51
|
Nunes VL, Mendes R, Marabuto E, Novais BM, Hertach T, Quartau JA, Seabra SG, Paulo OS, Simões PC. Conflicting patterns of DNA barcoding and taxonomy in the cicada genus Tettigettalna from Southern Europe (Hemiptera: Cicadidae). Mol Ecol Resour 2013; 14:27-38. [PMID: 24034529 DOI: 10.1111/1755-0998.12158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/16/2013] [Accepted: 07/31/2013] [Indexed: 02/02/2023]
Abstract
DNA barcodes have great potential to assist in species identification, especially when high taxonomical expertise is required. We investigated the utility of the 5' mitochondrial cytochrome c oxidase I (COI) region to discriminate between 13 European cicada species. These included all nine species currently recognized under the genus Tettigettalna, from which seven are endemic to the southern Iberian Peninsula. These cicadas have species-specific male calling songs but are morphologically very similar. Mean COI divergence between congeners ranged from 0.4% to 10.6%, but this gene was proven insufficient to determine species limits within genus Tettigettalna because a barcoding gap was absent for several of its species, that is, the highest intraspecific distance exceeded the lowest interspecific distance. The genetic data conflicted with current taxonomic classification for T. argentata and T. mariae. Neighbour-joining and Bayesian analyses revealed that T. argentata is geographically structured (clades North and South) and might constitute a species complex together with T. aneabi and T. mariae. The latter diverges very little from the southern clade of T. argentata and shares with it its most common haplotype. T. mariae is often in sympatry with T. argentata but it remains unclear whether introgression or incomplete lineage sorting may be responsible for the sharing of haplotypes. T. helianthemi and T. defauti also show high intraspecific variation that might signal hidden cryptic diversity. These taxonomic conflicts must be re-evaluated with further studies using additional genes and extensive morphological and acoustic analyses.
Collapse
Affiliation(s)
- Vera L Nunes
- Computational Biology and Population Genomics Group, Centro de Biologia Ambiental, DBA/FCUL, Lisboa, 1749-016, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Stålstedt J, Bergsten J, Ronquist F. "Forms" of water mites (Acari: Hydrachnidia): intraspecific variation or valid species? Ecol Evol 2013; 3:3415-35. [PMID: 24223279 PMCID: PMC3797488 DOI: 10.1002/ece3.704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 11/21/2022] Open
Abstract
In many groups of organisms, especially in the older literature, it has been common practice to recognize sympatrically occurring phenotypic variants of a species as "forms". However, what these forms really represent often remains unclear, especially in poorly studied groups. With new algorithms for DNA-based species delimitation, the status of forms can be explicitly tested with molecular data. In this study, we test a number of what is now recognized as valid species of water mites (Hydrachnidia), but have in the past been treated as forms sympatrically occurring with their nominate species. We also test a form without prior taxonomical status, using DNA and morphometrics. The barcoding fragment of COI, nuclear 28S and quantitative analyses of morphological data were used to test whether these taxa merit species status, as suggested by several taxonomists. Our results confirm valid species. Genetic distances between the form and nominate species (Piona dispersa and Piona variabilis, COI 11%), as well as likelihood ratio tests under the general mixed-Yule coalescent model, supported that these are separately evolving lineages as defined by the unified species concept. In addition, they can be diagnosed with morphological characters. The study also reveals that some taxa genetically represent more than one species. We propose that P. dispersa are recognized as valid taxa at the species level. Unionicola minor (which may consist of several species), Piona stjordalensis, P. imminuta s. lat., and P. rotundoides are confirmed as species using this model. The results also imply that future studies of other water mite species complexes are likely to reveal many more genetically and morphologically distinct species.
Collapse
Affiliation(s)
- Jeanette Stålstedt
- Zoology Department, Swedish Museum of Natural HistoryBox 50007, SE-104 05, Stockholm, Sweden
| | - Johannes Bergsten
- Zoology Department, Swedish Museum of Natural HistoryBox 50007, SE-104 05, Stockholm, Sweden
| | - Fredrik Ronquist
- Department of Biodiversity Informatics, Swedish Museum of Natural HistoryBox 50007, SE-104 05, Stockholm, Sweden
| |
Collapse
|
53
|
Jordal BH, Kambestad M. DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Mol Ecol Resour 2013; 14:7-17. [DOI: 10.1111/1755-0998.12150] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 11/28/2022]
|
54
|
Kim SJ, Lee KY, Ju SJ. Nuclear mitochondrial pseudogenes in Austinograea alayseae hydrothermal vent crabs (Crustacea: Bythograeidae): effects on DNA barcoding. Mol Ecol Resour 2013; 13:781-7. [PMID: 23663201 DOI: 10.1111/1755-0998.12119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/30/2022]
Abstract
Members of the brachyuran crab family, Bythograeidae, are among the most abundant and common crabs in vent fields. However, their identification based on morphological characteristics often leads to incorrect species recognition due to a lack of taxonomic factors and the existence of sibling (or cryptic) species. For these reasons, we used DNA barcoding for vent crabs using mitochondrial cytochrome c oxidase subunit 1 (CO1). However, several nuclear mitochondrial pseudogenes (Numts) were amplified from Austinograea alayseae Guinot, 1990, using universal primers (Folmer primers). The Numts were characterized in six haplotypes, with 13.58-14.11% sequence divergence from A. alayseae, a higher nonsynonymous substitution ratio than true CO1, and the formation of an independent clade in bythograeids. In a neighbour-joining tree, the origin of the Numts would be expected to incorporate into the nucleus at an ancestral node of Austinograea, and they mutated more slowly in the nucleus than CO1 in the mitochondria. This evolutionary process may have resulted in the higher binding affinity of Numts for the Folmer primers than CO1. In the present study, we performed long PCR for the amplification of CO1 in A. alayseae. We also present evidence that Numts can introduce serious ambiguity into DNA barcoding, including overestimating the number of species in bythograeids. These results may help in conducting taxonomic studies using mitochondrial genes from organisms living in hydrothermal vent fields.
Collapse
Affiliation(s)
- Se-Joo Kim
- Deep-sea and Seabed Resources Research Division, Korea Institute of Ocean Science & Technology, Gyeonggi-do, 426-744, Korea
| | | | | |
Collapse
|
55
|
Leavitt JR, Hiatt KD, Whiting MF, Song H. Searching for the optimal data partitioning strategy in mitochondrial phylogenomics: A phylogeny of Acridoidea (Insecta: Orthoptera: Caelifera) as a case study. Mol Phylogenet Evol 2013; 67:494-508. [DOI: 10.1016/j.ympev.2013.02.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 02/10/2013] [Accepted: 02/15/2013] [Indexed: 11/24/2022]
|
56
|
Song H, Moulton MJ, Hiatt KD, Whiting MF. Uncovering historical signature of mitochondrial DNA hidden in the nuclear genome: the biogeography ofSchistocercarevisited. Cladistics 2013; 29:643-662. [DOI: 10.1111/cla.12013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hojun Song
- Department of Biology; University of Central Florida; Orlando FL 32816 USA
- Department of Biology and M. L. Bean Life Science Museum; Brigham Young University; Provo UT 84602 USA
| | - Matthew J. Moulton
- Department of Biology and M. L. Bean Life Science Museum; Brigham Young University; Provo UT 84602 USA
| | - Kevin D. Hiatt
- Department of Biology and M. L. Bean Life Science Museum; Brigham Young University; Provo UT 84602 USA
| | - Michael F. Whiting
- Department of Biology and M. L. Bean Life Science Museum; Brigham Young University; Provo UT 84602 USA
| |
Collapse
|
57
|
Bryson RW, Riddle BR, Graham MR, Smith BT, Prendini L. As Old as the hills: montane scorpions in Southwestern North America reveal ancient associations between biotic diversification and landscape history. PLoS One 2013; 8:e52822. [PMID: 23326361 PMCID: PMC3541388 DOI: 10.1371/journal.pone.0052822] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/22/2012] [Indexed: 11/18/2022] Open
Abstract
Background The age of lineages has become a fundamental datum in studies exploring the interaction between geological transformation and biotic diversification. However, phylogeographical studies are often biased towards lineages that are younger than the geological features of the landscapes they inhabit. A temporally deeper historical biogeography framework may be required to address episodes of biotic diversification associated with geologically older landscape changes. Signatures of such associations may be retained in the genomes of ecologically specialized (stenotopic) taxa with limited vagility. In the study presented here, genetic data from montane scorpions in the Vaejovis vorhiesi group, restricted to humid rocky habitats in mountains across southwestern North America, were used to explore the relationship between scorpion diversification and regional geological history. Results Strong phylogeographical signal was evident within the vorhiesi group, with 27 geographically cohesive lineages inferred from a mitochondrial phylogeny. A time-calibrated multilocus species tree revealed a pattern of Miocene and Pliocene (the Neogene period) lineage diversification. An estimated 21 out of 26 cladogenetic events probably occurred prior to the onset of the Pleistocene, 2.6 million years ago. The best-fit density-dependent model suggested diversification rate in the vorhiesi group gradually decreased through time. Conclusions Scorpions of the vorhiesi group have had a long history in the highlands of southwestern North America. Diversification among these stenotopic scorpions appears to have occurred almost entirely within the Neogene period, and is temporally consistent with the dynamic geological history of the Basin and Range, and Colorado Plateau physiographical provinces. The persistence of separate lineages at small spatial scales suggests that a combination of ecological stenotopy and limited vagility may make these scorpions particularly valuable indicators of geomorphological evolution.
Collapse
MESH Headings
- Animals
- Arizona
- Bayes Theorem
- Cell Nucleus/genetics
- DNA, Mitochondrial/genetics
- DNA, Ribosomal Spacer/genetics
- Ecosystem
- Electron Transport Complex IV/genetics
- Evolution, Molecular
- Genetic Speciation
- Genetic Variation
- Geography
- Molecular Sequence Data
- New Mexico
- Phylogeny
- Phylogeography/methods
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 5.8S/genetics
- Scorpions/classification
- Scorpions/genetics
- Sequence Analysis, DNA
- Time Factors
Collapse
Affiliation(s)
- Robert W Bryson
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA.
| | | | | | | | | |
Collapse
|
58
|
Vuataz L, Sartori M, Gattolliat JL, Monaghan MT. Endemism and diversification in freshwater insects of Madagascar revealed by coalescent and phylogenetic analysis of museum and field collections. Mol Phylogenet Evol 2012; 66:979-91. [PMID: 23261711 DOI: 10.1016/j.ympev.2012.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 11/26/2012] [Accepted: 12/05/2012] [Indexed: 01/07/2023]
Abstract
The biodiversity and endemism of Madagascar are among the most extraordinary and endangered in the world. This includes the island's freshwater biodiversity, although detailed knowledge of the diversity, endemism, and biogeographic origin of freshwater invertebrates is lacking. The aquatic immature stages of mayflies (Ephemeroptera) are widely used as bio-indicators and form an important component of Malagasy freshwater biodiversity. Many species are thought to be microendemics, restricted to single river basins in forested areas, making them particularly sensitive to habitat reduction and degradation. The Heptageniidae are a globally diverse family of mayflies (>500 species) but remain practically unknown in Madagascar except for two species described in 1996. The standard approach to understanding their diversity, endemism, and origin would require extensive field sampling on several continents and years of taxonomic work followed by phylogenetic analysis. Here we circumvent this using museum collections and freshly collected individuals in a combined approach of DNA taxonomy and phylogeny. The coalescent-based GMYC analysis of DNA barcode data (mitochondrial COI) revealed 14 putative species on Madagascar, 70% of which were microendemics. A phylogenetic analysis that included African and Asian species and data from two mitochondrial and four nuclear loci indicated the Malagasy Heptageniidae are monophyletic and sister to African species. The genus Compsoneuria is shown to be paraphyletic and the genus Notonurus is reinstalled for African and Malagasy species previously placed in Compsoneuria. A molecular clock excluded a Gondwanan vicariance origin and instead favoured a more recent overseas colonization of Madagascar. The observed monophyly and high microendemism highlight their conservation importance and suggest the DNA-based approach can rapidly provide information on the diversity, endemism, and origin of freshwater biodiversity. Our results underline the important role that museum collections can play in molecular studies, especially in critically endangered biodiversity hotspots like Madagascar where entire species or populations may go extinct very quickly.
Collapse
Affiliation(s)
- Laurent Vuataz
- Musée cantonal de zoologie, Palais de Rumine, place de la Riponne 6, 1014 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
59
|
Nelson LA, Lambkin CL, Batterham P, Wallman JF, Dowton M, Whiting MF, Yeates DK, Cameron SL. Beyond barcoding: a mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae). Gene 2012; 511:131-42. [PMID: 23043935 DOI: 10.1016/j.gene.2012.09.103] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/21/2012] [Accepted: 09/29/2012] [Indexed: 11/28/2022]
Abstract
Members of the Calliphoridae (blowflies) are significant for medical and veterinary management, due to the ability of some species to consume living flesh as larvae, and for forensic investigations due to the ability of others to develop in corpses. Due to the difficulty of accurately identifying larval blowflies to species there is a need for DNA-based diagnostics for this family, however the widely used DNA-barcoding marker, cox1, has been shown to fail for several groups within this family. Additionally, many phylogenetic relationships within the Calliphoridae are still unresolved, particularly deeper level relationships. Sequencing whole mt genomes has been demonstrated both as an effective method for identifying the most informative diagnostic markers and for resolving phylogenetic relationships. Twenty-seven complete, or nearly so, mt genomes were sequenced representing 13 species, seven genera and four calliphorid subfamilies and a member of the related family Tachinidae. PCR and sequencing primers developed for sequencing one calliphorid species could be reused to sequence related species within the same superfamily with success rates ranging from 61% to 100%, demonstrating the speed and efficiency with which an mt genome dataset can be assembled. Comparison of molecular divergences for each of the 13 protein-coding genes and 2 ribosomal RNA genes, at a range of taxonomic scales identified novel targets for developing as diagnostic markers which were 117-200% more variable than the markers which have been used previously in calliphorids. Phylogenetic analysis of whole mt genome sequences resulted in much stronger support for family and subfamily-level relationships. The Calliphoridae are polyphyletic, with the Polleninae more closely related to the Tachinidae, and the Sarcophagidae are the sister group of the remaining calliphorids. Within the Calliphoridae, there was strong support for the monophyly of the Chrysomyinae and Luciliinae and for the sister-grouping of Luciliinae with Calliphorinae. Relationships within Chrysomya were not well resolved. Whole mt genome data, supported the previously demonstrated paraphyly of Lucilia cuprina with respect to L. sericata and allowed us to conclude that it is due to hybrid introgression prior to the last common ancestor of modern sericata populations, rather than due to recent hybridisation, nuclear pseudogenes or incomplete lineage sorting.
Collapse
Affiliation(s)
- Leigh A Nelson
- Australian National Insect Collection, CSIRO Ecosystem Sciences, Canberra, ACT, 2601, Australia
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Rosero DA, Jaramillo LM, Gutiérrez LA, Conn JE, Correa MM. Genetic diversity of Anopheles triannulatus s.l. (Diptera: Culicidae) from northwestern and southeastern Colombia. Am J Trop Med Hyg 2012; 87:910-20. [PMID: 22949519 DOI: 10.4269/ajtmh.2012.12-0285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Anopheles triannulatus s.l. is a species complex, however in Colombia its taxonomic status is unclear. This study was conducted to understand the level of genetic differentiation or population structure of specimens of An. triannulatus s.l. from northwestern and southeastern Colombia. Cytochrome oxidase subunit I (COI) and internal transcribed spacer (ITS2) sequence analyses suggested high genetic differentiation between the NW and SE populations. A TCS network and Bayesian inference analysis based on 814 bp of COI showed two main groups: group I included samples from the NW and group II samples from the SE. Two main ITS2-polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) patterns were found. Pattern I is present in both the NW and SE, and pattern II is found in the SE specimens. To further elucidate the taxonomic status of An. triannulatus s.l. in Colombia and how these COI lineages are related to the Triannulatus Complex species, the evaluation of immature stages, male genitalia, and additional mitochondrial and nuclear markers will be needed.
Collapse
Affiliation(s)
- Doris A Rosero
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia.
| | | | | | | | | |
Collapse
|
61
|
Leite LAR. Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on the same issue. BIOTA NEOTROPICA 2012. [DOI: 10.1590/s1676-06032012000300029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular tools have been used in taxonomy for the purpose of identification and classification of living organisms. Among these, a short sequence of the mitochondrial DNA, popularly known as DNA barcoding, has become very popular. However, the usefulness and dependability of DNA barcodes have been recently questioned because mitochondrial pseudogenes, non-functional copies of the mitochondrial DNA incorporated into the nuclear genome, have been found in various taxa. When these paralogous sequences are amplified together with the mitochondrial DNA, they may go unnoticed and end up being analyzed as if they were orthologous sequences. In this contribution the different points of view regarding the implications of mitochondrial pseudogenes for entomology are reviewed and discussed. A discussion of the problem from a historical and conceptual perspective is presented as well as a discussion of strategies to keep these nuclear mtDNA copies out of sequence analyzes.
Collapse
|
62
|
Ma C, Yang P, Jiang F, Chapuis MP, Shali Y, Sword GA, Kang L. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Mol Ecol 2012; 21:4344-58. [PMID: 22738353 DOI: 10.1111/j.1365-294x.2012.05684.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The migratory locust, Locusta migratoria, is the most widely distributed grasshopper species in the world. However, its global genetic structure and phylogeographic relationships have not been investigated. In this study, we explored the worldwide genetic structure and phylogeography of the locust populations based on the sequence information of 65 complete mitochondrial genomes and three mitochondrial genes of 263 individuals from 53 sampling sites. Although this locust can migrate over long distances, our results revealed high genetic differentiation among the geographic populations. The populations can be divided into two different lineages: the Northern lineage, which includes individuals from the temperate regions of the Eurasian continent, and the Southern lineage, which includes individuals from Africa, southern Europe, the Arabian region, India, southern China, South-east Asia and Australia. An analysis of population genetic diversity indicated that the locust species originated from Africa. Ancestral populations likely separated into Northern and Southern lineages 895 000 years ago by vicariance events associated with Pleistocene glaciations. These two lineages evolved in allopatry and occupied their current distributions in the world via distinct southern and northern dispersal routes. Genetic differences, caused by the long-term independent diversification of the two lineages, along with other factors, such as geographic barriers and temperature limitations, may play important roles in maintaining the present phylogeographic patterns. Our phylogeographic evidence challenged the long-held view of multiple subspecies in the locust species and tentatively divided it into two subspecies, L. m. migratoria and L. m. migratorioides.
Collapse
Affiliation(s)
- Chuan Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
63
|
Boyer S, Brown SDJ, Collins RA, Cruickshank RH, Lefort MC, Malumbres-Olarte J, Wratten SD. Sliding window analyses for optimal selection of mini-barcodes, and application to 454-pyrosequencing for specimen identification from degraded DNA. PLoS One 2012; 7:e38215. [PMID: 22666489 PMCID: PMC3362555 DOI: 10.1371/journal.pone.0038215] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/01/2012] [Indexed: 11/19/2022] Open
Abstract
DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential 'mini-barcodes' for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46 landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation.
Collapse
Affiliation(s)
- Stephane Boyer
- Department of Ecology, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
64
|
Alberdi A, Garin I, Aizpurua O, Aihartza J. The foraging ecology of the mountain long-eared bat Plecotus macrobullaris revealed with DNA mini-barcodes. PLoS One 2012; 7:e35692. [PMID: 22545129 PMCID: PMC3335802 DOI: 10.1371/journal.pone.0035692] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/22/2012] [Indexed: 11/19/2022] Open
Abstract
Molecular analysis of diet overcomes the considerable limitations of traditional techniques for identifying prey remains in bat faeces. We collected faeces from individual Mountain Long-eared Bats Plecotus macrobullaris trapped using mist nets during the summers of 2009 and 2010 in the Pyrenees. We analysed their diet using DNA mini-barcodes to identify prey species. In addition, we inferred some basic features of the bat's foraging ecology that had not yet been addressed. P. macrobullaris fed almost exclusively on moths (97.8%). As prey we detected one dipteran genus (Tipulidae) and 29 moth taxa: 28 were identified at species level (23 Noctuidae, 1 Crambidae, 1 Geometridae, 1 Pyralidae, 1 Sphingidae, 1 Tortricidae), and one at genus level (Rhyacia sp., Noctuidae). Known ecological information about the prey species allowed us to determine that bats had foraged at elevations between 1,500 and 2,500 m amsl (above mean sea level), mostly in subalpine meadows, followed by other open habitats such as orophilous grasslands and alpine meadows. No forest prey species were identified in the diet. As 96.4% of identified prey species were tympanate moths and no evidence of gleaning behaviour was revealed, we suggest P. macrobullaris probably forages by aerial hawking using faint echolocation pulses to avoid detection by hearing moths. As we could identify 87.8% of the analysed sequences (64.1% of the MOTUs, Molecular Operational Taxonomic Units) at species level, we conclude that DNA mini-barcodes are a very useful tool to analyse the diet of moth-specialist bats.
Collapse
Affiliation(s)
- Antton Alberdi
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Sarriena z.g., Leioa, The Basque Country
| | - Inazio Garin
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Sarriena z.g., Leioa, The Basque Country
| | - Ostaizka Aizpurua
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Sarriena z.g., Leioa, The Basque Country
| | - Joxerra Aihartza
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Sarriena z.g., Leioa, The Basque Country
| |
Collapse
|
65
|
Maddison DR. Phylogeny of Bembidion and related ground beetles (Coleoptera: Carabidae: Trechinae: Bembidiini: Bembidiina). Mol Phylogenet Evol 2012; 63:533-76. [PMID: 22421212 DOI: 10.1016/j.ympev.2012.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 11/18/2022]
Abstract
The phylogeny of the large genus Bembidion and related genera is inferred from four nuclear protein-coding genes (CAD, wingless, arginine kinase, and topoisomerase I), ribosomal DNA (28S and 18S), and the mitochondrial gene cytochrome oxidase I (COI). 230 of the more than 1200 species of Bembidion are sampled, as well as 26 species of five related genera, and 14 outgroups. Nuclear copies (numts) of COI were found sparsely scattered through sampled species. The resulting phylogeny, based upon individual gene analyses and combined analyses using maximum likelihood and parsimony, is very well supported at most nodes. Additional analyses explored the evidence, and corroborate the phylogeny. Seven analyses, each with one of the seven genes removed from the combined matrix, were also conducted, and yielded maximum likelihood bootstrap trees sharing over 92% of their nodes with the original, well-resolved bootstrap trees based on the complete set of seven genes. All key nodes were present in all seven analyses missing a single gene, indicating that support for these nodes comes from at least two genes. In addition, the inferred maximum likelihood tree based on the combined matrix is well-behaved and self-predicting, in that simulated evolution of sequences on the inferred tree under the inferred model of evolution yields a matrix from which all but one of the model tree's clades are recovered with bootstrap value >50, suggesting that internal branches in the tree may be of a length to yield sequences sufficient to allow their inference. All likelihood analyses were conducted under both a proportion-invariable plus gamma site-to-site rate variation model, as well as a simpler gamma model. The choice of model did not have a major effect on inferred phylogenies or their bootstrap values. The inferred phylogeny shows that Bembidarenas is not closely related to Bembidiina, and Phrypeus is likely distant as well; the remaining genera of Bembidiina form a monophyletic group. Lionepha, formerly considered a subgenus of Bembidion, is shown to be outside of the clade of Asaphidion+Bembidion, and is separated as its own genus. B. (Phyla) obtusum is quite isolated within Bembidion, and there is some evidence that the remaining Bembidion form a clade. Within Bembidion, there are three large clades that are well-supported, the Bembidion, Odontium, and Ocydromus Series. The Bembidion Series contains Bembidion (s. str.), Notaphus, Furcacampa, Emphanes, Trepanedoris, Diplocampa, and related Holarctic species; all species from South America, Australia, New Zealand; and most species from southern Africa and Madagascar. All species in South America, except for members of Notaphus and Nothocys, form a clade, the Antiperyphanes Complex, which has independently radiated into body forms and niches occupied by multiple, independent Northern-Hemisphere forms. All species from New Zealand, including Zecillenus, and Australian species formerly placed in Ananotaphus together form a clade. Bembidion (s. str.) and Cyclolopha are in a clade with the Old World, Southern Hemisphere lineages Notaphocampa, Sloanephila, and Omotaphus. The large subgenus Notaphus appears to have originated in South America, with all Northern Hemisphere Notaphus arising from within a south-temperate grade. All major variation in frontal furrows on the head is contained within the Bembidion Series. The Odontium Series contains subgenera Hirmoplataphus and Hydriomicrus, which together are the sister clade of Odontium, Bracteon, Ochthedromus, Pseudoperyphus, and Microserrullula. The very large Ocydromus Series, dominant in the Holarctic region, includes the Ocydromus Complex, with many subgenera, including Hypsipezum and Leuchydrium; the phylogeny within this group is notably at odds with the current classification. Also included in the Ocydromus Series are Nepha and Bembidionetolitzkya, as well as the Princidium Complex, in which the intertidal B. (Cillenus) laterale falls. Outside these three series are a number of smaller groups, including the Plataphus Complex (containing Blepharoplataphus, Plataphus, the latter including Plataphodes); the Hydrium Complex (Metallina, Chlorodium, and Hydrium, which contains Eurytrachelus), whose sister group might be subgenus Andrewesa; Trechonepha and Liocosmius, which might be sisters; and B. (Melomalus) planatum, which is not close to Plataphus. There is some evidence that these groups plus the Ocydromus and Odontium Series form a clade. A few enigmatic groups were harder to place. The sister group of the pair Philochthus plus Philochthemphanes might be B. wickhami; Eupetedromus is well outside the three major series and not related to Notaphus; the high-elevation Asian group Hoquedela is a very isolated lineage. Notaphiellus is removed from synonymy with Nothocys, and placed in synonymy with Notaphus; Plataphodes is synonymized with Plataphus, as Plataphus is paraphyletic otherwise; Eurytrachelus is synonymized with Hydrium. A new subgenus, Lindrochthus, is described to house the distinctive B. wickhami. The implications of the inferred phylogeny for some morphological characters used in Bembidiina systematics are explored, and some of the most widely used (e.g., location of discal seta ed3 on the elytron, and shape of the shoulder) are shown to be notably homoplastic. For example, the location of elytral seta ed3 has undergone at least nine transitions between two states.
Collapse
Affiliation(s)
- David R Maddison
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
66
|
Pereira-da-Conceicoa LL, Price BW, Barber-James HM, Barker NP, de Moor FC, Villet MH. Cryptic variation in an ecological indicator organism: mitochondrial and nuclear DNA sequence data confirm distinct lineages of Baetis harrisoni Barnard (Ephemeroptera: Baetidae) in southern Africa. BMC Evol Biol 2012; 12:26. [PMID: 22373076 PMCID: PMC3523013 DOI: 10.1186/1471-2148-12-26] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Baetis harrisoni Barnard is a mayfly frequently encountered in river studies across Africa, but the external morphological features used for identifying nymphs have been observed to vary subtly between different geographic locations. It has been associated with a wide range of ecological conditions, including pH extremes of pH 2.9-10.0 in polluted waters. We present a molecular study of the genetic variation within B. harrisoni across 21 rivers in its distribution range in southern Africa. RESULTS Four gene regions were examined, two mitochondrial (cytochrome c oxidase subunit I [COI] and small subunit ribosomal 16S rDNA [16S]) and two nuclear (elongation factor 1 alpha [EF1α] and phosphoenolpyruvate carboxykinase [PEPCK]). Bayesian and parsimony approaches to phylogeny reconstruction resulted in five well-supported major lineages, which were confirmed using a general mixed Yule-coalescent (GMYC) model. Results from the EF1α gene were significantly incongruent with both mitochondrial and nuclear (PEPCK) results, possibly due to incomplete lineage sorting of the EF1α gene. Mean between-clade distance estimated using the COI and PEPCK data was found to be an order of magnitude greater than the within-clade distance and comparable to that previously reported for other recognised Baetis species. Analysis of the Isolation by Distance (IBD) between all samples showed a small but significant effect of IBD. Within each lineage the contribution of IBD was minimal. Tentative dating analyses using an uncorrelated log-normal relaxed clock and two published estimates of COI mutation rates suggest that diversification within the group occurred throughout the Pliocene and mid-Miocene (~2.4-11.5 mya). CONCLUSIONS The distinct lineages of B. harrisoni correspond to categorical environmental variation, with two lineages comprising samples from streams that flow through acidic Table Mountain Sandstone and three lineages with samples from neutral-to-alkaline streams found within eastern South Africa, Malawi and Zambia. The results of this study suggest that B. harrisoni as it is currently recognised is not a single species with a wide geographic range and pH-tolerance, but may comprise up to five species under the phylogenetic species concept, each with limited pH-tolerances, and that the B. harrisoni species group is thus in need of taxonomic review.
Collapse
Affiliation(s)
| | - Benjamin W Price
- Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
- Department of Freshwater Invertebrates, Albany Museum, Somerset Street, Grahamstown, 6140, South Africa
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, 06269, CT, USA
| | - Helen M Barber-James
- Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
- Department of Freshwater Invertebrates, Albany Museum, Somerset Street, Grahamstown, 6140, South Africa
| | - Nigel P Barker
- Molecular Ecology & Systematics Group, Department of Botany, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| | - Ferdy C de Moor
- Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
- Department of Freshwater Invertebrates, Albany Museum, Somerset Street, Grahamstown, 6140, South Africa
| | - Martin H Villet
- Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa
| |
Collapse
|
67
|
Taylor HR, Harris WE. An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol Ecol Resour 2012; 12:377-88. [PMID: 22356472 DOI: 10.1111/j.1755-0998.2012.03119.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA barcoding has become a well-funded, global enterprise since its proposition as a technique for species identification, delimitation and discovery in 2003. However, the rapid development of next generation sequencing (NGS) has the potential to render DNA barcoding irrelevant because of the speed with which it generates large volumes of genomic data. To avoid obsolescence, the DNA barcoding movement must adapt to use this new technology. This review examines the DNA barcoding enterprise, its continued resistance to improvement and the implications of this on the future of the discipline. We present the consistent failure of DNA barcoding to recognize its limitations and evolve its methodologies, reducing the usefulness of the data produced by the movement and throwing into doubt its ability to embrace NGS.
Collapse
Affiliation(s)
- H R Taylor
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Kelburn, PO Box 600 Wellington, New Zealand.
| | | |
Collapse
|
68
|
Miraldo A, Hewitt GM, Dear PH, Paulo OS, Emerson BC. Numts help to reconstruct the demographic history of the ocellated lizard (Lacerta lepida) in a secondary contact zone. Mol Ecol 2012; 21:1005-18. [PMID: 22221514 DOI: 10.1111/j.1365-294x.2011.05422.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In northwestern Iberia, two largely allopatric Lacerta lepida mitochondrial lineages occur, L5 occurring to the south of Douro River and L3 to the north, with a zone of putative secondary contact in the region of the Douro River valley. Cytochrome b sequence chromatograms with polymorphisms at nucleotide sites diagnostic for the two lineages were detected in individuals in the region of the Douro River and further north within the range of L3. We show that these polymorphisms are caused by the presence of four different numts (I-IV) co-occurring with the L3 genome, together with low levels of heteroplasmy. Two of the numts (I and II) are similar to the mitochondrial genome of L5 but are quite divergent from the mitochondrial genome of L3 where they occur. We show that these numts are derived from the mitochondrial genome of L5 and were incorporated in L3 through hybridization at the time of secondary contact between the lineages. The additional incidence of these numts to the north of the putative contact zone is consistent with an earlier postglacial northward range expansion of L5, preceding that of L3. We show that genetic exchange between the lineages responsible for the origin of these numts in L3 after secondary contact occurred prior to, or coincident with, the northward expansion of L3. This study shows that, in the context of phylogeographic analysis, numts can provide evidence for past demographic events and can be useful tools for the reconstruction of complex evolutionary histories.
Collapse
Affiliation(s)
- Andreia Miraldo
- School of Biological Sciences, University of East Anglia, Norwich NR4 7J, UK.
| | | | | | | | | |
Collapse
|
69
|
Meiklejohn KA, Wallman JF, Cameron SL, Dowton M. Comprehensive evaluation of DNA barcoding for the molecular species identification of forensically important Australian Sarcophagidae (Diptera). INVERTEBR SYST 2012. [DOI: 10.1071/is12008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Carrion-breeding Sarcophagidae (Diptera) can be used to estimate the post-mortem interval in forensic cases. Difficulties with accurate morphological identifications at any life stage and a lack of documented thermobiological profiles have limited their current usefulness. The molecular-based approach of DNA barcoding, which utilises a 648-bp fragment of the mitochondrial cytochrome oxidase subunitI gene, was evaluated in a pilot study for discrimination between 16 Australian sarcophagids. The current study comprehensively evaluated barcoding for a larger taxon set of 588 Australian sarcophagids. In total, 39 of the 84 known Australian species were represented by 580 specimens, which includes 92% of potentially forensically important species. A further eight specimens could not be identified, but were included nonetheless as six unidentifiable taxa. A neighbour-joining tree was generated and nucleotide sequence divergences were calculated. All species except Sarcophaga (Fergusonimyia) bancroftorum, known for high morphological variability, were resolved as monophyletic (99.2% of cases), with bootstrap support of 100. Excluding S. bancroftorum, the mean intraspecific and interspecific variation ranged from 1.12% and 2.81–11.23%, respectively, allowing for species discrimination. DNA barcoding was therefore validated as a suitable method for molecular identification of Australian Sarcophagidae, which will aid in the implementation of this fauna in forensic entomology.
Collapse
|
70
|
JAISWARA RANJANA, BALAKRISHNAN ROHINI, ROBILLARD TONY, RAO KARTHIK, CRUAUD CORINNE, DESUTTER-GRANDCOLAS LAURE. Testing concordance in species boundaries using acoustic, morphological, and molecular data in the field cricket genus Itaropsis (Orthoptera: Grylloidea, Gryllidae: Gryllinae). Zool J Linn Soc 2011. [DOI: 10.1111/j.1096-3642.2011.00769.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
71
|
Naidu A, Fitak RR, Munguia-Vega A, Culver M. Novel primers for complete mitochondrial cytochrome b gene sequencing in mammals. Mol Ecol Resour 2011; 12:191-6. [PMID: 21974833 DOI: 10.1111/j.1755-0998.2011.03078.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sequence-based species identification relies on the extent and integrity of sequence data available in online databases such as GenBank. When identifying species from a sample of unknown origin, partial DNA sequences obtained from the sample are aligned against existing sequences in databases. When the sequence from the matching species is not present in the database, high-scoring alignments with closely related sequences might produce unreliable results on species identity. For species identification in mammals, the cytochrome b (cyt b) gene has been identified to be highly informative; thus, large amounts of reference sequence data from the cyt b gene are much needed. To enhance availability of cyt b gene sequence data on a large number of mammalian species in GenBank and other such publicly accessible online databases, we identified a primer pair for complete cyt b gene sequencing in mammals. Using this primer pair, we successfully PCR amplified and sequenced the complete cyt b gene from 40 of 44 mammalian species representing 10 orders of mammals. We submitted 40 complete, correctly annotated, cyt b protein coding sequences to GenBank. To our knowledge, this is the first single primer pair to amplify the complete cyt b gene in a broad range of mammalian species. This primer pair can be used for the addition of new cyt b gene sequences and to enhance data available on species represented in GenBank. The availability of novel and complete gene sequences as high-quality reference data can improve the reliability of sequence-based species identification.
Collapse
Affiliation(s)
- Ashwin Naidu
- School of Natural Resources and the Environment, University of Arizona, 1311 East Fourth Street, Room 317, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
72
|
Triant DA, Hayes LD. Molecular approaches in behavioural research: a cautionary note regarding mitochondrial transfers to the nucleus (numts). Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
73
|
Sweeney BW, Battle JM, Jackson JK, Dapkey T. Can DNA barcodes of stream macroinvertebrates improve descriptions of community structure and water quality? ACTA ACUST UNITED AC 2011. [DOI: 10.1899/10-016.1] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bernard W. Sweeney
- Stroud Water Research Center, 970 Spencer Road, Avondale, Pennsylvania 19311 USA
| | - Juliann M. Battle
- Stroud Water Research Center, 970 Spencer Road, Avondale, Pennsylvania 19311 USA
| | - John K. Jackson
- Stroud Water Research Center, 970 Spencer Road, Avondale, Pennsylvania 19311 USA
| | - Tanya Dapkey
- University of Pennsylvania, Department of Biology, Philadelphia, Pennsylvania 19104 USA
| |
Collapse
|
74
|
Calvignac S, Konecny L, Malard F, Douady CJ. Preventing the pollution of mitochondrial datasets with nuclear mitochondrial paralogs (numts). Mitochondrion 2011; 11:246-54. [DOI: 10.1016/j.mito.2010.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/20/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
|
75
|
ARTHOFER WOLFGANG, SCHÜLER SILVIO, STEINER FLORIANM, SCHLICK-STEINER BIRGITC. Chloroplast DNA-based studies in molecular ecology may be compromised by nuclear-encoded plastid sequence. Mol Ecol 2010; 19:3853-6. [DOI: 10.1111/j.1365-294x.2010.04787.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|