51
|
Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 2014; 13 Suppl 1:S3. [PMID: 25186038 PMCID: PMC4155820 DOI: 10.1186/1475-2859-13-s1-s3] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.
Collapse
Affiliation(s)
- Rodney H Perez
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
- Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
52
|
Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol 2014; 80:6854-62. [PMID: 25172850 DOI: 10.1128/aem.02284-14] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Circular bacteriocins are a group of N-to-C-terminally linked antimicrobial peptides, produced by Gram-positive bacteria of the phylum Firmicutes. Circular bacteriocins generally exhibit broad-spectrum antimicrobial activity, including against common food-borne pathogens, such as Clostridium and Listeria spp. These peptides are further known for their high pH and thermal stability, as well as for resistance to many proteolytic enzymes, properties which make this group of bacteriocins highly promising for potential industrial applications and their biosynthesis of particular interest as a possible model system for the synthesis of highly stable bioactive peptides. In this review, we summarize the current knowledge on this group of bacteriocins, with emphasis on the recent progress in understanding circular bacteriocin genetics, biosynthesis, and mode of action; in addition, we highlight the current challenges and future perspectives for the application of these peptides.
Collapse
|
53
|
|
54
|
Campelo AB, Roces C, Mohedano ML, López P, Rodríguez A, Martínez B. A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis. Microb Cell Fact 2014; 13:77. [PMID: 24886591 PMCID: PMC4055356 DOI: 10.1186/1475-2859-13-77] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/16/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lactococcus lactis is widely used as a dairy starter and has been extensively studied. Based on the acquired knowledge on its physiology and metabolism, new applications have been envisaged and there is an increasing interest of using L. lactis as a cell factory. Plasmids constitute the main toolbox for L. lactis genetic engineering and most rely on antibiotic resistant markers for plasmid selection and maintenance. In this work, we have assessed the ability of the bacteriocin Lactococcin 972 (Lcn972) gene cluster to behave as a food-grade post-segregational killing system to stabilize recombinant plasmids in L. lactis in the absence of antibiotics. Lcn972 is a non-lantibiotic bacteriocin encoded by the 11-kbp plasmid pBL1 with a potent antimicrobial activity against Lactococcus. RESULTS Attempts to clone the full lcn972 operon with its own promoter (P972), the structural gene lcn972 and the immunity genes orf2-orf3 in the unstable plasmid pIL252 failed and only plasmids with a mutated promoter were recovered. Alternatively, cloning under other constitutive promoters was approached and achieved, but bacteriocin production levels were lower than those provided by pBL1. Segregational stability studies revealed that the recombinant plasmids that yielded high bacteriocin titers were maintained for at least 200 generations without antibiotic selection. In the case of expression vectors such as pTRL1, the Lcn972 gene cluster also contributed to plasmid maintenance without compromising the production of the fluorescent mCherry protein. Furthermore, unstable Lcn972 recombinant plasmids became integrated into the chromosome through the activity of insertion sequences, supporting the notion that Lcn972 does apply a strong selective pressure against susceptible cells. Despite of it, the Lcn972 gene cluster was not enough to avoid the use of antibiotics to select plasmid-bearing cells right after transformation. CONCLUSIONS Inserting the Lcn972 cluster into segregational unstable plasmids prevents their lost by segregation and probable could be applied as an alternative to the use of antibiotics to support safer and more sustainable biotechnological applications of genetically engineered L. lactis.
Collapse
Affiliation(s)
- Ana B Campelo
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Clara Roces
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - M Luz Mohedano
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas CIB (CSIC), 28040 Madrid, Spain
| | - Paloma López
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas CIB (CSIC), 28040 Madrid, Spain
| | - Ana Rodríguez
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Beatriz Martínez
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| |
Collapse
|
55
|
Potter A, Ceotto H, Coelho MLV, Guimarães AJ, Bastos MDCDF. The gene cluster of aureocyclicin 4185: the first cyclic bacteriocin of Staphylococcus aureus. Microbiology (Reading) 2014; 160:917-928. [DOI: 10.1099/mic.0.075689-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus 4185 was previously shown to produce at least two bacteriocins. One of them is encoded by pRJ101. To detect the bacteriocin-encoding gene cluster, an ~9160 kb region of pRJ101 was sequenced. In silico analyses identified 10 genes (aclX, aclB, aclI, aclT, aclC, aclD, aclA, aclF, aclG and aclH) that might be involved in the production of a novel cyclic bacteriocin named aureocyclicin 4185. The organization of these genes was quite similar to that of the gene cluster responsible for carnocyclin A production and immunity. Four putative proteins encoded by these genes (AclT, AclC, AclD and AclA) also exhibited similarity to proteins encoded by cyclic bacteriocin gene clusters. Mutants derived from insertion of Tn917-lac into aclC, aclF, aclH and aclX were affected in bacteriocin production and growth. AclX is a 205 aa putative protein not encoded by the gene clusters of other cyclic bacteriocins. AclX exhibits 50 % similarity to a permease and has five putative membrane-spanning domains. Transcription analyses suggested that aclX is part of the aureocyclicin 4185 gene cluster, encoding a protein required for bacteriocin production. The aclA gene is the structural gene of aureocyclicin 4185, which shows 65 % similarity to garvicin ML. AclA is proposed to be cleaved off, generating a mature peptide with a predicted M
r of 5607 Da (60 aa). By homology modelling, AclA presents four α-helices, like carnocyclin A. AclA could not be found at detectable levels in the culture supernatant of a strain carrying only pRJ101. To our knowledge, this is the first report of a cyclic bacteriocin gene cluster in the genus Staphylococcus.
Collapse
Affiliation(s)
- Amina Potter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - Hilana Ceotto
- Instituto Federal de Educação Tecnológica do Estado do Rio de Janeiro, IFRJ, Rio de Janeiro, Brazil
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - Marcus Lívio Varella Coelho
- Instituto Nacional da Propriedade Industrial, INPI, Rio de Janeiro, Brazil
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
56
|
Pieniz S, Andreazza R, Okeke BC, Camargo FAO, Brandelli A. Assessment of Beneficial Properties of EnterococcusStrains. J FOOD PROCESS PRES 2014. [DOI: 10.1111/jfpp.12016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Simone Pieniz
- Department of Food Science, ICTA; Federal University of Rio Grande do Sul; Porto Alegre Brazil
- Department of Biology; Auburn University at Montgomery; Montgomery AL
| | - Robson Andreazza
- Department of Biology; Auburn University at Montgomery; Montgomery AL
- Department of Soil Science; Federal University of Rio Grande do Sul; Porto Alegre Brazil
- Center of Engineering; Federal University of Pelotas; Pelotas RS 96010-280 Brazil
| | - Benedict C. Okeke
- Department of Biology; Auburn University at Montgomery; Montgomery AL
| | - Flávio A. O. Camargo
- Department of Soil Science; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Adriano Brandelli
- Department of Food Science, ICTA; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
57
|
Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol 2014; 196:1842-52. [PMID: 24610713 DOI: 10.1128/jb.01474-14] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus amyloliquefaciens FZB42 is a Gram-positive plant growth-promoting bacterium with an impressive capacity to synthesize nonribosomal secondary metabolites with antimicrobial activity. Here we report on a novel circular bacteriocin which is ribosomally synthesized by FZB42. The compound displayed high antibacterial activity against closely related Gram-positive bacteria. Transposon mutagenesis and subsequent site-specific mutagenesis combined with matrix-assisted laser desorption ionization-time of flight mass spectroscopy revealed that a cluster of six genes covering 4,490 bp was responsible for the production, modification, and export of and immunity to an antibacterial compound, here designated amylocyclicin, with a molecular mass of 6,381 Da. Peptide sequencing of the fragments obtained after tryptic digestion of the purified peptide revealed posttranslational cleavage of an N-terminal extension and head-to-tail circularization of the novel bacteriocin. Homology to other putative circular bacteriocins in related bacteria let us assume that this type of peptide is widespread among the Bacillus/Paenibacillus taxon.
Collapse
|
58
|
Cebrián R, Rodríguez-Ruano S, Martínez-Bueno M, Valdivia E, Maqueda M, Montalbán-López M. Analysis of the promoters involved in enterocin AS-48 expression. PLoS One 2014; 9:e90603. [PMID: 24594763 PMCID: PMC3942455 DOI: 10.1371/journal.pone.0090603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/31/2014] [Indexed: 11/17/2022] Open
Abstract
The enterocin AS-48 is the best characterized antibacterial circular protein in prokaryotes. It is a hydrophobic and cationic bacteriocin, which is ribosomally synthesized by enterococcal cells and post-translationally cyclized by a head-to-tail peptide bond. The production of and immunity towards AS-48 depend upon the coordinated expression of ten genes organized in two operons, as-48ABC (where genes encoding enzymes with processing, secretion, and immunity functions are adjacent to the structural as-48A gene) and as-48C1DD1EFGH. The current study describes the identification of the promoters involved in AS-48 expression. Seven putative promoters have been here amplified, and separately inserted into the promoter-probe vector pTLR1, to create transcriptional fusions with the mCherry gene used as a reporter. The activity of these promoter regions was assessed measuring the expression of the fluorescent mCherry protein using the constitutive pneumococcal promoter PX as a reference. Our results revealed that only three promoters PA, P2(2) and PD1 were recognized in Enterococcus faecalis, Lactococcus lactis and Escherichia coli, in the conditions tested. The maximal fluorescence was obtained with PX in all the strains, followed by the P2(2) promoter, which level of fluorescence was 2-fold compared to PA and 4-fold compared to PD1. Analysis of putative factors influencing the promoter activity in single and double transformants in E. faecalis JH2-2 demonstrated that, in general, a better expression was achieved in presence of pAM401-81. In addition, the P2(2) promoter could be regulated in a negative fashion by genes existing in the native pMB-2 plasmid other than those of the as-48 cluster, while the pH seems to affect differently the as-48 promoter expression.
Collapse
Affiliation(s)
- Rubén Cebrián
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Sonia Rodríguez-Ruano
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Mercedes Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Manuel Montalbán-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
59
|
Functional genetic analysis of the GarML gene cluster in Lactococcus garvieae DCC43 gives new insights into circular bacteriocin biosynthesis. J Bacteriol 2013; 196:911-9. [PMID: 24336941 DOI: 10.1128/jb.01115-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Garvicin ML (GarML) is a circular bacteriocin produced by Lactococcus garvieae DCC43. The recently published draft genome of this strain allowed determination of the genetic background for bacteriocin production. Bioinformatic analysis identified a gene cluster consisting of nine open reading frames likely involved in the production of and immunity to GarML. The garA gene encodes the bacteriocin precursor, garX a large transmembrane protein, garBCDE a putative immunity protein (garB) followed by an ATPase and two transmembrane proteins, and garFGH a putative ABC transporter complex. Functional genetic analysis revealed that deletion of garFGH had no effect on sensitivity to or production of GarML. In contrast, deletion of garBCDE or inactivation of garX resulted in high-level sensitivity to GarML and completely abolished production of active bacteriocin. Mass spectrometry of culture supernatants revealed that wild-type cultures contained the mature circular form as well as the linear forms of the bacteriocin, both with and without the three-amino-acid leader sequence, while bacteriocin-negative mutants contained only the linear forms. These results indicate that cleavage of the leader peptide precedes circularization and is likely performed by a functional entity separate from the GarML gene cluster. To our knowledge, this is the first conclusive evidence for these processes being separated in time. Loss of immunity and antimicrobial activity in addition to our inability to detect the circular bacteriocin in the ΔgarBCDE and garX::pCG47 mutants demonstrate that both these units are indispensable for GarML biosynthesis as well as immunity. Furthermore, the results indicate that these genes are implicated in the circularization of the bacteriocin and that their functions are probably interlinked.
Collapse
|
60
|
Yeo IC, Lee NK, Yang BW, Hahm YT. RNA-seq Analysis of Antibiotic-Producing Bacillus subtilis SC-8 in Response to Signal Peptide PapR of Bacillus cereus. Appl Biochem Biotechnol 2013; 172:580-94. [DOI: 10.1007/s12010-013-0516-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/15/2013] [Indexed: 01/27/2023]
|
61
|
Leães FL, Velho RV, Caldas DGG, Pinto JV, Tsai SM, Brandelli A. Influence of pH and temperature on the expression of sboA and ituD genes in Bacillus sp. P11. Antonie van Leeuwenhoek 2013; 104:149-54. [PMID: 23677688 DOI: 10.1007/s10482-013-9935-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Temperature and pH are key factors influencing the production of antimicrobial peptides. In this work, qRT-PCR methodology was used to demonstrate the effect of these two variables on sboA (subtilosin A) and ituD (iturin A) expression in Bacillus sp. P11, an isolate from aquatic environment of the Amazon. Bacillus sp. P11 was incubated in BHI broth for 36 h at 30, 37 and 42 °C, and the pH values were 6.0, 7.4 and 8.0. The production of subtilosin A and iturin A was confirmed by mass spectrometry. The sboA expression increased 200-fold when the initial pH was 8.0. In contrast, ituD expression was maximum at pH 6.0. Increased temperature (42 °C) was adverse for both genes, but ituD expression increased at 37 °C. Expression of sboA and ituD was strongly affected by pH and temperature and qRT-PCR proved to be a powerful tool to investigate the potential of Bacillus strains to produce subtilosin A and iturin A.
Collapse
Affiliation(s)
- Fernanda Leal Leães
- Laboratório de Bioquímica e Microbiologia Aplicada, Universidade Federal do Rio Grande do Sul UFRGS, ICTA-UFRGS, Av. Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil
| | | | | | | | | | | |
Collapse
|
62
|
Cowper B, Craik DJ, Macmillan D. Making ends meet: chemically mediated circularization of recombinant proteins. Chembiochem 2013; 14:809-12. [PMID: 23559418 PMCID: PMC4016753 DOI: 10.1002/cbic.201300105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 01/16/2023]
Abstract
A selective N→S acyl transfer reaction facilitates semi-synthesis of the plant cyclotide kalata B1 from a linear precursor peptide of bacterial origin, through simple appendage of N-terminal cysteine and a thiol-labile C-terminal Gly-Cys motif. This constitutes the first synthesis of a ribosomally derived circular miniprotein, without recourse to protein splicing elements.
Collapse
Affiliation(s)
- Ben Cowper
- Department of Chemistry, University College London, Christopher Ingold Building20 Gordon Street, London, WC1H 0AJ (UK) E-mail:
| | - David J Craik
- Institute for Molecular Bioscience, University of QueenslandBrisbane, Queensland, 4072 (Australia)
| | - Derek Macmillan
- Department of Chemistry, University College London, Christopher Ingold Building20 Gordon Street, London, WC1H 0AJ (UK) E-mail:
| |
Collapse
|
63
|
Selle K, Klaenhammer TR. Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol Rev 2013; 37:915-35. [PMID: 23488471 DOI: 10.1111/1574-6976.12021] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/15/2013] [Indexed: 12/21/2022] Open
Abstract
Certain lactic acid bacteria (LAB) have the capacity to occupy mucosal niches of humans, including the oral cavity, gastrointestinal tract, and vagina. Among commensal, LAB are species of the acidophilus complex, which have proven to be a substantial reservoir for microorganisms with probiotic attributes. Specifically, Lactobacillus gasseri is an autochthonous microorganism which has been evaluated for probiotic activity based on the availability of genome sequence and species-specific adaptation to the human mucosa. Niche-related characteristics of L. gasseri contributing to indigenous colonization include tolerance of low pH environments, resistance to bile salts, and adhesion to the host epithelium. In humans, L. gasseri elicits various health benefits through its antimicrobial activity, bacteriocin production, and immunomodulation of the innate and adaptive systems. The genomic and empirical evidence supporting use of L. gasseri in probiotic applications is substantiated by clinical trial data displaying maintenance of vaginal homeostasis, mitigation of Helicobacter pylori infection, and amelioration of diarrhea.
Collapse
Affiliation(s)
- Kurt Selle
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
64
|
van Belkum MJ, Vederas JC. The ABC Transporter CclEFGH Facilitates the Production of the Circular Bacteriocin Carnocyclin A. Probiotics Antimicrob Proteins 2012; 4:273-8. [DOI: 10.1007/s12602-012-9112-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
65
|
Kotzampassi K, Giamarellos-Bourboulis EJ. Probiotics for infectious diseases: more drugs, less dietary supplementation. Int J Antimicrob Agents 2012; 40:288-96. [PMID: 22858373 DOI: 10.1016/j.ijantimicag.2012.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/12/2022]
Abstract
According to current definitions, probiotics are live microorganisms that, when ingested in adequate quantities, exert a health benefit to the host. The action of probiotics in the host is exerted by three mechanisms: modulation of the content of gut microbiota; maintenance of the integrity of the gut barrier and prevention of bacterial translocation; and modulation of the local immune response by the gut-associated immune system. Regarding their role for the prevention and treatment of infectious diseases, adequate evidence coming from randomised clinical trials (RCTs) is available for antibiotic-associated diarrhoea (AAD), Clostridium difficile infection (CDI), acute gastroenteritis and infectious complications following admission to the Intensive Care Unit (ICU). Existing evidence supports their role for decreasing the incidence of AAD and CDI when administered in parallel with antimicrobials. They also shorten the duration of symptoms when administered in paediatric populations with acute gastroenteritis, particularly of rotavirus aetiology. Available evidence is not sufficient to support administration for the management of CDI. Regarding populations of critically ill patients, data from many RCTs suggest a decrease of infectious complications by starting feeding with probiotics following ICU admission, with the exception of patients suffering from severe pancreatitis. However, it should be underscored that all analysed RCTs are characterised by marked heterogeneity regarding the type of administered probiotic species, precluding robust recommendations.
Collapse
Affiliation(s)
- Katerina Kotzampassi
- 1st Department of Surgery, University of Thessaloniki, Medical School, Thessaloniki, Greece
| | | |
Collapse
|
66
|
Identification of the bacteriocin subtilosin A and loss of purL results in its high-level production in Bacillus amyloliquefaciens. Res Microbiol 2012; 163:470-8. [DOI: 10.1016/j.resmic.2012.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/22/2012] [Indexed: 11/17/2022]
|
67
|
Montalbán-López M, Sánchez-Hidalgo M, Cebrián R, Maqueda M. Discovering the bacterial circular proteins: bacteriocins, cyanobactins, and pilins. J Biol Chem 2012; 287:27007-13. [PMID: 22700986 DOI: 10.1074/jbc.r112.354688] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over recent years, several examples of natural ribosomally synthesized circular proteins and peptides from diverse organisms have been described. They are a group of proteins for which the precursors must be post-translationally modified to join the N and C termini with a peptide bond. This feature appears to confer a range of potential advantages because these proteins show increased resistance to proteases and higher thermodynamic stability, both of which improve their biological activity. They are produced by prokaryotic and eukaryotic organisms and show diverse biological activities, related mostly to a self-defense or competition mechanism of the producer organisms, with the only exception being the circular pilins. This minireview highlights ribosomally synthesized circular proteins produced by members of the domain Bacteria: circular bacteriocins, cyanobactins, and circular pilins. We pay special attention to the genetic organization of the biosynthetic machinery of these molecules, the role of circularization, and the differences in the possible circularization mechanisms.
Collapse
Affiliation(s)
- Manuel Montalbán-López
- Department of Molecular Genetics, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
68
|
Masuda Y, Zendo T, Sonomoto K. New type non-lantibiotic bacteriocins: circular and leaderless bacteriocins. Benef Microbes 2012; 3:3-12. [PMID: 22348904 DOI: 10.3920/bm2011.0047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacteriocins are antimicrobial peptides that are ribosomally synthesised by bacteria. Bacteriocins produced by Gram-positive bacteria, including lactic acid bacteria, are under focus as the next generation of safe natural biopreservatives and as therapeutic alternatives to antibiotics. Recently, two novel types of non-lantibiotic class II bacteriocins have been reported with unique characteristics in their structure and biosynthesis mechanism. One is a circular bacteriocin that contains a head-to-tail structure in the mature form, and the other is a leaderless bacteriocin without an N-terminal extension in the precursor peptide. A circular structure can provide the peptide with remarkable stability against various stresses; indeed, circular bacteriocins are known to possess higher stability than general linear bacteriocins. Leaderless bacteriocins are distinct from general bacteriocins, because they do not contain N-terminal leader sequences, which are responsible for the recognition process during secretion and for inactivation of bacteriocins inside producer cells. Leaderless bacteriocins do not require any post-translational processing for activity. These two novel types of bacteriocins are promising antimicrobial compounds, and their biosynthetic mechanisms are expected to be applied in synthetic biology to design new peptides and for new mass production systems. However, many questions remain about their biosynthesis. In this review, we introduce recent studies on these types of bacteriocins and their potential to open a new world of antimicrobial peptides.
Collapse
Affiliation(s)
- Y Masuda
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | | | | |
Collapse
|
69
|
Zhang Q, Yu Y. Thioether crosslinkages created by a radical SAM enzyme. Chembiochem 2012; 13:1097-9. [PMID: 22556103 DOI: 10.1002/cbic.201200196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Indexed: 11/11/2022]
Abstract
Unusually versatile: While the β-carbon thioether linkage in lantibiotics has long been appreciated and is relatively well characterized, a recent publication shows that the unusual sulfur-to-α-carbon thioether crosslinks in subtilosin A are produced by a radical SAM enzyme, AlbA, that contains two [4 Fe-4 S] clusters, thus highlighting the versatility of post-translational modifications in natural product biosynthesis.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education) and School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, PR China.
| | | |
Collapse
|
70
|
The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML. Antimicrob Agents Chemother 2012; 56:2908-15. [PMID: 22411612 DOI: 10.1128/aac.00314-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We generated and characterized a series of spontaneous mutants of Lactococcus lactis IL1403 with average 6- to 11-fold-lowered sensitivities to the circular bacteriocin garvicin ML (GarML). Carbohydrate fermentation assays highlighted changes in carbohydrate metabolism, specifically loss of the ability to metabolize starch and maltose, in these mutants. PCR and sequencing showed that a 13.5-kb chromosomal deletion encompassing 12 open reading frames, mainly involved in starch and maltose utilization, had spontaneously occurred in the GarML-resistant mutants. Growth experiments revealed a correlation between sensitivity to GarML and carbon catabolite repression (CCR); i.e., sensitivity to GarML increased significantly when wild-type cells were grown on maltose and galactose as sole carbohydrates, an effect which was alleviated by the presence of glucose. Among the genes deleted in the mutants were malEFG, which encode a CCR-regulated membrane-bound maltose ABC transporter. The complementation of mutants with these three genes recovered normal sensitivity to the bacteriocin, suggesting an essential role of the maltose ABC transporter in the antimicrobial activity of GarML. This notion was supported by the fact that the level of sensitivity to GarML was dose dependent, increasing with higher expression levels of malEFG over a 50-fold range. To our knowledge, this is the first time a specific protein complex has been demonstrated to be involved in sensitivity to a circular bacteriocin.
Collapse
|
71
|
Flühe L, Knappe TA, Gattner MJ, Schäfer A, Burghaus O, Linne U, Marahiel MA. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat Chem Biol 2012; 8:350-7. [PMID: 22366720 DOI: 10.1038/nchembio.798] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/22/2011] [Indexed: 11/09/2022]
Abstract
Subtilosin A is a 35-residue, ribosomally synthesized bacteriocin encoded by the sbo-alb operon of Bacillus subtilis. It is composed of a head-to-tail circular peptide backbone that is additionally restrained by three unusual thioether bonds between three cysteines and the α-carbon of one threonine and two phenylalanines, respectively. In this study, we demonstrate that these bonds are synthesized by the radical S-adenosylmethionine enzyme AlbA, which is encoded by the sbo-alb operon and comprises two [4Fe-4S] clusters. One [4Fe-4S] cluster is coordinated by the prototypical CXXXCXXC motif and is responsible for the observed S-adenosylmethionine cleavage reaction, whereas the second [4Fe-4S] cluster is required for the generation of all three thioether linkages. On the basis of the obtained results, we propose a new radical mechanism for thioether bond formation. In addition, we show that AlbA-directed substrate transformation is leader-peptide dependent, suggesting that thioether bond formation is the first step during subtilosin A maturation.
Collapse
Affiliation(s)
- Leif Flühe
- Department of Chemistry-Biochemistry, Philipps-Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
72
|
Yeo IC, Lee NK, Cha CJ, Hahm YT. Interspecies interaction of signal peptide PapR secreted by Bacillus cereus and its effect on production of antimicrobial peptide. Appl Biochem Biotechnol 2012; 166:700-10. [PMID: 22101448 DOI: 10.1007/s12010-011-9459-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/24/2011] [Indexed: 12/11/2022]
Abstract
This study was carried out to investigate the interspecies interaction of PapR peptide secreted by Bacillus cereus on production of BSAP-254, an antimicrobial peptide produced by Bacillus subtilis SC-8 isolated from the Korean fermented soybean paste and exhibited narrow antagonistic activity against the B. cereus group, but not against other foodborne pathogens. PapR is a signal peptide that activates PlcR, which is a pleiotropic regulator controlling the expression of various virulence factors in B. cereus. When B. subtilis SC-8 was co-cultured with B. cereus, it completely inhibited the growth of B. cereus within 12 h, and the rate of BSAP-254 production was increased 34.2% at 12 h. Furthermore, 5 μM of synthetic PapR peptide added to the culture of B. subtilis SC-8 increased the rate of BSAP-254 production up to 59.7%. The growth of B. subtilis SC-8, however, was not significantly different with or without the addition of PapR. When B. cereus papR mutant was co-cultured with B. subtilis SC-8, the growth of the mutant was not inhibited and the rate of BSAP-254 production was decreased by 45%.
Collapse
Affiliation(s)
- In-Cheol Yeo
- Department of Biotechnology (BK21 Program), Chung-Ang University, Anseong 456-756, Republic of Korea
| | | | | | | |
Collapse
|
73
|
Thorstholm L, Craik D. Discovery and applications of naturally occurring cyclic peptides. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e1-e70. [PMID: 24064240 DOI: 10.1016/j.ddtec.2011.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
74
|
Cebrián R, Baños A, Valdivia E, Pérez-Pulido R, Martínez-Bueno M, Maqueda M. Characterization of functional, safety, and probiotic properties of Enterococcus faecalis UGRA10, a new AS-48-producer strain. Food Microbiol 2011; 30:59-67. [PMID: 22265284 DOI: 10.1016/j.fm.2011.12.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/23/2011] [Accepted: 12/01/2011] [Indexed: 01/09/2023]
Abstract
Enterococcus faecalis UGRA10, a new AS-48-producer strain, has been isolated from a Spanish sheep's cheese. The inhibitory substance produced by E. faecalis UGRA10 was purified and characterized using matrix-assisted laser desorption ionization-time of flight mass spectrometry, confirming its identity with AS-48 enterocin (7.150 Da). Subsequent genetic analysis showed the existence of the as-48 gene cluster on a plasmid of approximately 70-kb. The UGRA10 strain was examined for safety properties such as enterococci virulence genes, biogenic amine production, and antibiotic resistance. As for most E. faecalis strains, PCR amplification revealed the existence of gene encoding for GelE, Asa1, Esp, EfaA, and Ace antigens and for tyrosine decarboxylase. This strain was sensitive to most of the antibiotics tested, being resistant only to aminoglycosides, lincosamide, and pristinamicins. In addition, UGRA10 developed an ability to form biofilms and to adhere to Caco 2 and HeLa 229 cells. More interestingly, this strain shows a high ability to interfere with the adhesion of Listeria monocytogenes to Caco 2 cells. Altogether, the results suggest that this broad-spectrum bacteriocin-producing strain has biotechnological potential to be developed as a protective agent in food preservation and as a probiotic.
Collapse
Affiliation(s)
- R Cebrián
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Fuente Nueva s/n, 19071-Granada, Spain
| | | | | | | | | | | |
Collapse
|
75
|
Genes involved in immunity to and secretion of aureocin A53, an atypical class II bacteriocin produced by Staphylococcus aureus A53. J Bacteriol 2011; 194:875-83. [PMID: 22155775 DOI: 10.1128/jb.06203-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aureocin A53 is an antimicrobial peptide produced by Staphylococcus aureus A53. The genetic determinants involved in aureocin A53 production and immunity to its action are organized in at least four transcriptional units encoded by the 10.4-kb plasmid pRJ9. One transcriptional unit carries only the bacteriocin structural gene, aucA. No immunity gene is found downstream of aucA, as part of the same transcriptional unit. Further downstream of aucA is found an operon which contains the three genes aucEFG, whose products seem to associate to form a dedicated ABC transporter. When aucEFG were expressed in RN4220, an aureocin A53-sensitive S. aureus strain, this strain became partially resistant to the bacteriocin. A gene disruption mutant in aucE was defective in aureocin A53 externalization and more sensitive to aureocin A53 than the wild-type strain, showing that aucEFG are involved in immunity to aureocin A53 by active extrusion of the bacteriocin. Full resistance to aureocin A53 was exhibited by transformants carrying, besides aucEFG, the operon formed by two genes, aucIB and aucIA, located between aucA and aucEFG and carried in the opposite strand. AucIA and AucIB share similarities with hypothetical proteins not found in the gene clusters of other bacteriocins. A gene disruption mutant in orf8, located upstream of aucA and whose product exhibits about 50% similarity to a number of hypothetical membrane proteins found in many Gram-positive bacteria, was strongly affected in aureocin A53 externalization but resistant to aureocin A53, suggesting that Orf8 is also involved in aureocin A53 secretion.
Collapse
|
76
|
Velásquez JE, Zhang X, van der Donk WA. Biosynthesis of the antimicrobial peptide epilancin 15X and its N-terminal lactate. ACTA ACUST UNITED AC 2011; 18:857-67. [PMID: 21802007 DOI: 10.1016/j.chembiol.2011.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 04/15/2011] [Accepted: 05/03/2011] [Indexed: 11/16/2022]
Abstract
Lantibiotics are ribosomally synthesized and posttranslationally modified antimicrobial peptides. The recently discovered lantibiotic epilancin 15X produced by Staphylococcus epidermidis 15X154 contains an unusual N-terminal lactate group. To understand its biosynthesis, the epilancin 15X biosynthetic gene cluster was identified. The N-terminal lactate is produced by dehydration of a serine residue in the first position of the core peptide by ElxB, followed by proteolytic removal of the leader peptide by ElxP and hydrolysis of the resulting new N-terminal dehydroalanine. The pyruvate group thus formed is reduced to lactate by an NADPH-dependent oxidoreductase designated ElxO. The enzymatic activity of ElxB, ElxP, and ElxO were investigated in vitro or in vivo and the importance of the N-terminal modification for peptide stability against bacterial aminopeptidases was assessed.
Collapse
Affiliation(s)
- Juan E Velásquez
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
77
|
Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Appl Environ Microbiol 2011; 77:8164-70. [PMID: 21948835 DOI: 10.1128/aem.06348-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The culture supernatant of Leuconostoc mesenteroides TK41401, isolated from Japanese pickles, possessed antimicrobial activity against broad range of a bacterial genera and particularly strong activity against Bacillus coagulans, the major contaminant of pickles. An antimicrobial peptide was purified in three chromatographic steps, and its molecular mass was determined to be 6,115.59 Da by electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS). The primary structure of this peptide was determined by amino acid and DNA sequencing, and these analyses revealed that it was translated as a 63-residue precursor. This precursor showed high similarity to the precursor of lactocyclicin Q, a cyclic bacteriocin produced by Lactococcus sp. strain QU 12. The molecular weight calculated after cyclization, which was presumed to involve the same process as in lactocyclicin Q (between L3 and W63), agreed with that estimated by ESI-TOF MS. This peptide was proved to be a novel cyclic bacteriocin, and it was termed leucocyclicin Q. The antimicrobial spectrum of this bacteriocin clearly differed from that of lactocyclicin Q, even though their primary structures were quite similar. This is the first report of a cyclic bacteriocin produced by a strain of the genus Leuconostoc.
Collapse
|
78
|
Sánchez-Hidalgo M, Montalbán-López M, Cebrián R, Valdivia E, Martínez-Bueno M, Maqueda M. AS-48 bacteriocin: close to perfection. Cell Mol Life Sci 2011; 68:2845-57. [PMID: 21590312 PMCID: PMC11115006 DOI: 10.1007/s00018-011-0724-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/06/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Bacteriocin AS-48 is an intriguing molecule because of its unique structural characteristics, genetic regulation, broad activity spectrum, and potential biotechnological applications. It was the first reported circular bacteriocin and has been undoubtedly the best characterized for the last 25 years. Thus, AS-48 is the prototype of circular bacteriocins (class IV), for which the structure and genetic regulation have been elucidated. This review discusses the state-of-the-art in genetic engineering with regard to this circular protein, with the use of site-directed mutagenesis and circular permutation. Mutagenesis studies have been used to unravel the role of (a) different residues in the biological activity, underlining the relevance of several residues involved in membrane interaction and the low correlation between stability and activity and (b) three amino acids involved in maturation, providing information on the specificity of the leader peptidase and the circularization process itself. To investigate the role of circularity in the stability and biological properties of the enterocin AS-48, two different ways of linearization have been attempted: in vitro by limited proteolysis experiments and in vivo by circular permutation in the structural gene as-48A. The results summarized here show the significance of circularization on the secondary structure, potency and, especially, the stability of AS-48 and point as well to a putative role of the leader peptide as a protecting moiety in the pre-proprotein. Taken all together, the data available on circular bacteriocins support the idea that AS-48 has been engineered by nature to make a remarkably active and stable protein with a broad spectrum of activity.
Collapse
Affiliation(s)
| | - Manuel Montalbán-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Rubén Cebrián
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Mercedes Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
79
|
Velho RV, Caldas DGG, Medina LFC, Tsai SM, Brandelli A. Real-time PCR investigation on the expression of sboA and ituD genes in Bacillus spp. Lett Appl Microbiol 2011; 52:660-6. [PMID: 21501196 DOI: 10.1111/j.1472-765x.2011.03060.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the expression of sboA and ituD genes among strains of Bacillus spp. at different pH and temperature. METHODS AND RESULTS Different Bacillus strains from the Amazon basin and Bacillus subtilis ATCC 19659 were investigated for the production of subtilosin A and iturin A by qRT-PCR, analysing sboA and ituD gene expression under different culture conditions. Amazonian strains presented a general gene expression level lower than B. subtilis ATCC 19659 for sboA. In contrast, when analysing the expression of ituD gene, the strains from the Amazon, particularly P40 and P45B, exhibited higher levels of expression. Changes in pH (6 and 8) and temperature (37 and 42 °C) caused a decrease in sboA expression, but increased ituD expression among strains from Amazonian environment. CONCLUSIONS Temperature and pH have an important influence on the expression of genes sboA (subtilosin A) and ituD (iturin A) among Bacillus spp. The strains P40 and P45B can be useful for the production of antimicrobial peptide iturin A. SIGNIFICANCE AND IMPACT OF THE STUDY Monitoring the expression of essential biosynthetic genes by qRT-PCR is a valuable tool for optimization of the production of antimicrobial peptides.
Collapse
Affiliation(s)
- R V Velho
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brasil
| | | | | | | | | |
Collapse
|
80
|
van Belkum MJ, Martin-Visscher LA, Vederas JC. Structure and genetics of circular bacteriocins. Trends Microbiol 2011; 19:411-8. [PMID: 21664137 DOI: 10.1016/j.tim.2011.04.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/14/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
Circular bacteriocins are antimicrobial peptides produced by a variety of Gram-positive bacteria. They are part of a growing family of ribosomally synthesized peptides with a head-to-tail cyclization of their backbone that are found in mammals, plants, fungi and bacteria and are exceptionally stable. These bacteriocins permeabilize the membrane of sensitive bacteria, causing loss of ions and dissipation of the membrane potential. Most circular bacteriocins probably adopt a common 3D structure consisting of four or five α-helices encompassing a hydrophobic core. This review compares the various structures, as well as the gene clusters that encode circular bacteriocins, and discusses the biogenesis of this unique class of bacteriocins.
Collapse
|
81
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
82
|
Montalbán-López M, Martínez-Bueno M, Valdivia E, Maqueda M. Expression of linear permutated variants from circular enterocin AS-48. Biochimie 2010; 93:549-55. [PMID: 21130135 DOI: 10.1016/j.biochi.2010.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
To confirm whether the head-to-tail circularization could be involved in the stability and activity of the circular bacteriocin AS-48, two permutated linear structural as-48A genes have been constructed by circular permutation. The absence of the leaderless linear AS(23/24) and AS(48/49) proteins in Escherichia coli, under all the conditions investigated, supports the idea that the circular backbone is important to stabilize their structure and also indicates the significance of a leader peptide. In fact, the approach taken in this study to generate linear permutated proteins fused to an appropriate partner was sufficient to prevent cellular proteolysis. In this case, the high expression levels found favour their intracellular accumulations as inclusion bodies, which after solubilization showed a propensity to aggregate, thus hindering the specific EK cleavage. This could explain the presence of active hybrid tagged proteins identified in this work. The conserved distribution of hydrophobic and hydrophilic surfaces in the hybrid proteins is responsible for the antibacterial activity. In addition, the opening of the AS-48 molecule between the residues G(23) W(24) connecting the α1/α2 helices, confers greater stability, suggesting that the sequence and/or the free amino acid in the polypeptide chain are critical aspects in the design of new variants.
Collapse
Affiliation(s)
- Manuel Montalbán-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, C/Fuentenueva s/n, Granada, Spain
| | | | | | | |
Collapse
|
83
|
|
84
|
Characterization of garvicin ML, a novel circular bacteriocin produced by Lactococcus garvieae DCC43, isolated from mallard ducks (Anas platyrhynchos). Appl Environ Microbiol 2010; 77:369-73. [PMID: 21057028 DOI: 10.1128/aem.01173-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus garvieae DCC43 produces a bacteriocin, garvicin ML (GarML), with a molecular mass of 6,004.2 Da. Data from de novo amino acid sequencing by tandem mass spectrometry and nucleotide sequencing by reverse genetics suggested that the bacteriocin is synthesized as a 63-amino-acid precursor with a 3-amino-acid leader peptide that is removed by cleavage. Subsequently, a covalent linkage between the N and C termini forms the mature version of this novel 60-amino-acid circular bacteriocin.
Collapse
|
85
|
Insights into the functionality of the putative residues involved in enterocin AS-48 maturation. Appl Environ Microbiol 2010; 76:7268-76. [PMID: 20833793 DOI: 10.1128/aem.01154-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AS-48 is a 70-residue, α-helical, cationic bacteriocin produced by Enterococcus faecalis and is very singular in its circular structure and its broad antibacterial spectrum. The AS-48 preprotein consists of an N-terminal signal peptide (SP) (35 residues) followed by a proprotein moiety that undergoes posttranslational modifications to yield the mature and active circular protein. For the study of the specificity of the region of AS-48 that is responsible for maturation, three single mutants have been generated by site-directed mutagenesis in the as-48A structural gene. The substitutions were made just in the residues that are thought to constitute a recognition site for the SP cleavage enzyme (His-1, Met1) and in those involved in circularization (Met1, Trp70). Each derivative was expressed in the enterococcal JH2-2 strain containing the necessary native biosynthetic machinery for enterocin production. The importance of these derivatives in AS-48 processing has been evaluated on the basis of the production and structural characterization of the corresponding derivatives. Notably, only two of them (Trp70Ala and Met1Ala derivatives) could be purified in different forms and amounts and are characterized for their bactericidal activity and secondary structure. We could not detect any production of AS-48 in JH2-2(pAM401-81(His-1Ile)) by using the conventional chromatographic techniques, despite the high efficiency of the culture conditions applied to produce this enterocin. Our results underline the different important roles of the mutated residues in (i) the elimination of the SP, (ii) the production levels and antibacterial activity of the mature proteins, and (iii) protein circularization. Moreover, our findings suggest that His-1 is critically involved in cleavage site recognition, its substitution being responsible for the blockage of processing, thereby hampering the production of the specific protein in the cellular culture supernatant.
Collapse
|
86
|
Zendo T, Yoneyama F, Sonomoto K. Lactococcal membrane-permeabilizing antimicrobial peptides. Appl Microbiol Biotechnol 2010; 88:1-9. [PMID: 20645082 DOI: 10.1007/s00253-010-2764-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/02/2010] [Accepted: 07/04/2010] [Indexed: 11/26/2022]
Abstract
A number of lactococcal antimicrobial peptides, bacteriocins have been discovered and characterized. Since Lactococcus spp. are generally regarded as safe bacteria, their bacteriocins are expected for various application uses. Most of lactococcal bacteriocins exert antimicrobial activity via membrane permeabilization. The most studied and prominent bacteriocin, nisin A is characterized in the high activity and has been utilized as food preservatives for more than half a century. Recently, other lactococcal bacteriocins such as lacticin Q were found to have distinguished features for further applications as the next generation to nisin.
Collapse
Affiliation(s)
- Takeshi Zendo
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | |
Collapse
|
87
|
Conlan BF, Gillon AD, Craik DJ, Anderson MA. Circular proteins and mechanisms of cyclization. Biopolymers 2010; 94:573-83. [DOI: 10.1002/bip.21422] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
88
|
de Jong A, van Heel AJ, Kok J, Kuipers OP. BAGEL2: mining for bacteriocins in genomic data. Nucleic Acids Res 2010; 38:W647-51. [PMID: 20462861 PMCID: PMC2896169 DOI: 10.1093/nar/gkq365] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mining bacterial genomes for bacteriocins is a challenging task due to the substantial structure and sequence diversity, and generally small sizes, of these antimicrobial peptides. Major progress in the research of antimicrobial peptides and the ever-increasing quantities of genomic data, varying from (un)finished genomes to meta-genomic data, led us to develop the significantly improved genome mining software BAGEL2, as a follow-up of our previous BAGEL software. BAGEL2 identifies putative bacteriocins on the basis of conserved domains, physical properties and the presence of biosynthesis, transport and immunity genes in their genomic context. The software supports parameter-free, class-specific mining and has high-throughput capabilities. Besides building an expert validated bacteriocin database, we describe the development of novel Hidden Markov Models (HMMs) and the interpretation of combinations of HMMs via simple decision rules for prediction of bacteriocin (sub-)classes. Furthermore, the genetic context is automatically annotated based on (combinations of) PFAM domains and databases of known context genes. The scoring system was fine-tuned using expert knowledge on data derived from screening all bacterial genomes currently available at the NCBI. BAGEL2 is freely accessible at http://bagel2.molgenrug.nl.
Collapse
Affiliation(s)
- Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
89
|
Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y. Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar Drugs 2010; 8:1153-77. [PMID: 20479972 PMCID: PMC2866480 DOI: 10.3390/md8041153] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 03/28/2010] [Accepted: 04/01/2010] [Indexed: 11/16/2022] Open
Abstract
As the association of marine animals with bacteria has become more commonly recognized, researchers have increasingly questioned whether these animals actually produce many of the bioactive compounds originally isolated from them. Bacteriocins, ribosomally synthesized antibiotic peptides, constitute one of the most potent weapons to fight against pathogen infections. Indeed, bacteriocinogenic bacteria may prevent pathogen dissemination by occupying the same ecological niche. Bacteriocinogenic strains associated with marine animals are a relevant source for isolation of probiotics. This review draws up an inventory of the marine bacteriocinogenic strains isolated from animal-associated microbial communities, known to date. Bacteriocin-like inhibitory substances (BLIS) and fully-characterized bacteriocins are described. Finally, their applications as probiotics in aquaculture are discussed.
Collapse
Affiliation(s)
- Florie Desriac
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| | - Diane Defer
- Université Européenne de Bretagne, Université de Bretagne Sud, Centre de Recherche Saint Maudé, Laboratoire de Biotechnologie et Chimie Marines EA3884, 56321 Lorient Cedex, France; E-Mails:
(D.D.);
(N.B.)
| | - Nathalie Bourgougnon
- Université Européenne de Bretagne, Université de Bretagne Sud, Centre de Recherche Saint Maudé, Laboratoire de Biotechnologie et Chimie Marines EA3884, 56321 Lorient Cedex, France; E-Mails:
(D.D.);
(N.B.)
| | - Benjamin Brillet
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| | - Patrick Le Chevalier
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| | - Yannick Fleury
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| |
Collapse
|
90
|
Swedberg JE, de Veer SJ, Harris JM. Natural and engineered kallikrein inhibitors: an emerging pharmacopoeia. Biol Chem 2010; 391:357-74. [DOI: 10.1515/bc.2010.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe kallikreins and kallikrein-related peptidases are serine proteases that control a plethora of developmental and homeostatic phenomena, ranging from semen liquefaction to skin desquamation and blood pressure. The diversity of roles played by kallikreins has stimulated considerable interest in these enzymes from the perspective of diagnostics and drug design. Kallikreins already have well-established credentials as targets for therapeutic intervention and there is increasing appreciation of their potential both as biomarkers and as targets for inhibitor design. Here, we explore the current status of naturally occurring kallikrein protease-inhibitor complexes and illustrate how this knowledge can interface with strategies for rational re-engineering of bioscaffolds and design of small-molecule inhibitors.
Collapse
|
91
|
Arakawa K, Kawai Y, Ito Y, Nakamura K, Chujo T, Nishimura J, Kitazawa H, Saito T. HPLC purification and re-evaluation of chemical identity of two circular bacteriocins, gassericin A and reutericin 6. Lett Appl Microbiol 2010; 50:406-11. [DOI: 10.1111/j.1472-765x.2010.02810.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
92
|
Sivonen K, Leikoski N, Fewer DP, Jokela J. Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria. Appl Microbiol Biotechnol 2010; 86:1213-25. [PMID: 20195859 PMCID: PMC2854353 DOI: 10.1007/s00253-010-2482-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/29/2010] [Accepted: 01/29/2010] [Indexed: 11/30/2022]
Abstract
Cyanobactins are small cyclic peptides that are produced by a diverse selection of cyanobacteria living in symbioses as well as terrestrial, marine, or freshwater environments. They include compounds with antimalarial, antitumor, and multidrug reversing activities and potential as pharmaceutical leads. Cyanobactins are produced through the proteolytic cleavage and cyclization of precursor peptides coupled with further posttranslational modifications such as heterocyclization, oxidation, or prenylation of amino acids. Cyanobactin gene clusters encode two proteases which cleave and cyclisize the precursor peptide as well as proteins participating in posttranslational modifications. The bioinformatic mining of cyanobacterial genomes has led to the discovery of novel cyanobactins. Heterologous expression of these gene clusters provided insights into the role of the genes participating in the biosynthesis of cyanobactins and facilitated the rational design of novel peptides. Enzymes participating in the biosynthesis of cyanobactins may prove useful as catalysts for producing novel cyclic peptides in the future. The recent discovery of the cyanobactin biosynthetic pathway in cyanobacteria extends our knowledge of their potential as producers of interesting metabolites.
Collapse
Affiliation(s)
- Kaarina Sivonen
- Department of Food and Environmental Sciences, Division of Microbiology, Viikki Biocenter, University of Helsinki, Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014, Finland.
| | | | | | | |
Collapse
|
93
|
Cascales L, Craik DJ. Naturally occurring circular proteins: distribution, biosynthesis and evolution. Org Biomol Chem 2010; 8:5035-47. [DOI: 10.1039/c0ob00139b] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
94
|
Oman TJ, van der Donk WA. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 2010; 6:9-18. [PMID: 20016494 PMCID: PMC3799897 DOI: 10.1038/nchembio.286] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avalanche of genomic information in the past decade has revealed that natural product biosynthesis using the ribosomal machinery is much more widespread than originally anticipated. Nearly all of these compounds are crafted through post-translational modifications of a larger precursor peptide that often contains the marching orders for the biosynthetic enzymes. We review here the available information for how the peptide sequences in the precursors govern the post-translational tailoring processes for several classes of natural products. In addition, we highlight the great potential these leader peptide-directed biosynthetic systems offer for engineering conformationally restrained and pharmacophore-rich products with structural diversity that greatly expands the proteinogenic repertoire.
Collapse
Affiliation(s)
- Trent J. Oman
- Department of Chemistry, Howard Hughes Medical Institute, and Institute for Genomic Biology. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, Telephone: (217) 244 5360, FAX: (217) 244 8533
| | - Wilfred A. van der Donk
- Department of Chemistry, Howard Hughes Medical Institute, and Institute for Genomic Biology. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, Telephone: (217) 244 5360, FAX: (217) 244 8533
| |
Collapse
|
95
|
The structure of pyogenecin immunity protein, a novel bacteriocin-like immunity protein from Streptococcus pyogenes. BMC STRUCTURAL BIOLOGY 2009; 9:75. [PMID: 20017931 PMCID: PMC2806384 DOI: 10.1186/1472-6807-9-75] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 12/17/2009] [Indexed: 11/10/2022]
Abstract
Background Many Gram-positive lactic acid bacteria (LAB) produce anti-bacterial peptides and small proteins called bacteriocins, which enable them to compete against other bacteria in the environment. These peptides fall structurally into three different classes, I, II, III, with class IIa being pediocin-like single entities and class IIb being two-peptide bacteriocins. Self-protective cognate immunity proteins are usually co-transcribed with these toxins. Several examples of cognates for IIa have already been solved structurally. Streptococcus pyogenes, closely related to LAB, is one of the most common human pathogens, so knowledge of how it competes against other LAB species is likely to prove invaluable. Results We have solved the crystal structure of the gene-product of locus Spy_2152 from S. pyogenes, (PDB:2fu2), and found it to comprise an anti-parallel four-helix bundle that is structurally similar to other bacteriocin immunity proteins. Sequence analyses indicate this protein to be a possible immunity protein protective against class IIa or IIb bacteriocins. However, given that S. pyogenes appears to lack any IIa pediocin-like proteins but does possess class IIb bacteriocins, we suggest this protein confers immunity to IIb-like peptides. Conclusions Combined structural, genomic and proteomic analyses have allowed the identification and in silico characterization of a new putative immunity protein from S. pyogenes, possibly the first structure of an immunity protein protective against potential class IIb two-peptide bacteriocins. We have named the two pairs of putative bacteriocins found in S. pyogenes pyogenecin 1, 2, 3 and 4.
Collapse
|
96
|
Abstract
Probiotics are gaining more and more interest as alternatives for antibiotics or anti-inflammatory drugs. However, their mode of action is poorly understood. This review will present examples of probiotic actions from three general modes of actions into which probiotic effects can be classified. Probiotics might modulate the host's immune system, affect other microorganisms directly or act on microbial products, host products or food components. What kind of effect(s) a certain probiotic executes depends on its metabolic properties, the molecules presented at its surface or on the components secreted. Even integral parts of the bacterial cell such as its DNA or peptidoglycan might be of importance for its probiotic effectiveness. The individual combination of such properties in a certain probiotic strain determines its specific probiotic action and as a consequence its effective application for the prevention and/or treatment of a certain disease.
Collapse
Affiliation(s)
- Tobias A Oelschlaeger
- Institut für Molekulare Infektionsbiologie, University of Würzburg, Röntgenring 11, D-97070 Würzburg, Germany.
| |
Collapse
|
97
|
Martin-Visscher LA, Gong X, Duszyk M, Vederas JC. The three-dimensional structure of carnocyclin A reveals that many circular bacteriocins share a common structural motif. J Biol Chem 2009; 284:28674-81. [PMID: 19692336 PMCID: PMC2781411 DOI: 10.1074/jbc.m109.036459] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Carnocyclin A (CclA) is a potent antimicrobial peptide from Carnobacterium maltaromaticum UAL307 that displays a broad spectrum of activity against numerous Gram-positive organisms. An amide bond links the N and C termini of this bacteriocin, imparting stability and structural integrity to this 60-amino acid peptide. CclA interacts with lipid bilayers in a voltage-dependent manner and forms anion selective pores. Several other circular bacteriocins have been reported, yet only one (enterocin AS-48) has been structurally characterized. We have now determined the solution structure of CclA by NMR and further examined its anion binding and membrane channel properties. The results reveal that CclA preferentially binds halide anions and has a structure that is surprisingly similar to that of AS-48 despite low sequence identity, different oligomeric state, and disparate function. CclA folds into a compact globular bundle, comprised of four helices surrounding a hydrophobic core. NMR studies show two fluoride ion binding modes for CclA. Our findings suggest that although other circular bacteriocins are likely to have diverse mechanisms of action, many may have a common structural motif. This shared three-dimensional arrangement resembles the fold of mammalian saposins, peptides that either directly lyse membranes or serve as activators of lipid-degrading enzymes.
Collapse
|
98
|
Conjugative plasmid from Lactobacillus gasseri LA39 that carries genes for production of and immunity to the circular bacteriocin gassericin A. Appl Environ Microbiol 2009; 75:6340-51. [PMID: 19666732 DOI: 10.1128/aem.00195-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gassericin A is a circular bacteriocin produced by Lactobacillus gasseri strain LA39. We found a 33,333-bp plasmid, designated pLgLA39, in this strain. pLgLA39 contained 44 open reading frames, including seven genes related to gassericin A production/immunity (gaa), as well as genes for replication, plasmid maintenance, and conjugative transfer. pLgLA39 was transferred from LA39 to the type strain of L. gasseri (JCM 1131) by filter mating. The transconjugant exhibited >30-fold-higher more resistance to gassericin A and produced antibacterial activity. Lactobacillus reuteri LA6, the producer of reutericin 6, was proved to harbor a plasmid indistinguishable from pLgLA39 and carrying seven genes 100% identical to gaa. This suggests that pLgLA39 might have been transferred naturally between L. gasseri LA39 and L. reuteri LA6. The seven gaa genes of pLgLA39 were cloned into a plasmid vector to construct pGAA. JCM 1131(T) transformed with pGAA expressed antibacterial activity and resistance to gassericin A. pGAA was segregationally more stable than a pGAA derivative plasmid from which gaaA was deleted and even was more stable than the vector. This suggests the occurrence of postsegregational host killing by the gaa genes. pLgLA39 carried a pemIK homolog, and segregational stabilization of a plasmid by the pLgLA39-type pemIK genes was also confirmed. Thus, pLgLA39 was proved to carry the genes for at least two plasmid maintenance mechanisms, i.e., gaa and pemIK. Plasmids containing a repA gene similar to pLgLA39 repA were distributed in several L. gasseri strains.
Collapse
|
99
|
Abstract
Bacillus subtilis produces an anionic bacteriocin called subtilosin A that possesses antibacterial activity against certain gram-positive bacteria. In this study, we uncovered a hemolytic mutant of B. subtilis that produces an altered form of subtilosin A. The mutant bacteriocin, named subtilosin A1, has a replacement of threonine at position 6 with isoleucine. In addition to the hemolytic activity, subtilosin A1 was found to exhibit enhanced antimicrobial activity against specific bacterial strains. The B. subtilis albB mutant that does not produce a putative immunity peptide was more sensitive to both subtilosin A and subtilosin A1. A spontaneous suppressor mutation of albB that restored resistance to subtilosin A and subtilosin A1 was obtained. The sbr (subtilosin resistance) mutation conferring the resistance is not linked to the sboA-alb locus. The sbr mutation does not increase the resistance of B. subtilis to other cell envelope-targeted antimicrobial agents, indicating that the mutation specifically confers the resistance to subtilosins. The findings suggest possible bioengineering approaches for obtaining anionic bacteriocins with enhanced and/or altered bactericidal activity. Furthermore, future identification of the subtilosin-resistant mutation could provide insights into the mechanism of subtilosin A activity.
Collapse
|
100
|
|