefeld Postfach 100131 33501 Bielefeld Germany
| |
Collapse
|
78
|
Bérénos C, Ellis PA, Pilkington JG, Pemberton JM. Genomic analysis reveals depression due to both individual and maternal inbreeding in a free-living mammal population. Mol Ecol 2016; 25:3152-68. [PMID: 27135155 PMCID: PMC4950049 DOI: 10.1111/mec.13681] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/22/2016] [Indexed: 01/13/2023]
Abstract
There is ample evidence for inbreeding depression manifested as a reduction in fitness or fitness-related traits in the focal individual. In many organisms, fitness is not only affected by genes carried by the individual, but also by genes carried by their parents, for example if receiving parental care. While maternal effects have been described in many systems, the extent to which inbreeding affects fitness directly through the focal individual, or indirectly through the inbreeding coefficients of its parents, has rarely been examined jointly. The Soay sheep study population is an excellent system in which to test for both effects, as lambs receive extended maternal care. Here, we tested for both maternal and individual inbreeding depression in three fitness-related traits (birthweight and weight and hindleg length at 4 months of age) and three fitness components (first-year survival, adult annual survival and annual breeding success), using either pedigree-derived inbreeding or genomic estimators calculated using ~37 000 SNP markers. We found evidence for inbreeding depression in 4-month hindleg and weight, first-year survival in males, and annual survival and breeding success in adults. Maternal inbreeding was found to depress both birthweight and 4-month weight. We detected more instances of significant inbreeding depression using genomic estimators than the pedigree, which is partly explained through the increased sample sizes available. In conclusion, our results highlight that cross-generational inbreeding effects warrant further exploration in species with parental care and that modern genomic tools can be used successfully instead of, or alongside, pedigrees in natural populations.
Collapse
Affiliation(s)
- Camillo Bérénos
- Institute of Evolutionary Biology, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Philip A Ellis
- Institute of Evolutionary Biology, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
79
|
Ferrandiz-Rovira M, Allainé D, Callait-Cardinal MP, Cohas A. Mate choice for neutral and MHC genetic characteristics in Alpine marmots: different targets in different contexts? Ecol Evol 2016; 6:4243-57. [PMID: 27386072 PMCID: PMC4930977 DOI: 10.1002/ece3.2189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/11/2016] [Accepted: 04/26/2016] [Indexed: 01/16/2023] Open
Abstract
Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra‐pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.
Collapse
Affiliation(s)
- Mariona Ferrandiz-Rovira
- Laboratoire Biométrie et Biologie Evolutive Université de Lyon CNRS UMR 5558 Université Lyon 1 F-69622 Villeurbanne F-69000 Lyon France; Université of Lyon VetAgro Sup Campus Vet F-69280 Marcy-L'Étoile France; CREAF Cerdanyola del Vallès 08193 Catalonia Spain; Univ Autònoma de Barcelona Cerdanyola del Vallès 08193 Catalonia Spain
| | - Dominique Allainé
- Laboratoire Biométrie et Biologie Evolutive Université de Lyon CNRS UMR5558 Université Lyon 1 F-69622 Villeurbanne F-69000 Lyon France
| | - Marie-Pierre Callait-Cardinal
- Laboratoire Biométrie et Biologie Evolutive Université de Lyon CNRS UMR 5558 Université Lyon 1 F-69622 Villeurbanne F-69000 Lyon France; Université of Lyon VetAgro Sup Campus Vet F-69280 Marcy-L'Étoile France
| | - Aurélie Cohas
- Laboratoire Biométrie et Biologie Evolutive Université de Lyon CNRS UMR5558 Université Lyon 1 F-69622 Villeurbanne F-69000 Lyon France
| |
Collapse
|
80
|
Bebbington K, Spurgin LG, Fairfield EA, Dugdale HL, Komdeur J, Burke T, Richardson DS. Telomere length reveals cumulative individual and transgenerational inbreeding effects in a passerine bird. Mol Ecol 2016; 25:2949-60. [PMID: 27184206 PMCID: PMC4999029 DOI: 10.1111/mec.13670] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 01/10/2023]
Abstract
Inbreeding results in more homozygous offspring that should suffer reduced fitness, but it can be difficult to quantify these costs for several reasons. First, inbreeding depression may vary with ecological or physiological stress and only be detectable over long time periods. Second, parental homozygosity may indirectly affect offspring fitness, thus confounding analyses that consider offspring homozygosity alone. Finally, measurement of inbreeding coefficients, survival and reproductive success may often be too crude to detect inbreeding costs in wild populations. Telomere length provides a more precise measure of somatic costs, predicts survival in many species and should reflect differences in somatic condition that result from varying ability to cope with environmental stressors. We studied relative telomere length in a wild population of Seychelles warblers (Acrocephalus sechellensis) to assess the lifelong relationship between individual homozygosity, which reflects genome‐wide inbreeding in this species, and telomere length. In juveniles, individual homozygosity was negatively associated with telomere length in poor seasons. In adults, individual homozygosity was consistently negatively related to telomere length, suggesting the accumulation of inbreeding depression during life. Maternal homozygosity also negatively predicted offspring telomere length. Our results show that somatic inbreeding costs are environmentally dependent at certain life stages but may accumulate throughout life.
Collapse
Affiliation(s)
- Kat Bebbington
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.,Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX13PS, UK
| | - Eleanor A Fairfield
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Hannah L Dugdale
- School of Biology, The Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Behavioural Ecology and Physiological Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Jan Komdeur
- Behavioural Ecology and Physiological Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.,Nature Seychelles, PO BOX 1310, Mahe, Republic of Seychelles
| |
Collapse
|
81
|
Meise K, von Engelhardt N, Forcada J, Hoffman JI. Offspring Hormones Reflect the Maternal Prenatal Social Environment: Potential for Foetal Programming? PLoS One 2016; 11:e0145352. [PMID: 26761814 PMCID: PMC4711963 DOI: 10.1371/journal.pone.0145352] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022] Open
Abstract
Females of many species adaptively program their offspring to predictable environmental conditions, a process that is often mediated by hormones. Laboratory studies have shown, for instance, that social density affects levels of maternal cortisol and testosterone, leading to fitness-relevant changes in offspring physiology and behaviour. However, the effects of social density remain poorly understood in natural populations due to the difficulty of disentangling confounding influences such as climatic variation and food availability. Colonially breeding marine mammals offer a unique opportunity to study maternal effects in response to variable colony densities under similar ecological conditions. We therefore quantified maternal and offspring hormone levels in 84 Antarctic fur seals (Arctocephalus gazella) from two closely neighbouring colonies of contrasting density. Hair samples were used as they integrate hormone levels over several weeks or months and therefore represent in utero conditions during foetal development. We found significantly higher levels of cortisol and testosterone (both P < 0.001) in mothers from the high density colony, reflecting a more stressful and competitive environment. In addition, offspring testosterone showed a significant positive correlation with maternal cortisol (P < 0.05). Although further work is needed to elucidate the potential consequences for offspring fitness, these findings raise the intriguing possibility that adaptive foetal programming might occur in fur seals in response to the maternal social environment. They also lend support to the idea that hormonally mediated maternal effects may depend more strongly on the maternal regulation of androgen rather than cortisol levels.
Collapse
Affiliation(s)
- Kristine Meise
- Department of Animal Behaviour, University of Bielefeld, Morgenbreede 45, 33615, Bielefeld, Germany
| | - Nikolaus von Engelhardt
- Department of Animal Behaviour, University of Bielefeld, Morgenbreede 45, 33615, Bielefeld, Germany
| | - Jaume Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, United Kingdom
| | - Joseph Ivan Hoffman
- Department of Animal Behaviour, University of Bielefeld, Morgenbreede 45, 33615, Bielefeld, Germany
| |
Collapse
|
82
|
Moreno E, Pérez-González J, Carranza J, Moya-Laraño J. Better Fitness in Captive Cuvier's Gazelle despite Inbreeding Increase: Evidence of Purging? PLoS One 2015; 10:e0145111. [PMID: 26679703 PMCID: PMC4682998 DOI: 10.1371/journal.pone.0145111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/27/2015] [Indexed: 11/19/2022] Open
Abstract
Captive breeding of endangered species often aims at preserving genetic diversity and to avoid the harmful effects of inbreeding. However, deleterious alleles causing inbreeding depression can be purged when inbreeding persists over several generations. Despite its great importance both for evolutionary biology and for captive breeding programmes, few studies have addressed whether and to which extent purging may occur. Here we undertake a longitudinal study with the largest captive population of Cuvier's gazelle managed under a European Endangered Species Programme since 1975. Previous results in this population have shown that highly inbred mothers tend to produce more daughters, and this fact was used in 2006 to reach a more appropriate sex-ratio in this polygynous species by changing the pairing strategy (i.e., pairing some inbred females instead of keeping them as surplus individuals in the population). Here, by using studbook data we explore whether purging has occurred in the population by investigating whether after the change in pairing strategy a) inbreeding and homozygosity increased at the population level, b) fitness (survival) increased, and c) the relationship between inbreeding and juvenile survival, was positive. Consistent with the existence of purging, we found an increase in inbreeding coefficients, homozygosity and juvenile survival. In addition, we showed that in the course of the breeding programme the relationship between inbreeding and juvenile survival was not uniform but rather changed over time: it was negative in the early years, flat in the middle years and positive after the change in pairing strategy. We highlight that by allowing inbred individuals to mate in captive stocks we may favour sex-ratio bias towards females, a desirable managing strategy to reduce the surplus of males that force most zoos to use ethical culling and euthanizing management tools. We discuss these possibilities but also acknowledge that many other effects should be considered before implementing inbreeding and purging as elements in management decisions.
Collapse
Affiliation(s)
- Eulalia Moreno
- Estación Experimental de Zonas Áridas (CSIC), Dept. Ecología Funcional y Evolutiva, Ctra. de Sacramento s/n, E-04120, La Cañada de San Urbano, Almería, Spain
- * E-mail:
| | - Javier Pérez-González
- Ungulate Research Unit, Cátedra de Recursos Cinegéticos y Piscícolas, Universidad de Córdoba, E-14071, Córdoba, Spain
- Guardería Rural, Mancomunidad Integral de Municipios Centro, E-06810, Calamonte, Badajoz, Spain
| | - Juan Carranza
- Ungulate Research Unit, Cátedra de Recursos Cinegéticos y Piscícolas, Universidad de Córdoba, E-14071, Córdoba, Spain
| | - Jordi Moya-Laraño
- Estación Experimental de Zonas Áridas (CSIC), Dept. Ecología Funcional y Evolutiva, Ctra. de Sacramento s/n, E-04120, La Cañada de San Urbano, Almería, Spain
| |
Collapse
|
83
|
Spatial Isolation and Temporal Variation in Fitness and Condition Facilitate Divergence in a Migratory Divide. PLoS One 2015; 10:e0144264. [PMID: 26656955 PMCID: PMC4681481 DOI: 10.1371/journal.pone.0144264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/16/2015] [Indexed: 01/03/2023] Open
Abstract
A novel migratory polymorphism evolved within the last 60 years in blackcaps (Sylvia atricapilla) breeding sympatrically in southwestern Germany. While most individuals winter in the traditional areas in the Mediterranean, a growing number of blackcaps started migrating to Britain instead. The rapid microevolution of this new strategy has been attributed to assortative mating and better physical condition of birds wintering in Britain. However, the isolating barriers as well as the physical condition of birds are not well known. In our study, we examined whether spatial isolation occurred among individuals with distinct migratory behaviour and birds with different arrival dates also differed in physical and genetic condition. We caught blackcaps in six consecutive years upon arrival on the breeding grounds and assigned them via stable isotope analysis to their wintering areas. Analysis of the vegetation structure within blackcap territories revealed different microhabitat preferences of birds migrating to distinct wintering areas. Blackcaps arriving early on the breeding grounds had higher survival rates, better body condition and higher multilocus heterozygosities than later arriving birds. We did however not find an effect of parasite infection status on arrival time. Our results suggest that early arriving birds have disproportionate effects on population dynamics. Allochrony and habitat isolation may thus act together to facilitate ongoing divergence in hybrid zones, and migratory divides in particular.
Collapse
|
84
|
Brock PM, Goodman SJ, Hall AJ, Cruz M, Acevedo-Whitehouse K. Context-dependent associations between heterozygosity and immune variation in a wild carnivore. BMC Evol Biol 2015; 15:242. [PMID: 26537228 PMCID: PMC4634738 DOI: 10.1186/s12862-015-0519-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/23/2015] [Indexed: 11/25/2022] Open
Abstract
Background A multitude of correlations between heterozygosity and fitness proxies associated with disease have been reported from wild populations, but the genetic basis of these associations is unresolved. We used a longitudinal dataset on wild Galapagos sea lions (Zalophus wollebaeki) to develop a relatively new perspective on this problem, by testing for associations between heterozygosity and immune variation across age classes and between ecological contexts. Results Homozygosity by locus was negatively correlated with serum immunoglobulin G production in pups (0–3 months of age), suggesting that reduced genetic diversity has a detrimental influence on the early development of immune defence in the Galapagos sea lion. In addition, homozygosity by locus was positively correlated with total circulating leukocyte concentration in juveniles (6–24 months of age), but only in a colony subject to the anthropogenic environmental impacts of development, pollution and introduced species, which suggests that reduced genetic diversity influences mature immune system activity in circumstances of high antigen exposure. Conclusions These findings demonstrate the environmental context-dependency of the phenotypic expression of immune variation, which is implicit in the theory of ecoimmunology, but which has been rarely demonstrated in the wild. They also indicate that heterozygosity may be linked to the maintenance of heterogeneity in mammalian immune system development and response to infection, adding to the body of evidence on the nature of the mechanistic link between heterozygosity and fitness. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0519-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick M Brock
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK. .,Zoological Society of London, Regent's Park, London, NW1 4RY, UK. .,School of Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | | | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Ocean Institute, University of St. Andrews, Fife, KY16 8LB, UK.
| | - Marilyn Cruz
- Galapagos Genetics, Epidemiology and Pathology Laboratory, Galapagos National Park & University of Guayaquil, Puerto Ayora, Galapagos Islands, Ecuador.
| | - Karina Acevedo-Whitehouse
- Zoological Society of London, Regent's Park, London, NW1 4RY, UK. .,Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, 76230, Mexico.
| |
Collapse
|
85
|
Chemical fingerprints encode mother-offspring similarity, colony membership, relatedness, and genetic quality in fur seals. Proc Natl Acad Sci U S A 2015; 112:E5005-12. [PMID: 26261311 DOI: 10.1073/pnas.1506076112] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical communication underpins virtually all aspects of vertebrate social life, yet remains poorly understood because of its highly complex mechanistic basis. We therefore used chemical fingerprinting of skin swabs and genetic analysis to explore the chemical cues that may underlie mother-offspring recognition in colonially breeding Antarctic fur seals. By sampling mother-offspring pairs from two different colonies, using a variety of statistical approaches and genotyping a large panel of microsatellite loci, we show that colony membership, mother-offspring similarity, heterozygosity, and genetic relatedness are all chemically encoded. Moreover, chemical similarity between mothers and offspring reflects a combination of genetic and environmental influences, the former partly encoded by substances resembling known pheromones. Our findings reveal the diversity of information contained within chemical fingerprints and have implications for understanding mother-offspring communication, kin recognition, and mate choice.
Collapse
|
86
|
Brzeski KE, Harrison RB, Waddell WT, Wolf KN, Rabon DR, Taylor SS. Infectious disease and red wolf conservation: assessment of disease occurrence and associated risks. J Mammal 2015; 96:751-761. [PMID: 32287383 PMCID: PMC7107507 DOI: 10.1093/jmammal/gyv080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/09/2015] [Indexed: 11/12/2022] Open
Abstract
Infectious diseases pose a significant threat to global biodiversity and may contribute to extinction. As such, establishing baseline disease prevalence in vulnerable species where disease could affect persistence is important to conservation. We assessed potential disease threats to endangered red wolves (Canis rufus) by evaluating regional (southeastern United States) disease occurrences in mammals and parasite prevalence in red wolves and sympatric coyotes (Canis latrans) in North Carolina. Common viral pathogens in the southeast region, such as canine distemper and canine parvovirus, and numerous widespread endoparasites could pose a threat to the red wolf population. The most prevalent parasites in red wolves and sympatric coyotes were heartworm (Dirofilaria immitis), hookworm (Ancylostoma caninum), and Ehrlichia spp.; several red wolves and coyotes were also positive for bacteria causing Lyme disease (Borrelia burgdorferi). Coyotes had a more species-rich parasite community than red wolves, suggesting they could harbor more parasites and act as a disease reservoir. Species identity and sex did not significantly affect parasite loads, but young canids were less likely to have heartworm and more likely to have high levels of endoparasites. Continued disease monitoring is important for red wolf recovery because low levels of genetic variability may compromise the wolves' abilities to combat novel pathogens from closely related species, such as domestic dogs and coyotes.
Collapse
|
87
|
Genetic variance components and heritability of multiallelic heterozygosity under inbreeding. Heredity (Edinb) 2015; 116:1-11. [PMID: 26174022 DOI: 10.1038/hdy.2015.59] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 11/08/2022] Open
Abstract
The maintenance of genetic diversity in fitness-related traits remains a central topic in evolutionary biology, for example, in the context of sexual selection for genetic benefits. Among the solutions that have been proposed is directional sexual selection for heterozygosity. The importance of such selection is highly debated. However, a critical evaluation requires knowledge of the heritability of heterozygosity, a quantity that is rarely estimated in this context, and often assumed to be zero. This is at least partly the result of the lack of a general framework that allows for its quantitative prediction in small and inbred populations, which are the focus of most empirical studies. Moreover, while current predictors are applicable only to biallelic loci, fitness-relevant loci are often multiallelic, as are the neutral markers typically used to estimate genome-wide heterozygosity. To this end, we first review previous, but little-known, work showing that under most circumstances, heterozygosity at biallelic loci and in the absence of inbreeding is heritable. We then derive the heritability of heterozygosity and the underlying variances for multiple alleles and any inbreeding level. We also show that heterozygosity at multiallelic loci can be highly heritable when allele frequencies are unequal, and that this heritability is reduced by inbreeding. Our quantitative genetic framework can provide new insights into the evolutionary dynamics of heterozygosity in inbred and outbred populations.
Collapse
|
88
|
Monnahan PJ, Colicchio J, Kelly JK. A genomic selection component analysis characterizes migration-selection balance. Evolution 2015; 69:1713-27. [PMID: 26082096 DOI: 10.1111/evo.12698] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/22/2015] [Indexed: 12/16/2022]
Abstract
The genetic differentiation of populations in response to local selection pressures has long been studied by evolutionary biologists, but key details about the process remain obscure. How rapidly can local adaptation evolve, how extensive is the process across the genome, and how strong are the opposing forces of natural selection and gene flow? Here, we combine direct measurement of survival and reproduction with whole-genome genotyping of a plant species (Mimulus guttatus) that has recently invaded a novel habitat (the Quarry population). We renovate the classic selection component method to accommodate genomic data and observe selection at SNPs throughout the genome. SNPs showing viability selection in Quarry exhibit elevated divergence from neighboring populations relative to neutral SNPs. We also find that nonsignificant SNPs exhibit a subtle, but still significant, change in allele frequency toward neighboring populations, a predicted effect of gene flow. Given that the Quarry population is most probably only 30-40 generations old, the alleles conferring local advantage are almost certainly older than the population itself. Thus, local adaptation owes to the recruitment of standing genetic variation.
Collapse
Affiliation(s)
- Patrick J Monnahan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, 66045
| | - Jack Colicchio
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, 66045
| | - John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, 66045.
| |
Collapse
|
89
|
Brambilla A, Biebach I, Bassano B, Bogliani G, von Hardenberg A. Direct and indirect causal effects of heterozygosity on fitness-related traits in Alpine ibex. Proc Biol Sci 2015; 282:20141873. [PMID: 25392468 DOI: 10.1098/rspb.2014.1873] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heterozygosity-fitness correlations (HFCs) are a useful tool to investigate the effects of inbreeding in wild populations, but are not informative in distinguishing between direct and indirect effects of heterozygosity on fitness-related traits. We tested HFCs in male Alpine ibex (Capra ibex) in a free-ranging population (which suffered a severe bottleneck at the end of the eighteenth century) and used confirmatory path analysis to disentangle the causal relationships between heterozygosity and fitness-related traits. We tested HFCs in 149 male individuals born between 1985 and 2009. We found that standardized multi-locus heterozygosity (MLH), calculated from 37 microsatellite loci, was related to body mass and horn growth, which are known to be important fitness-related traits, and to faecal egg counts (FECs) of nematode eggs, a proxy of parasite resistance. Then, using confirmatory path analysis, we were able to show that the effect of MLH on horn growth was not direct but mediated by body mass and FEC. HFCs do not necessarily imply direct genetic effects on fitness-related traits, which instead can be mediated by other traits in complex and unexpected ways.
Collapse
Affiliation(s)
- Alice Brambilla
- DSTA-Department of Earth and Environmental Science, University of Pavia, Via A. Ferrata 9, 27100 Pavia (PV), Italy
| | - Iris Biebach
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Bruno Bassano
- Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz 11, 11010 Valsavarenche, AO, Italy
| | - Giuseppe Bogliani
- DSTA-Department of Earth and Environmental Science, University of Pavia, Via A. Ferrata 9, 27100 Pavia (PV), Italy
| | - Achaz von Hardenberg
- Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz 11, 11010 Valsavarenche, AO, Italy
| |
Collapse
|
90
|
Jolles AE, Beechler BR, Dolan BP. Beyond mice and men: environmental change, immunity and infections in wild ungulates. Parasite Immunol 2015; 37:255-66. [PMID: 25354672 PMCID: PMC4414670 DOI: 10.1111/pim.12153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023]
Abstract
In the face of rapid environmental change, anticipating shifts in microparasite and macroparasite dynamics, including emergence events, is an enormous challenge. We argue that immunological studies in natural populations are pivotal to meeting this challenge: many components of environmental change--shifts in biotic assemblages, altered climate patterns and reduced environmental predictability--may affect host immunity. We suggest that wild ungulates can serve as model systems aiding the discovery of immunological mechanisms that link environmental change with parasite transmission dynamics. Our review of eco-immunological studies in wild ungulates reveals progress in understanding how co-infections affect immunity and parasite transmission and how environmental and genetic factors interact to shape immunity. Changes in bioavailability of micronutrients have been linked to immunity and health in wild ungulates. Although physiological stress in response to environmental change has been assessed, downstream effects on immunity have not been studied. Moreover, the taxonomic range of ungulates studied is limited to bovids (bighorn sheep, Soay sheep, chamois, musk oxen, bison, African buffalo) and a few cervids (red deer, black-tailed deer). We discuss areas where future studies in ungulates could lead to significant contributions in understanding the patterns of immunity and infection in natural populations and across species.
Collapse
Affiliation(s)
- Anna E. Jolles
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Brianna R. Beechler
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
| | - Brian P. Dolan
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
91
|
Green ML, Herzing DL, Baldwin JD. Molecular assessment of mating strategies in a population of Atlantic spotted dolphins. PLoS One 2015; 10:e0118227. [PMID: 25692972 PMCID: PMC4334488 DOI: 10.1371/journal.pone.0118227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
Similar to other small cetacean species, Atlantic spotted dolphins (Stenella frontalis) have been the object of concentrated behavioral study. Although mating and courtship behaviors occur often and the social structure of the population is well-studied, the genetic mating system of the species is unknown. To assess the genetic mating system, we genotyped females and their progeny at ten microsatellite loci. Genotype analysis provided estimates of the minimum number of male sires necessary to account for the allelic diversity observed among the progeny. Using the estimates of male sires, we determined whether females mated with the same or different males during independent estrus events. Using Gerud2.0, a minimum of two males was necessary to account for the genetic variation seen among progeny arrays of all tested females. ML-Relate assigned the most likely relationship between offspring pairs; half or full sibling. Relationship analysis supported the conservative male estimates of Gerud2.0 but in some cases, half or full sibling relationships between offspring could not be fully resolved. Integrating the results from Gerud2.0, ML-Relate with previous observational and paternity data, we constructed two-, three-, and four-male pedigree models for each genotyped female. Because increased genetic diversity of offspring may explain multi-male mating, we assessed the internal genetic relatedness of each offspring's genotype to determine whether parent pairs of offspring were closely related. We found varying levels of internal relatedness ranging from unrelated to closely related (range -0.136-0.321). Because there are several hypothesized explanations for multi-male mating, we assessed our data to determine the most plausible explanation for multi-male mating in our study system. Our study indicated females may benefit from mating with multiple males by passing genes for long-term viability to their young.
Collapse
Affiliation(s)
- Michelle L. Green
- Department of Biology, Florida Atlantic University, 3200 College Avenue, Davie, Florida, 33314, United States of America
| | - Denise L. Herzing
- Wild Dolphin Project, P.O. Box 8436, Jupiter, Florida, 33468, United States of America
- Department of Biology, Department of Psychology, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida, 33431, United States of America
| | - John D. Baldwin
- Department of Biology, Florida Atlantic University, 3200 College Avenue, Davie, Florida, 33314, United States of America
| |
Collapse
|
92
|
Jolles AE, Ezenwa VO. Ungulates as model systems for the study of disease processes in natural populations. J Mammal 2015; 96:4-15. [PMID: 32287382 PMCID: PMC7107476 DOI: 10.1093/jmammal/gyu007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parasites and pathogens are a fundamental driving force in the ecology and evolution of mammalian populations, and understanding disease processes in natural populations is an urgent priority in the face of increased rates of infectious disease emergence. In this review, we argue that mammalogists are uniquely placed to contribute to addressing these challenges because in-depth knowledge of mammal species is fundamental to the development of wild model systems that could accelerate discovery in disease ecology. The use of animal models-species for which a broad range of diagnostic, molecular, and genetic tools have been developed-in tightly controlled laboratory environments has been instrumental in driving progress in the biomedical sciences. However, in natural populations, disease processes operate in the context of enormous genetic, phenotypic, and environmental variability. Understanding diseases in animal populations (including humans) thus requires investment in "wild animal models" that explicitly include individual variation and relevant environmental gradients. Wild mammal groups such as primates and rodents have already been identified as potentially useful models of infectious diseases in the wild. Here, we discuss the enormous potential that ungulates hold as candidates for wild model systems. The diversity, broad geographic distribution, and often high abundance of species in this group make them a highly accessible target for disease research. Moreover, a depth of background knowledge, close relationships to domesticated animals, and ongoing management of many wild ungulate species provide context, tools, and opportunity for cutting-edge research at the interface of ecological and biomedical sciences. Studies of wild ungulates are already helping to unravel some key challenges in infectious disease research, including the role of parasites in trophic cascades, the consequences of climate change for disease dynamics, and the systems biology of host-parasite interactions. Other areas where ungulate studies may provide new insight include research on the sources and drivers of emerging infectious diseases.
Collapse
|
93
|
Garrick RC, Kajdacsi B, Russello MA, Benavides E, Hyseni C, Gibbs JP, Tapia W, Caccone A. Naturally rare versus newly rare: demographic inferences on two timescales inform conservation of Galápagos giant tortoises. Ecol Evol 2015; 5:676-94. [PMID: 25691990 PMCID: PMC4328771 DOI: 10.1002/ece3.1388] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Long-term population history can influence the genetic effects of recent bottlenecks. Therefore, for threatened or endangered species, an understanding of the past is relevant when formulating conservation strategies. Levels of variation at neutral markers have been useful for estimating local effective population sizes (N e ) and inferring whether population sizes increased or decreased over time. Furthermore, analyses of genotypic, allelic frequency, and phylogenetic information can potentially be used to separate historical from recent demographic changes. For 15 populations of Galápagos giant tortoises (Chelonoidis sp.), we used 12 microsatellite loci and DNA sequences from the mitochondrial control region and a nuclear intron, to reconstruct demographic history on shallow (past ∽100 generations, ∽2500 years) and deep (pre-Holocene, >10 thousand years ago) timescales. At the deep timescale, three populations showed strong signals of growth, but with different magnitudes and timing, indicating different underlying causes. Furthermore, estimated historical N e of populations across the archipelago showed no correlation with island age or size, underscoring the complexity of predicting demographic history a priori. At the shallow timescale, all populations carried some signature of a genetic bottleneck, and for 12 populations, point estimates of contemporary N e were very small (i.e., < 50). On the basis of the comparison of these genetic estimates with published census size data, N e generally represented ∽0.16 of the census size. However, the variance in this ratio across populations was considerable. Overall, our data suggest that idiosyncratic and geographically localized forces shaped the demographic history of tortoise populations. Furthermore, from a conservation perspective, the separation of demographic events occurring on shallow versus deep timescales permits the identification of naturally rare versus newly rare populations; this distinction should facilitate prioritization of management action.
Collapse
Affiliation(s)
- Ryan C Garrick
- Department of Biology, University of MississippiOxford, Mississippi, 38677
| | - Brittney Kajdacsi
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| | - Michael A Russello
- Department of Biology, University of British ColumbiaOkanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Edgar Benavides
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| | - Chaz Hyseni
- Department of Biology, University of MississippiOxford, Mississippi, 38677
| | - James P Gibbs
- College of Environmental Science and Forestry, State University of New YorkSyracuse, New York, 13210
| | - Washington Tapia
- Department of Applied Research, Galápagos National Park ServicePuerto Ayora, Galápagos, Ecuador
- Biodiver S.A. ConsultoresKm 5 Vía a Baltra, Isla Santa Cruz, Galápagos, Ecuador
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale UniversityNew Haven, Connecticut, 06520
| |
Collapse
|
94
|
Serieys LEK, Lea A, Pollinger JP, Riley SPD, Wayne RK. Disease and freeways drive genetic change in urban bobcat populations. Evol Appl 2014; 8:75-92. [PMID: 25667604 PMCID: PMC4310583 DOI: 10.1111/eva.12226] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/20/2014] [Indexed: 01/04/2023] Open
Abstract
Urbanization profoundly impacts animal populations by causing isolation, increased susceptibility to disease, and exposure to toxicants. Genetic effects include reduced effective population size, increased population substructure, and decreased adaptive potential. We investigated the influence that urbanization and a disease epizootic had on the population genetics of bobcats (Lynx rufus) distributed across a highly fragmented urban landscape. We genotyped more than 300 bobcats, sampled from 1996 to 2012, for variation at nine neutral and seven immune gene-linked microsatellite loci. We found that two freeways are significant barriers to gene flow. Further, a 3-year disease epizootic, associated with secondary anticoagulant rodenticide exposure, caused a population bottleneck that led to significant genetic differentiation between pre- and post-disease populations that was greater than that between populations separated by major freeways for >60 years. However, balancing selection acted on immune-linked loci during the epizootic, maintaining variation at functional regions. Conservation assessments need to assay loci that are potentially under selection to better preserve the adaptive potential of populations at the urban–wildland interface. Further, interconnected regions that contain appropriate habitat for wildlife will be critical to the long-term viability of animal populations in urban landscapes.
Collapse
Affiliation(s)
- Laurel E K Serieys
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA, USA
| | - Amanda Lea
- Department of Biology, Duke University Durham, NC, USA
| | - John P Pollinger
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA, USA
| | - Seth P D Riley
- Santa Monica Mountains National Recreation Area, National Park Service Thousand Oaks, CA, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA, USA
| |
Collapse
|
95
|
Heitlinger E, Taraschewski H, Weclawski U, Gharbi K, Blaxter M. Transcriptome analyses of Anguillicola crassus from native and novel hosts. PeerJ 2014; 2:e684. [PMID: 25469324 PMCID: PMC4250067 DOI: 10.7717/peerj.684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/10/2014] [Indexed: 11/20/2022] Open
Abstract
Anguillicola crassus is a swim bladder nematode of eels. The parasite is native to the Asian eel Anguilla japonica, but was introduced to Europe and the European eel Anguilla anguilla in the early 1980s. A Taiwanese source has been proposed for this introduction. In the new host in the recipient area, the parasite appears to be more pathogenic. As a reason for these differences, genetically fixed differences in infectivity and development between Taiwanese and European A.crassus have been described and disentangled from plasticity induced by different host environments. To explore whether transcriptional regulation is involved in these lifecycle differences, we have analysed a “common garden”, cross infection experiment, using deep-sequencing transcriptomics. Surprisingly, in the face of clear phenotypic differences in life history traits, we identified no significant differences in gene expression between parasite populations or between experimental host species. From 120,000 SNPs identified in the transcriptome data we found that European A. crassus were not a genetic subset of the Taiwanese nematodes sampled. The loci that have the major contribution to the European-Taiwanese population differentiation show an enrichment of synonymous and non-coding polymorphism. This argues against positive selection in population differentiation. However, genes involved in protein processing in the endoplasmatic reticulum membrane and genes bearing secretion signal sequences were enriched in the set of genes most differentiated between European and Taiwanese A. crassus. These genes could be a source for the phenotypically visible genetically fixed differences between European and Taiwanese A. crassus.
Collapse
Affiliation(s)
- Emanuel Heitlinger
- Department for Molecular Parasitology, Institute for Biology, Humboldt University Berlin , Berlin , Germany
| | - Horst Taraschewski
- Department of Ecology and Parasitology, Zoological Institute, Karlsruhe Institute for Technology , Karlsruhe , Germany
| | - Urszula Weclawski
- Department of Ecology and Parasitology, Zoological Institute, Karlsruhe Institute for Technology , Karlsruhe , Germany
| | - Karim Gharbi
- Edinburgh Genomics, The Ashworth Laboratories, The University of Edinburgh , Edinburgh , UK
| | - Mark Blaxter
- Edinburgh Genomics, The Ashworth Laboratories, The University of Edinburgh , Edinburgh , UK ; Institute of Evolutionary Biology, The Ashworth Laboratories, The University of Edinburgh , Edinburgh , UK
| |
Collapse
|
96
|
Fourcade Y, Keišs O, Richardson DS, Secondi J. Continental-scale patterns of pathogen prevalence: a case study on the corncrake. Evol Appl 2014; 7:1043-55. [PMID: 25553066 PMCID: PMC4231594 DOI: 10.1111/eva.12192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/03/2014] [Indexed: 11/28/2022] Open
Abstract
Pathogen infections can represent a substantial threat to wild populations, especially those already limited in size. To determine how much variation in the pathogens observed among fragmented populations is caused by ecological factors, one needs to examine systems where host genetic diversity is consistent among the populations, thus controlling for any potentially confounding genetic effects. Here, we report geographic variation in haemosporidian infection among European populations of corncrake. This species now occurs in fragmented populations, but there is little genetic structure and equally high levels of genetic diversity among these populations. We observed a longitudinal gradient of prevalence from western to Eastern Europe negatively correlated with national agricultural yield, but positively correlated with corncrake census population sizes when only the most widespread lineage is considered. This likely reveals a possible impact of local agriculture intensity, which reduced host population densities in Western Europe and, potentially, insect vector abundance, thus reducing the transmission of pathogens. We conclude that in the corncrake system, where metapopulation dynamics resulted in variations in local census population sizes, but not in the genetic impoverishment of these populations, anthropogenic activity has led to a reduction in host populations and pathogen prevalence.
Collapse
Affiliation(s)
- Yoan Fourcade
- Université d'Angers, GECCOAngers, France
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East AngliaNorwich, UK
| | - Oskars Keišs
- Laboratory of Ornithology, Institute of Biology, University of LatviaSalaspils, Latvia
| | - David S Richardson
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East AngliaNorwich, UK
| | | |
Collapse
|
97
|
Annavi G, Newman C, Dugdale HL, Buesching CD, Sin YW, Burke T, Macdonald DW. Neighbouring-group composition and within-group relatedness drive extra-group paternity rate in the European badger (Meles meles). J Evol Biol 2014; 27:2191-203. [PMID: 25234113 PMCID: PMC4283041 DOI: 10.1111/jeb.12473] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 07/22/2014] [Accepted: 07/27/2014] [Indexed: 02/04/2023]
Abstract
Extra-group paternity (EGP) occurs commonly among group-living mammals and plays an important role in mating systems and the dynamics of sexual selection; however, socio-ecological and genetic correlates of EGP have been underexplored. We use 23 years of demographic and genetic data from a high-density European badger (Meles meles) population, to investigate the relationship between the rate of EGP in litters and mate availability, mate incompatibility and mate quality (heterozygosity). Relatedness between within-group assigned mothers and candidate fathers had a negative quadratic effect on EGP, whereas the number of neighbouring-group candidate fathers had a linear positive effect. We detected no effect of mean or maximum heterozygosity of within-group candidate fathers on EGP. Consequently, EGP was associated primarily with mate availability, subject to within-group genetic effects, potentially to mitigate mate incompatibility and inbreeding. In badgers, cryptic female choice, facilitated by superfecundation, superfoetation and delayed implantation, prevents males from monopolizing within-group females. This resonates with a meta-analysis in group-living mammals, which proposed that higher rates of EGP occur when within-group males cannot monopolize within-group females. In contrast to the positive meta-analytic association, however, we found that EGP associated negatively with the number of within-group assigned mothers and the number of within-group candidate fathers; potentially a strategy to counter within-group males committing infanticide. The relationship between the rate of EGP and socio-ecological or genetic factors can therefore be intricate, and the potential for cryptic female choice must be accounted for in comparative studies.
Collapse
Affiliation(s)
- G Annavi
- Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan Centre, University of OxfordTubney, Abingdon, Oxfordshire, UK
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of SheffieldSheffield, UK
- Biology Department, Faculty of Science, University of Putra MalaysiaSelangor Darul Ehsan, Malaysia
| | - C Newman
- Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan Centre, University of OxfordTubney, Abingdon, Oxfordshire, UK
| | - H L Dugdale
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of SheffieldSheffield, UK
- Theoretical Biology, Centre for Ecological and Evolutionary Studies, University of GroningenGroningen, The Netherlands
- Behavioural Ecology and Self-Organization, Centre for Ecological and Evolutionary Studies, University of GroningenGroningen, The Netherlands
| | - C D Buesching
- Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan Centre, University of OxfordTubney, Abingdon, Oxfordshire, UK
| | - Y W Sin
- Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan Centre, University of OxfordTubney, Abingdon, Oxfordshire, UK
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of SheffieldSheffield, UK
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard UniversityCambridge, MA, USA
| | - T Burke
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of SheffieldSheffield, UK
| | - D W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, Recanati-Kaplan Centre, University of OxfordTubney, Abingdon, Oxfordshire, UK
| |
Collapse
|
98
|
Immune profile predicts survival and reflects senescence in a small, long-lived mammal, the greater sac-winged bat (Saccopteryx bilineata). PLoS One 2014; 9:e108268. [PMID: 25254988 PMCID: PMC4177908 DOI: 10.1371/journal.pone.0108268] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/21/2014] [Indexed: 01/16/2023] Open
Abstract
The immune system imposes costs that may have to be traded against investment of resources in other costly life-history traits. Yet, it is unknown if a trade-off between immunity and longevity occurs in free-ranging mammals. Here, we tested if age and survival, two aspects associated with longevity, are linked to immune parameters in an 8 g bat species. Using a combination of cross-sectional and longitudinal data, we assessed whether total white blood cell (WBC) counts, bacterial killing ability of the plasma (BKA) and immunoglobulin G (IgG) concentration change with age. Furthermore, we asked if these immune parameters impose costs resulting in decreased survival probabilities. We found that WBC counts decreased with age both within and among individuals. IgG concentrations were higher in older individuals, but did not change with age within individuals. Furthermore, individuals with above average WBC counts or IgG concentration had lower probabilities to survive the next six months. High WBC counts and IgG concentrations may reflect infections with parasites and pathogens, however, individuals that were infected with trypanosomes or nematodes showed neither higher WBC counts or IgG concentrations, nor was infection connected with survival rates. BKA was higher in infected compared with uninfected bats, but not related to age or survival. In conclusion, cellular (WBC) and humoral (IgG) parts of the immune system were both connected to age and survival, but not to parasite infections, which supports the hypothesis that energetically costly immunological defences are traded against other costly life-history traits, leading to a reduced lifespan in this free-ranging mammal.
Collapse
|
99
|
Kenney J, Allendorf FW, McDougal C, Smith JLD. How much gene flow is needed to avoid inbreeding depression in wild tiger populations? Proc Biol Sci 2014; 281:20133337. [PMID: 24990671 PMCID: PMC4100497 DOI: 10.1098/rspb.2013.3337] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 06/06/2014] [Indexed: 11/12/2022] Open
Abstract
The number and size of tiger populations continue to decline owing to habitat loss, habitat fragmentation and poaching of tigers and their prey. As a result, tiger populations have become small and highly structured. Current populations have been isolated since the early 1970s or for approximately seven generations. The objective of this study is to explore how inbreeding may be affecting the persistence of remaining tiger populations and how dispersal, either natural or artificial, may reduce the potentially detrimental effect of inbreeding depression. We developed a tiger simulation model and used published levels of genetic load in mammals to simulate inbreeding depression. Following a 50 year period of population isolation, we introduced one to four dispersing male tigers per generation to explore how gene flow from nearby populations may reduce the negative impact of inbreeding depression. For the smallest populations, even four dispersing male tigers per generation did not increase population viability, and the likelihood of extinction is more than 90% within 30 years. Unless habitat connectivity is restored or animals are artificially introduced in the next 70 years, medium size wild populations are also likely to go extinct, with only four to five of the largest wild tiger populations likely to remain extant in this same period without intervention. To reduce the risk of local extinction, habitat connectivity must be pursued concurrently with efforts to increase population size (e.g. enhance habitat quality, increase habitat availability). It is critical that infrastructure development, dam construction and other similar projects are planned appropriately so that they do not erode the extent or quality of habitat for these populations so that they can truly serve as future source populations.
Collapse
Affiliation(s)
- John Kenney
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Fred W Allendorf
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Charles McDougal
- International Trust for Nature Conservation, 3c Gunnersbury Avenue, Ealing Common, London W5 3NH, UK
| | - James L D Smith
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
100
|
Pemberton TJ, Rosenberg NA. Population-genetic influences on genomic estimates of the inbreeding coefficient: a global perspective. Hum Hered 2014; 77:37-48. [PMID: 25060268 DOI: 10.1159/000362878] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND/AIMS Culturally driven marital practices provide a key instance of an interaction between social and genetic processes in shaping patterns of human genetic variation, producing, for example, increased identity by descent through consanguineous marriage. A commonly used measure to quantify identity by descent in an individual is the inbreeding coefficient, a quantity that reflects not only consanguinity, but also other aspects of kinship in the population to which the individual belongs. Here, in populations worldwide, we examine the relationship between genomic estimates of the inbreeding coefficient and population patterns in genetic variation. METHODS Using genotypes at 645 microsatellites, we compare inbreeding coefficients from 5,043 individuals representing 237 populations worldwide to demographic consanguinity frequency estimates available for 26 populations as well as to other quantities that can illuminate population-genetic influences on inbreeding coefficients. RESULTS We observe higher inbreeding coefficient estimates in populations and geographic regions with known high levels of consanguinity or genetic isolation and in populations with an increased effect of genetic drift and decreased genetic diversity with increasing distance from Africa. For the small number of populations with specific consanguinity estimates, we find a correlation between inbreeding coefficients and consanguinity frequency (r = 0.349, p = 0.040). CONCLUSIONS The results emphasize the importance of both consanguinity and population-genetic factors in influencing variation in inbreeding coefficients, and they provide insight into factors useful for assessing the effect of consanguinity on genomic patterns in different populations.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Man., Canada
| | | |
Collapse
|