51
|
Schilling T, Nitsch R, Heinemann U, Haas D, Eder C. Astrocyte-released cytokines induce ramification and outward K+ channel expression in microglia via distinct signalling pathways. Eur J Neurosci 2001; 14:463-73. [PMID: 11553296 DOI: 10.1046/j.0953-816x.2001.01661.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differentiation of microglial cells is characterized by transformation from ameboid into ramified cell shape and up-regulation of K+ channels. The processes of microglial differentiation are controlled by astrocytic factors. The mechanisms by which astrocytes cause developmental changes in morphological and electrophysiological properties of microglia have remained unclear. We show here that the cytokines transforming growth factor-beta (TGF-beta), macrophage colony-stimulating factor (M-CSF) and granulocyte/macrophage colony-stimulating factor (GM-CSF) are released by astrocytes at concentrations sufficient to induce ramification and up-regulation of delayed rectifier (DR) K+ channels in microglia. Transformation from ameboid into ramified morphology induced in microglia by exposure to astrocyte-conditioned medium (ACM) was inhibited by neutralizing antibodies against TGF-beta, M-CSF or GM-CSF, whilst ACM-induced DR channel expression was exclusively inhibited by antibodies against TGF-beta. Although both ramification and DR channel up-regulation occurred simultaneously, DR channel blockade by charybdotoxin failed to inhibit microglial ramification. The ACM-induced ramification of microglia was inhibited by the tyrosine kinase inhibitor genistein, whereas DR channel up-regulation did not occur in the presence of the serine/threonine kinase inhibitor H7. Our data suggest that astrocytes modulate processes of microglial differentiation in parallel but via distinct signalling pathways.
Collapse
Affiliation(s)
- T Schilling
- Institute of Physiology, Humboldt University, Tucholskystr. 2, D-10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
52
|
Hailer NP, Wirjatijasa F, Roser N, Hischebeth GT, Korf HW, Dehghani F. Astrocytic factors protect neuronal integrity and reduce microglial activation in an in vitro model of N-methyl-D-aspartate-induced excitotoxic injury in organotypic hippocampal slice cultures. Eur J Neurosci 2001; 14:315-26. [PMID: 11553282 DOI: 10.1046/j.0953-816x.2001.01649.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acute CNS lesions lead to neuronal injury and a parallel glial activation that is accompanied by the release of neurotoxic substances. The extent of the original neuronal damage can therefore be potentiated in a process called secondary damage. As astrocytes are known to secrete immunomodulatory and neuroprotective substances, we investigated whether astrocytic factors can attenuate the amount of neuronal injury as well as the degree of microglial activation in a model of excitotoxic neurodegeneration. Treatment of organotypic hippocampal slice cultures with N-methyl-D-aspartate (NMDA) resulted in a reproducible loss of viable granule cells, partial destruction of the regular hippocampal cytoarchitecture and a concomitant accumulation of amoeboid microglial cells at sites of neuronal damage. Astrocyte-conditioned media reduced the amount of NMDA-induced neuronal injury by 45.3%, diminished the degree of microglial activation and resulted in an improved preservation of the hippocampal cytoarchitecture. Transforming growth factor (TGF)-beta failed to act as a neuroprotectant and even enhanced the amount of neuronal injury by 52.5%. Direct effects of astrocytic factors on isolated microglial cells consisted of increased microglial ramification and down-regulated expression of intercellular adhesion molecule-1, whereas incubation with TGF-beta had no such effects. In summary, our findings show that hitherto unidentified astrocyte-derived factors that are probably not identical with TGF-beta can substantially enhance neuronal survival, either by eliciting direct neuroprotective effects or by modulating the microglial response to neuronal injury.
Collapse
Affiliation(s)
- N P Hailer
- University Hospital for Orthopaedic Surgery, Friedrichsheim, Marienburgstr. 2, D-60528 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
53
|
Kullberg S, Aldskogius H, Ulfhake B. Microglial activation, emergence of ED1-expressing cells and clusterin upregulation in the aging rat CNS, with special reference to the spinal cord. Brain Res 2001; 899:169-86. [PMID: 11311878 DOI: 10.1016/s0006-8993(01)02222-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With advancing age, the incidence of neuronal atrophy and dystrophy increases and, in parallel, behavioural sensorimotor impairment becomes overt. Activated microglia has been implicated in cytotoxic and inflammatory processes in neurodegenerative diseases as well as during aging. Here we have used immunohistochemistry and in situ hybridization to examine the expression of OX42, ED1, ED2, GFAP and clusterin in CNS of young adult and behaviourally tested aged rats (30-month-old), to study the occurrence of activated microglia/ED1 positive macrophages in senescence and to what extent this correlates with astrogliosis and signs of sensorimotor impairment among the individuals. The results show a massive region-specific increase in activated microglia and ED1 expressing cell profiles in aged rats. The infiltration was most prominent in the spinal cord dorsal columns, including their sensory relay nuclei, and the outer portions of the lateral and ventral columns. At such sites the occurrence of macrophages coincided with increased levels of GFAP and positive correlations were evident between the labeling for, on the one hand, OX42 and, on the other, GFAP and ED1. Also, the ventral and dorsal roots were heavily infiltrated by ED1 positive cells. The signs of gliosis were most pronounced among aged rats with advanced sensorimotor impairment. In contrast, the grey matter of aged rats showed very few activated microglia/ED1 labeled cells despite signs of focal astrogliosis. ED2 expression was confined to perivascular cells and leptominges with a similar labeling pattern in young and aged rats. In aged rats increased expression of clusterin was observed in GFAP-immunoreactive profiles of the white matter only. It is suggested that this increase may reflect a response to degenerative/inflammatory processes.
Collapse
Affiliation(s)
- S Kullberg
- Department of Neuroscience, Karolinska Institutet, Doktorsringen 17, S-171 77, Stockholm, Sweden
| | | | | |
Collapse
|
54
|
Kalmár B, Kittel A, Lemmens R, Környei Z, Madarász E. Cultured astrocytes react to LPS with increased cyclooxygenase activity and phagocytosis. Neurochem Int 2001; 38:453-61. [PMID: 11222926 DOI: 10.1016/s0197-0186(00)00090-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phagocytosis and prostaglandin E(2) production were investigated in purified cultures of perinatal rat forebrain astrocytes. Light and electron microscopic data indicated that astrocytes respond to bacterial endotoxin, lipopolysaccharide (LPS) by increased phagocytosis and by activating the cyclooxygenase enzyme-pathway. LPS-inducible phagocytosis of astrocytes was demonstrated by electron microscopic studies on colloidal gold uptake and by photometric determination of fluorescent bead ingestion. The internalisation of fragments of the plasma membrane was shown by histochemical detection of membrane-bound ecto-ATPase activity within intracellular vesicles. Activation of the cyclooxygenase pathway, a characteristic reaction of immune cells under inflammatory conditions, was also detected in astroglial cells upon treatment with LPS. The increased prostaglandin E(2) (PGE(2)) production by astrocytes in response to LPS was reduced by the non-steroid anti-inflammatory drug, indomethacin. Our data indicate that astrocytes display some tissue-protective reactions in response to inflammation inducing factors, even in the absence of peripheral immune cells or central microglia. The role of inducible astrocytic phagocytosis in a non-immune protection-pathway is discussed.
Collapse
Affiliation(s)
- B Kalmár
- Department of Electrophysiology and Cellular Biology, Gedeon Richter Ltd. Chemical Works, PO Box 27, H-1475 Budapest, Hungary
| | | | | | | | | |
Collapse
|
55
|
Kloss CU, Bohatschek M, Kreutzberg GW, Raivich G. Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Exp Neurol 2001; 168:32-46. [PMID: 11170719 DOI: 10.1006/exnr.2000.7575] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microglial cells form the first line of defense in brain infection. They are related to monocytes and macrophages and can be readily activated by cell wall components of bacteria such as lipopolysaccharides (LPS). In the present study, we explored the effect of this endotoxin in mouse on the morphology of microglia and their immunoreactivity for the integrin family of cell adhesion molecules in vitro and in vivo. Subcutaneous injection of LPS led to a dose-dependent activation of alpha M beta 2-positive microglia, with a saturating effect at 1 microg LPS in the blood-brain barrier deficient area postrema, at 10 microg in the directly adjacent tissue, and at 100 microg throughout the brainstem and cerebellum. Morphologically, this activation was characterized by the swelling of the microglial cell body, a thickening of the proximal processes, and a reduction in distal ramification. Microglial immunoreactivity for the integrins alpha 4 beta 1, alpha 5 beta 1, alpha 6 beta 1, and alpha M beta 2 was strongly increased. In vitro, ramified microglia were obtained using a coculture on top of a confluent astrocyte monolayer. Two days exposure to LPS resulted in a morphological activation of the cultured cells with an increase of the integrin immunoreactivity for alpha 5 (5.7-fold), alpha 4 (3.1-fold), beta 1 (2.3-fold), and alpha M (1.5-fold), and a decrease in the alpha 6-staining intensity by 39%. Even a sublethal dose of LPS (3 mg in vivo and 500 microg/ml in vitro, respectively) did not induce the phagocyte-associated integrin alpha X beta 2 (CD11c/CD18, p150,95) and did not lead to a morphological transformation of the ramified microglia into phagocytes.
Collapse
Affiliation(s)
- C U Kloss
- Department of Neuromorphology, Max-Planck-Institute for Neurobiology, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
56
|
Speth C, Stöckl G, Mohsenipour I, Würzner R, Stoiber H, Lass-Flörl C, Dierich MP. Human immunodeficiency virus type 1 induces expression of complement factors in human astrocytes. J Virol 2001; 75:2604-15. [PMID: 11222683 PMCID: PMC115884 DOI: 10.1128/jvi.75.6.2604-2516.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the brain is separated from the blood immune system by a tight barrier, the brain-resident complement system may represent a central player in the immune defense of this compartment against human immunodeficiency virus (HIV). Chronic complement activation, however, may participate in HIV-associated neurodegeneration. Since the level of complement factors in the cerebrospinal fluid is known to be elevated in AIDS-associated neurological disorders, we evaluated the effect of HIV type 1 (HIV-1) on the complement synthesis of brain astrocytes. Incubation of different astrocytic cell lines and primary astrocytes with HIV-1 induced a marked upregulation of the expression of the complement factors C2 and C3. The synthesis of other secreted or membrane-bound complement proteins was not found to be altered. The enhancement of C3 production was measured both on the mRNA level and as secreted protein in the culture supernatants. HIV-1 laboratory strains as well as primary isolates were capable of inducing C3 production with varied effectiveness. The usage of viral coreceptors by HIV-1 was proved to be a prerequisite for the upregulation of C3 synthesis, which was modulated by the simultaneous addition of cytokines. The C3 protein which is secreted after incubation of the cells with HIV was shown to be biologically active as it can participate in the complement cascade.
Collapse
Affiliation(s)
- C Speth
- Ludwig Boltzmann Institute for AIDS Research and Institute for Hygiene and Social Medicine, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
57
|
Busshoff U, Hein A, Iglesias A, Dörries R, Régnier-Vigouroux A. CD1 expression is differentially regulated by microglia, macrophages and T cells in the central nervous system upon inflammation and demyelination. J Neuroimmunol 2001; 113:220-30. [PMID: 11164905 DOI: 10.1016/s0165-5728(00)00450-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Expression of CD1 by microglia, macrophages and T cells was investigated ex vivo. In the healthy central nervous system (CNS), resident microglia, macrophages and T cells express levels of CD1 significantly lower than that expressed by splenic macrophages and T cells. During experimental autoimmune encephalomyelitis (EAE), CD1 expression by microglia and the number of CD1+ microglia increase. Macrophages and T cells strongly upregulate CD1 expression in the CNS, but not in the spleen. Whereas the function of CD1 expressed by T cells remains unclear, the expression by microglia and macrophages provides the CNS with a (glyco)lipidic-presenting molecule in an inflammatory and demyelinating environment.
Collapse
Affiliation(s)
- U Busshoff
- Department of Neurobiology, Interdisziplinäres Zentrum für Neurowissenschaften, University of Heidelberg, INF 364, 69120, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
58
|
Hailer NP, Glomsda B, Blaheta RA. Astrocytic factors down-regulate the expression of major histocompatibility complex-class-II and intercellular adhesion molecule-1 on human monocytes. Neurosci Lett 2001; 298:33-6. [PMID: 11154829 DOI: 10.1016/s0304-3940(00)01711-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several factors contribute to the maintenance of central nervous system immune privilege and astrocytes have been identified as a major source of immunomodulatory cytokines. To investigate whether hematogenous monocytes are immunologically deactivated by astrocyte-derived factors human monocytes were stimulated with lipopolysaccharide or interferon (IFN)-gamma and treated with the supernatant from pure astrocyte cultures, interleukin (IL)-4, IL-10, or with IL-1-receptor antagonist (1L-1-RA). Flow cytometry demonstrated that the supernatant from astrocyte cultures was the most potent agent in reducing the levels of major histocompatibility complex (MHC)-class-II- as well as intercellular adhesion molecule-1-expression, whereas IL-4, IL-10, and IL-1-RA had only marginal effects. The expression of leukocyte function antigen-1 and very late antigen-4 was not modulated by either factor. In conclusion, astrocytes seem to provide soluble factors that have the capacity to deactivate hematogenous monocytes.
Collapse
Affiliation(s)
- N P Hailer
- University Hospital for Orthopaedic Surgery, Friedrichsheim, Marienburgstrasse 2, D-60528 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
59
|
Mertsch K, Hanisch UK, Kettenmann H, Schnitzer J. Characterization of microglial cells and their response to stimulation in an organotypic retinal culture system. J Comp Neurol 2001. [DOI: 10.1002/1096-9861(20010305)431:2<217::aid-cne1066>3.0.co;2-t] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
60
|
Beyer M, Gimsa U, Eyüpoglu IY, Hailer NP, Nitsch R. Phagocytosis of neuronal or glial debris by microglial cells: upregulation of MHC class II expression and multinuclear giant cell formation in vitro. Glia 2000; 31:262-6. [PMID: 10941152 DOI: 10.1002/1098-1136(200009)31:3<262::aid-glia70>3.0.co;2-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most CNS pathologies are accompanied by the occurrence of activated, phagocytic microglial cells. We intended to investigate whether (1) isolated microglial cells removed from the CNS cytokine network sustain their capacity to acquire an activated phenotype when challenged with cellular or noncellular debris; and (2) different substrates lead to different patterns of microglial activation. It was observed that although removed from their usual surroundings microglial cells preserve their ability to transform to an amoeboid morphology, form multinucleated giant cells, and enhance their expression of MHC class II when exposed to membranes of neuronal or glial origin. Furthermore, cellular substrates derived from primary hippocampal neuronal cultures, neuroblastic cells (B50), or glial cells were all able to induce similar morphological changes and enhanced expression of MHC class II. In contrast, phagocytosis of Latex beads induced an amoeboid morphology but no increase in the expression of immunologically relevant molecules. Interferon-beta (IFN-beta), a substance clinically used in the treatment of the relapsing-remitting form of multiple sclerosis, was shown to inhibit the phagocytosis-induced upregulation of MHC-class II. In summary, phagocytic microglial cells are independent from the CNS cytokine network in their transition from a resting to an activated phenotype; and different cellular substrates, regardless whether they are of neuronal, glial, or even malignant origin, result in similar morphological and functional changes.
Collapse
Affiliation(s)
- M Beyer
- Department of Cell and Neurobiology, Institute of Anatomy, University Hospital Charité, Berlin, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
61
|
Abstract
Interactions of CD4(+) T helper (Th) cells with microglia and astrocytes are likely to play an important role in regulating immune responses as well as tissue damage and repair during infectious and autoimmune central nervous system (CNS) diseases. T cells secreting Th1-type cytokines provide inducing signals for microglia to mature into functional antigen presenting cells (APC). The ability of microglia to act as efficient APC for the restimulation of Th1 cells suggests a role for these cells in the local amplification of pro-inflammatory immune responses. Conversely, the Th2-inducing capacity of microglia and astrocytes together with their ability to produce anti-inflammatory mediators could play a role in providing counter-regulatory signals limiting CNS inflammation. In this article, we review recent studies addressing the functional significance of T cell-CNS glia interactions and present new data on the expression of cyclooxygenase-2, the inducible enzyme involved in prostanoid biosynthesis, in microglia and astrocytes during the course of experimental allergic encephalomyelitis.
Collapse
Affiliation(s)
- F Aloisi
- Laboratory of Organ and System Pathophysiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy.
| | | | | |
Collapse
|
62
|
|
63
|
Aloisi F, Ria F, Adorini L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. IMMUNOLOGY TODAY 2000; 21:141-7. [PMID: 10689302 DOI: 10.1016/s0167-5699(99)01512-1] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Analysis of the mechanisms underlying CNS immune surveillance and immunopathology have provided new insights into the intracerebral regulation of immune responses. Here, Francesca Aloisi, Francesco Ria and Luciano Adorini review the role of CNS antigen presenting cells and focus on the control of Th1 and Th2 responses by microglia and astrocytes.
Collapse
Affiliation(s)
- F Aloisi
- The Laboratory of Organ and System Pathophysiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | |
Collapse
|
64
|
Eder C, Schilling T, Heinemann U, Haas D, Hailer N, Nitsch R. Morphological, immunophenotypical and electrophysiological properties of resting microglia in vitro. Eur J Neurosci 1999; 11:4251-61. [PMID: 10594651 DOI: 10.1046/j.1460-9568.1999.00852.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphological, immunophenotypical and electrophysiological properties were investigated in isolated cultured murine microglia before and after exposure to astrocyte-conditioned medium (ACM). Following application of ACM, microglial cells underwent a dramatic shape transformation from an amoeboid appearance to a ramified morphology. In parallel to morphological changes, a downregulation of macrophage surface antigens was observed in microglia exposed to ACM. Staining intensities for major histocompatibility complex (MHC) class II molecules and for the adhesion molecules leukocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) were significantly decreased in ramified microglia 5 days after exposure to ACM. In microglial cells treated daily with ACM over a period of 5 days, the smallest staining intensities for all surface antigens as well as the smallest ramification index as a measure for the highest degree of ramification were determined. In addition, upregulation of delayed rectifier K + currents was observed in microglia exposed to ACM for 1 day or treated daily with ACM for 5 days. In contrast, untreated amoeboid microglia or ramified microglia analysed 5 days after exposure to ACM did not express delayed rectifier K + currents. Analyses of the resting membrane potential and expression levels and properties of inward rectifier K + currents did not reveal any differences between untreated and ACM-treated microglia. It is suggested that electrophysiological properties of microglia do not strongly correlate with the morphology or the immunophenotype of microglial cells.
Collapse
Affiliation(s)
- C Eder
- Department of Neurophysiology, Institute of Physiology, Humboldt University, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
65
|
Xiao BG, Link H. Is there a balance between microglia and astrocytes in regulating Th1/Th2-cell responses and neuropathologies? IMMUNOLOGY TODAY 1999; 20:477-9. [PMID: 10529772 DOI: 10.1016/s0167-5699(99)01501-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- B G Xiao
- Division of Neurology, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Stockholm, Sweden.
| | | |
Collapse
|
66
|
Nikcevich KM, Piskurich JF, Hellendall RP, Wang Y, Ting JP. Differential selectivity of CIITA promoter activation by IFN-gamma and IRF-1 in astrocytes and macrophages: CIITA promoter activation is not affected by TNF-alpha. J Neuroimmunol 1999; 99:195-204. [PMID: 10505975 DOI: 10.1016/s0165-5728(99)00117-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During demyelinating disease of the central nervous system (CNS), locally elevated cytokine levels may induce upregulation of MHC class II molecules on otherwise low expressing or negative cell types such as microglia and astrocytes, since IFN-gamma has been shown to induce MHC class II expression on these cell types in vitro. While many transcription factors are involved with MHC class II expression, only the class II transactivator (CIITA) is tightly coordinated with IFN-gamma-inducibility. Control of CIITA gene expression is complex, involving four distinct promoters, two of which (promoters III and IV) are IFN-gamma-inducible in certain cell types. Here we demonstrate that IFN-gamma treatment of rat astrocytes induces only CIITA promoter IV activity in contrast to the murine macrophage cell line RAW 264.7 that uses both IFN-gamma-inducible promoters. In contrast to previously published reports, promoter IV activation is completely dependent upon an intact interferon regulatory factor-1 (IRF-1) but not STAT binding site using promoter constructs specifically mutated at these positions. Importantly, while TNF-alpha is able to synergize with IFN-gamma to increase astrocyte MHC class II expression in vitro, we show that treatment of rat astrocytes with TNF-alpha has no effect on CIITA promoter activity. These data demonstrate that TNF-alpha augments MHC class II expression through a mechanism downstream or independent of CIITA induction.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/immunology
- Brain/cytology
- Brain/immunology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- DNA-Binding Proteins/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Genes, MHC Class II/genetics
- Genes, MHC Class II/immunology
- Genes, Reporter
- Interferon Regulatory Factor-1
- Interferon-gamma/pharmacology
- Luciferases/genetics
- Macrophages/cytology
- Macrophages/immunology
- Nuclear Proteins
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Pregnancy
- Promoter Regions, Genetic/immunology
- Protein Binding/genetics
- Protein Binding/immunology
- Rats
- Rats, Sprague-Dawley
- STAT1 Transcription Factor
- Trans-Activators/genetics
- Trans-Activators/immunology
- Trans-Activators/metabolism
- Transfection
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- K M Nikcevich
- Department of Microbiology-Immunology, University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, 27599-7295, USA
| | | | | | | | | |
Collapse
|
67
|
Ziaja M, Janeczko K. Spatiotemporal patterns of microglial proliferation in rat brain injured at the postmitotic stage of postnatal development. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991101)58:3<379::aid-jnr3>3.0.co;2-j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
68
|
Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 1999; 22:295-9. [PMID: 10370250 DOI: 10.1016/s0166-2236(99)01405-8] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The limitation of immune responsiveness in the mammalian CNS has been attributed to the intricate nature of neuronal networks, which would appear to be more susceptible than other tissues to the threat of permanent disorganization when exposed to massive inflammation. This line of logic led to the conclusion that all forms of CNS inflammation would do more harm than good and, hence, the less immune intervention the better. However, mounting evidence indicates that some forms of immune-system intervention can help to protect or restore CNS integrity. We have shown that the innate immune system, represented by activated macrophages, can facilitate the processes of regeneration in the severed spinal cord. More recently, we found that autoimmune T cells that are specific for a component of myelin can protect CNS neurons from the catastrophic secondary degeneration, which extends traumatic lesions to adjacent CNS areas that did not suffer direct damage. The challenge, therefore, is to learn how to modify immune interactions in the traumatized CNS in order to promote its post-injury maintenance and repair.
Collapse
Affiliation(s)
- M Schwartz
- Dept of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | |
Collapse
|