51
|
Fischer B, Marinov M, Arcaro A. Targeting receptor tyrosine kinase signalling in small cell lung cancer (SCLC): what have we learned so far? Cancer Treat Rev 2007; 33:391-406. [PMID: 17368733 DOI: 10.1016/j.ctrv.2007.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/15/2007] [Accepted: 01/23/2007] [Indexed: 11/16/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive form of lung cancer, which represents 13% of all cases and is strongly associated with cigarette smoking. The survival of SCLC patients is dismal and has not greatly improved in the last 20 years, despite advances in chemotherapy regimens and a better understanding of SCLC biology. The development of resistance to chemotherapy and metastasis are commonly recognized as important causes of poor clinical outcome in SCLC. Targeting receptor tyrosine kinase (RTK) signalling represents an attractive approach to develop new drugs for SCLC, in view of the accumulating data demonstrating that polypeptide growth factors play a key role in driving SCLC cell proliferation, chemoresistance and metastasis. The insulin-like growth factor-I receptor (IGF-IR), c-Kit, vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) have been identified as potential drug targets in SCLC. Moreover, downstream signalling mediators of RTKs, such as phosphoinositide 3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) may also represent attractive candidate molecules for anti-cancer therapies in SCLC. Here we will review the available data concerning results with RTK inhibitors in SCLC and the clinical trials undertaken to investigate the potential of these compounds as anti-tumour agents in SCLC.
Collapse
Affiliation(s)
- Barbara Fischer
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland.
| | | | | |
Collapse
|
52
|
Dorai T, Sawczuk I, Pastorek J, Wiernik PH, Dutcher JP. Role of carbonic anhydrases in the progression of renal cell carcinoma subtypes: proposal of a unified hypothesis. Cancer Invest 2007; 24:754-79. [PMID: 17162558 DOI: 10.1080/07357900601062321] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Renal cell carcinoma (RCC) has the highest rate of occurrence within the US when compared with other countries. Recent advances in the basic research and molecular diagnostics of this malignancy have revealed that RCC is not a single disease, but it is a mixture of several types of malignancies with unique molecular mechanisms and pathological attributes. RCC is now divided into clear cell carcinoma (80% of all kidney cancers), papillary type 1 and papillary type 2 neoplasms (10-15% of all RCC patients) and RCC with chromophobic and oncocytic features, called the Birt-Hogg-Dube (BHD) subtype, in roughly 5% of all patients. Apart from these, neoplasms such as the tuberous sclerosis (TSC) syndrome may occur with a mixed pathological features with a renal presentation. In this review, molecular evidence, both direct and indirect, published so far on all these RCC subtypes have been analyzed to find out whether there is any common thread that could run through these disparate malignancies that happen to occur in a single organ, i.e., the kidney. We believe that the role played by the expression and certain non-traditional activities of the cabonic anhydrase (CA) family members, along with the differing levels of hypoxia induced within these tumors may be the most common denominators. Evidence is presented focusing on how the CA family members could participate in the genesis and progression of each and every one of these RCC subtypes and how their function could be influenced by hypoxia, activities of receptor type protein tyrosine kinases and certain other pre-disposing factors. These rationalizations point towards a unified hypothesis that may help explain the occurrence of all these RCC subtypes in a molecular manner. We hope that these analyses would a) stimulate further studies aimed toward a better understanding of the role played by carbonic anhydrases in RCC subtypes and b) would pave way to a better and rationally designed therapies to interfere with their function to benefit patients with RCC and possibly other cancers.
Collapse
Affiliation(s)
- Thambi Dorai
- Comprehensive Cancer Center, Our Lady of Mercy Medical Center, New York Medical College, Bronx, New York 10466, USA.
| | | | | | | | | |
Collapse
|
53
|
Ye L, Peng L, Tan H, Zhou X. HGF enhanced proliferation and differentiation of dental pulp cells. J Endod 2006; 32:736-41. [PMID: 16861072 DOI: 10.1016/j.joen.2006.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/11/2006] [Accepted: 01/14/2006] [Indexed: 12/21/2022]
Abstract
Hepatocyte growth factor (HGF) is mesenchymal-derived growth factor acting through a transmembrane tyrosine kinase receptor, c-met. HGF has multiple effects on different cells. However, its function in dentinogenesis remains unclear. In this study, the expression of HGF in human dental pulp cells (DPCs) in vitro was studied by immunostaining and RT-PCR. The effect of HGF on DPCs proliferation was determined by MTT, while its effect on cell differentiation was analyzed using ALPase activity, and further confirmed with ALP and DSPP mRNA and protein expression. Immunostaining revealed that HGF was found mainly in the cytoplasm of DPCs. RT-PCR analysis showed that both HGF and c-met were expressed from the DPCs. Exogenous addition of HGF enhanced proliferation and differentiation of DPCs by up-regulating CREB, ELK-1, and PPAR-gamma. U0126, an ERK/MAPK inhibitor, inhibited the effects of HGF on DPCs. It was concluded that HGF stimulated both proliferation and differentiation of DPCs, at least partially through the ERK/MAPK pathway.
Collapse
Affiliation(s)
- Ling Ye
- West China School of Stomatology, Sichuan University, Sichuan, China
| | | | | | | |
Collapse
|
54
|
Mukhopadhyay I, Sausville EA, Doroshow JH, Roy KK. Molecular mechanism of adaphostin-mediated G1 arrest in prostate cancer (PC-3) cells: signaling events mediated by hepatocyte growth factor receptor, c-Met, and p38 MAPK pathways. J Biol Chem 2006; 281:37330-44. [PMID: 16956884 DOI: 10.1074/jbc.m605569200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaphostin (NSC680410), a small molecule congener of tyrphostin AG957, has been demonstrated previously to have significant anti-proliferative effects in several leukemia models. However, this effect of adaphostin in adherent cells/solid tumor models has not been examined. In this study, we investigated the anti-proliferative effects of adaphostin in the human prostate cancer cell line PC-3. Specifically, we explored the potential molecular mechanism(s) by which adaphostin elicits its anti-proliferative effect(s). We demonstrate that adaphostin inhibits the proliferation of PC-3 cells by inducing a G(1) phase cell cycle arrest. This adaphostin-induced G(1) arrest was associated with an increase in the expression of p21 and p27 and a decrease in the expression of G(1)-specific cyclins (cyclin A, D1, and D3) and cyclin-dependent kinases 4 and 6. Consequently, a dramatic decrease in the phosphorylation of retinoblastoma protein was also observed. Additionally, we found that adaphostin treatment induced a decrease in the phosphorylation of nucleophosmin, a major nuclear phosphoprotein, and that this decreased phosphorylation was a result of the p21- and p27-mediated inactivation of cyclin E-cyclin-dependent kinase 2 complex kinase activity. Furthermore, we have determined that the adaphostin-mediated cell cycle arrest of PC-3 cells is dependent upon activation of the p38 MAPK. We also demonstrate that the hepatocyte growth factor receptor-c-Met is involved in the adaphostin-mediated signaling events that regulate p38 MAPK. Taken together, these results identify for the first time a signaling cascade of adaphostin-mediated G(1) phase-specific cell cycle arrest in PC-3 cells. These findings suggest that the tyrphostin member has a broader spectrum of activity than originally predicted.
Collapse
Affiliation(s)
- Indranil Mukhopadhyay
- Laboratory of Clinical Trials Unit, Division of Cancer Treatment and Diagnosis, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
55
|
Leelawat K, Leelawat S, Tepaksorn P, Rattanasinganchan P, Leungchaweng A, Tohtong R, Sobhon P. Involvement of c-Met/hepatocyte growth factor pathway in cholangiocarcinoma cell invasion and its therapeutic inhibition with small interfering RNA specific for c-Met. J Surg Res 2006; 136:78-84. [PMID: 16950403 DOI: 10.1016/j.jss.2006.05.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/05/2006] [Accepted: 05/24/2006] [Indexed: 01/12/2023]
Abstract
BACKGROUND Hepatocyte growth factor receptor (c-Met) plays an important role in many functions of cancer cells. We examined the roles of c-Met and its downstream signaling molecules in cholangiocarcinoma cell lines RMCCA1 and HuCCA1. MATERIALS AND METHODS The expression of c-Met and their signaling cascades were determined in RMCCA1 and HuCCA1 cholangiocarcinoma cell lines by Western blotting. Small interfering RNA (siRNA) specific for c-Met was used to suppress the expression of c-Met. The proliferation, migration and invasion assay were tested in these cholangiocarcinoma cells treated with hepatocyte growth factor (HGF). RESULTS Activation of c-Met with HGF triggered the signaling via the ERK cascade mediated by sequential phosphorylation of MEK1/2 and MAPK and induction of cholangiocarcinoma cell invasion. The expression of c-Met in cholangiocarcinoma cells was suppressed by treatment with small interfering RNA (siRNA) specific for c-Met, and resulted in decrease in phosphorylation of MEK1/2. Furthermore, treatment with siRNA specific for c-Met or MEK inhibitor U0126 inhibited cholangiocarcinoma cell invasion induced by HGF. CONCLUSIONS These results indicated that HGF and c-Met involved in the mechanism of cholangiocarcinoma cell invasion. It implies a potential role for the inhibition of c-Met in the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Kawin Leelawat
- Department of Surgery, Rajavithi Hospital, Bangkok, Thailand.
| | | | | | | | | | | | | |
Collapse
|
56
|
Hoffmann KM, Tapia JA, Jensen RT. Activation of Gab1 in pancreatic acinar cells: Effects of gastrointestinal growth factors/hormones on stimulation, phosphospecific phosphorylation, translocation and interaction with downstream signaling molecules. Cell Signal 2006; 18:942-54. [PMID: 16185843 DOI: 10.1016/j.cellsig.2005.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/02/2005] [Accepted: 08/18/2005] [Indexed: 12/13/2022]
Abstract
The scaffolding/adapter protein, Gab1, is a key signaling molecule for numerous stimuli including growth factors and G protein-coupled-receptors (GPCRs). A number of questions about Gab1 signaling remain and little is known about the ability of gastrointestinal (GI) hormones/neurotransmitters/growth factors to activate Gab1. Therefore, we examined their ability to activate Gab1 and explored the mechanisms involved using rat pancreatic acini. HGF and EGF stimulated total Gab1 tyrosine phosphorylation (TyrP) and TyrP of Gab1 phospho-specific sites (Y307, Y627), but not other pancreatic growth factors, GI GPCRs (CCK, bombesin, carbachol, VIP, secretin), or agents directly activating PKC or increasing Ca2+. HGF-stimulated Y307 Gab1 TyrP differed in kinetics from total and Y627. Neither GF109203X, nor inhibition of Ca2+ increases altered HGF's effect. In unstimulated cells>95% of Gab1 was cytosolic and HGF stimulated a 3-fold increase in membrane Gab1. HGF stimulated equal increases in pY307 and pY627 Gab1 in cytosol/membrane. HGF stimulated Gab1 association with c-Met, Grb2, SHP2, PI3K, Shc, Crk isoforms and CrkL, but not with PLCgamma1. These results demonstrate that only a subset of pancreatic growth factors (HGF/EGF) stimulates Gab1 signaling and no pancreatic hormones/neurotransmitters. Our results with Gab1 activation with different growth factors, the role of PKC, and its interaction with distant signaling molecules suggest the cellular mechanisms of Gab1 signaling show important differences in different cells. These results show that Gab1 activation plays a central role in HGF's ability to stimulate intracellular transduction cascades in pancreatic acinar cells and this action likely plays a key role in HGF's ability to alter pancreatic cell function (i.e., growth/regeneration).
Collapse
Affiliation(s)
- K Martin Hoffmann
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10, Room 9C-103, 10 CENTER DR MSC 1804, Bethesda, MD, 20892-1804, United States
| | | | | |
Collapse
|
57
|
Avissar NE, Toia L, Sax HC. Epidermal growth factor and/or growth hormone induce differential, side-specific signal transduction protein phosphorylation in enterocytes. JPEN J Parenter Enteral Nutr 2006; 29:322-35; discussion 335-6. [PMID: 16107595 DOI: 10.1177/0148607105029005322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Epidermal growth factor (EGF) plus growth hormone (GH) enhances luminal glutamine transport into rabbit and human intestinal cells. Our objective was to screen for activation status of signal proteins in C2(BBe)1 cells (enterocyte-like cell line) in response to side-specific EGF or GH treatment and to investigate the dependence of EGF receptor (EGFR) phosphorylation status on its tyrosine kinase. METHODS C2(BBe)1 cells on Transwells were treated for 15 minutes on either the basolateral or apical-side with EGF or GH. Lysates underwent Kinetworks phospho site-screen-2.1 analysis (duplicate experiments). In addition, lysates from cells treated as above with or without tyrphostin AG1478 (a specific EGFR tyrosine kinase inhibitor) underwent Western blot analysis for total EGFR and EGFR phosphorylated on tyrosine 1173, 1086 or 1068 (4-7 experiments). RESULTS Kinetworks phospho-screening demonstrated a broad range of interactions dependent on both side of exposure and protein studied. From this screen, it appears that ErbB2, Met, and insulin receptor (R)/insulin-like growth factor 1 R are not involved in the growth factors signals. For EGFR phosphorylation, basolateral, but not apical, EGF was a strong activator. Synergism was seen, but only with apical EGF plus basolateral GH. All EGFR phosphorylations were EGFR tyrosine kinase dependent. In contradistinction, apical EGF phosphorylated FAK and MAPKs. CONCLUSIONS Kinetworks phosphoprotein screens can suggest pathways involved in side-specific and synergistic interaction between EGF and GH. For EGFR, synergism by EGF + GH was noticed only with Ap EGF plus Bl GH and was EGFR tyrosine kinase dependent. Adaptive intestinal responses due to enterally administrated EGF might be accelerated by the availability of parenteral GH.
Collapse
Affiliation(s)
- Nelly E Avissar
- University of Rochester School of Medicine and Dentistry, Department of Surgery, Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
58
|
Tso CL, Freije WA, Day A, Chen Z, Merriman B, Perlina A, Lee Y, Dia EQ, Yoshimoto K, Mischel PS, Liau LM, Cloughesy TF, Nelson SF. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res 2006; 66:159-67. [PMID: 16397228 DOI: 10.1158/0008-5472.can-05-0077] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastomas are invasive and aggressive tumors of the brain, generally considered to arise from glial cells. A subset of these cancers develops from lower-grade gliomas and can thus be clinically classified as "secondary," whereas some glioblastomas occur with no prior evidence of a lower-grade tumor and can be clinically classified as "primary." Substantial genetic differences between these groups of glioblastomas have been identified previously. We used large-scale expression analyses to identify glioblastoma-associated genes (GAG) that are associated with a more malignant phenotype via comparison with lower-grade astrocytomas. We have further defined gene expression differences that distinguish primary and secondary glioblastomas. GAGs distinct to primary or secondary tumors provided information on the heterogeneous properties and apparently distinct oncogenic mechanisms of these tumors. Secondary GAGs primarily include mitotic cell cycle components, suggesting the loss of function in prominent cell cycle regulators, whereas primary GAGs highlight genes typical of a stromal response, suggesting the importance of extracellular signaling. Immunohistochemical staining of glioblastoma tissue arrays confirmed expression differences. These data highlight that the development of gene pathway-targeted therapies may need to be specifically tailored to each subtype of glioblastoma.
Collapse
Affiliation(s)
- Cho-Lea Tso
- Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ma PC, Schaefer E, Christensen JG, Salgia R. A selective small molecule c-MET Inhibitor, PHA665752, cooperates with rapamycin. Clin Cancer Res 2005; 11:2312-9. [PMID: 15788682 DOI: 10.1158/1078-0432.ccr-04-1708] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE c-MET is believed to be an attractive receptor target for molecular therapeutic inhibition. TPR-MET, a constitutively active oncogenic variant of MET, serves as excellent model for testing c-MET inhibitors. Here, we characterized a small molecule c-MET inhibitor, PHA665752, and tested its cooperation with the mammalian target of rapamycin inhibitor as potential targeted therapy. EXPERIMENTAL DESIGN The effect of PHA665752 treatment was determined on cell growth, motility and migration, apoptosis, and cell-cycle arrest of TPR-MET-transformed cells. Moreover, the effect of PHA665752 on the phosphorylation on MET, as well as its downstream effectors, p-AKT and p-S6K, was also determined. Finally, growth of TPR-MET-transformed cells was tested in the presence of PHA665752 and rapamycin. H441 non-small cell lung cancer (NSCLC) cells (with activated c-Met) were also tested against both PHA665752 and rapamycin. RESULTS PHA665752 specifically inhibited cell growth in BaF3. TPR-MET cells (IC(50) < 0.06 micromol/L), induced apoptosis and cell cycle arrest. Constitutive cell motility and migration of the BaF3. TPR-MET cells was also inhibited. PHA665752 inhibited specific phosphorylation of TPR-MET as well as phosphorylation of downstream targets of the mammalian target of rapamycin pathway. When combined with PHA665752, rapamycin showed cooperative inhibition to reduce growth of BaF3. TPR-MET- and c-MET-expressing H441 NSCLC cells. CONCLUSIONS PHA665752 is a potent small molecule-selective c-MET inhibitor and is highly active against TPR-MET-transformed cells both biologically and biochemically. PHA665752 is also active against H441 NSCLC cells. The c-MET inhibitor can cooperate with rapamycin in therapeutic inhibition of NSCLC, and in vivo studies of this combination against c-MET expressing cancers would be merited.
Collapse
Affiliation(s)
- Patrick C Ma
- Section of Hematology/Oncology, Department of Medicine, Pritzker School of Medicine, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
60
|
Jia Z, Barbier L, Stuart H, Amraei M, Pelech S, Dennis JW, Metalnikov P, O'Donnell P, Nabi IR. Tumor cell pseudopodial protrusions. Localized signaling domains coordinating cytoskeleton remodeling, cell adhesion, glycolysis, RNA translocation, and protein translation. J Biol Chem 2005; 280:30564-73. [PMID: 15985431 DOI: 10.1074/jbc.m501754200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pseudopodial protrusions of Moloney sarcoma virus (MSV)-Madin-Darby canine kidney (MDCK)-invasive (INV) variant cells were purified on 1-microm pore polycarbonate filters that selectively allow passage of the pseudopodial domains but not the cell body. The purified pseudopodial fraction contains phosphotyrosinated proteins, including Met and FAK, and various signaling proteins, including Raf1, MEK1, ERK2, PKBalpha (Akt1), GSK3alpha, GSK3beta, Rb, and Stat3. Pseudopodial proteins identified by liquid chromatography tandem mass spectrometry included actin and actin-regulatory proteins (ERM, calpain, filamin, myosin, Sra-1, and IQGAP1), tubulin, vimentin, adhesion proteins (vinculin, talin, and beta1 integrin), glycolytic enzymes, proteins associated with protein translation, RNA translocation, and ubiquitin-mediated protein degradation, as well as protein chaperones (HSP90 and HSC70) and signaling proteins (RhoGDI and ROCK). Inhibitors of MEK1 (U0126) and HSP90 (geldanamycin) significantly reduced MSV-MDCK-INV cell motility and pseudopod expression, and geldanamycin treatment inhibited Met phosphorylation and induced the expression of actin stress fibers. ROCK inhibition did not inhibit cell motility but transformed the pseudopodial protrusions of MSV-MDCK-INV cells into extended lamellipodia. Dominant negative Rho disrupted pseudopod expression and, in serum-starved cells, L-alpha-lysophosphatidic acid (oleoyl) activation of Rho induced pseudopodial protrusions or, in the presence of the ROCK inhibitor, extended lamellipodia. RNA was localized to the actin-rich pseudopodial domains of MSV-MDCK-INV cells, but the extent of colocalization with dense actin ruffles was reduced in the extended lamellipodia formed upon ROCK inhibition. Rho/ROCK activation in epithelial tumor cells therefore regulates RNA translocation to a pseudopodial domain that contains proteins involved in signaling, cytoskeleton remodeling, cell adhesion, glycolysis, and protein translation and degradation.
Collapse
Affiliation(s)
- Zongjian Jia
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T. Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol 2005; 53:35-69. [PMID: 15607934 DOI: 10.1016/j.critrevonc.2004.09.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2004] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor plays multiple roles in cancer, by acting as a motility and invasion stimulating factor, promoting metastasis and tumour growth. Furthermore, it acts as a powerful angiogenic factor. The pivotal role of this factor in cancer has indicated HGF as being a potential target in cancer therapies. The past few years have seen rapid progress in developing tools in targeting HGF, in the context of cancer therapies, including development of antagonists, small compounds, antibodies and genetic approaches. The current article discusses the potential value of HGF and its receptor as targets in cancer therapies, the current development in anti-HGF research, and the clinical value of HGF in prognosis and treatment.
Collapse
Affiliation(s)
- Wen G Jiang
- Metastasis and Angiogenesis Research Group, University Department of Surgery, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | | | |
Collapse
|
62
|
Pizarro-Cerdá J, Cossart P. Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol 2004; 6:1026-33. [PMID: 15516995 DOI: 10.1038/ncb1104-1026] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phosphoinositides are short-lived lipids, whose production at specific membrane locations in the cell enables the tightly controlled recruitment or activation of diverse cellular effectors involved in processes such as cell motility or phagocytosis. Bacterial pathogens have evolved molecular mechanisms to subvert phosphoinositide metabolism in host cells, promoting (or blocking) their internalization into target tissues, and/or modifying the maturation fate of their proliferating compartments within the intracellular environment.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Unité des Interactions Bactéries-Cellules/Unité INSERM 604, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
63
|
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a severe human foodborne infection characterized by gastroenteritis, meningitis, encephalitis, abortions, and perinatal infections. This gram-positive bacterium is a facultative intracellular pathogen that induces its own uptake into nonphagocytic cells and spreads from cell to cell using an actin-based motility process. This review covers both well-established and recent advances in the characterization of L. monocytogenes virulence determinants and their role in the pathophysiology of listeriosis.
Collapse
Affiliation(s)
- Olivier Dussurget
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, INSERM U604, 75015 Paris, France.
| | | | | |
Collapse
|
64
|
Kijima T, Maulik G, Ma PC, Madhiwala P, Schaefer E, Salgia R. Fibronectin enhances viability and alters cytoskeletal functions (with effects on the phosphatidylinositol 3-kinase pathway) in small cell lung cancer. J Cell Mol Med 2003; 7:157-64. [PMID: 12927054 PMCID: PMC6740062 DOI: 10.1111/j.1582-4934.2003.tb00214.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Small cell lung cancer (SCLC) is a rapidly progressive disease with ultimate poor outcome. SCLC has been shown to interact closely with the stromal and extracellular matrix (ECM) components of the diseased host. ECM consists of type I/IV collagen, laminin, vitronectin, and fibronectin (FN) among others. Herein, we investigated the behavior of a SCLC cell line (NCI-H446) on FN-coated surface. Over a course of 72 h, FN (10 micro g/ml) caused both increased survival and proliferation of NCI-H446 cells. Survival under serum-starved conditions increased 1.44-fold and proliferation in the presence of fetal calf serum increased by 1.30-fold. The phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 reduced both survival and proliferation of NCI-H446 cells (0.48- and 0.27-fold, respectively), even on FN-coated surface. We next determined the effects of FN on cytoskeletal function such as cell motility/morphology and adhesion. Over a course of 24 h, FN reduced aggregation of NCI-H446 cells and induced flattened cellular morphology with neurite-like projections after 1 h, however, in the presence of LY294002, the cells rounded up. Adhesion of NCI-H446 cells also increased with FN (4.47-fold) which was abrogated with LY294002 treatment. This correlated with phosphorylation of the cytoskeletal protein p125FAK, on Tyr397, Tyr861 and Ser843 residues with FN. Even in the presence of LY294002, these serine/tyrosine residues were still phosphorylated on FN-coated surface. In contrast, the focal adhesion protein paxillin was not phosphorylated at Tyr31 with FN. In summary, FN stimulation of SCLC cells leads to enhancement of viability and changes in cytoskeletal function that are partially mediated through the PI3-K pathway.
Collapse
Affiliation(s)
- T Kijima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Dana 1234B, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|