51
|
Graf SA, Heppt MV, Wessely A, Krebs S, Kammerbauer C, Hornig E, Strieder A, Blum H, Bosserhoff AK, Berking C. The myelin protein PMP2 is regulated by SOX10 and drives melanoma cell invasion. Pigment Cell Melanoma Res 2018; 32:424-434. [PMID: 30506895 DOI: 10.1111/pcmr.12760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/05/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022]
Abstract
The transcription factor sex determining region Y-box 10 (SOX10) plays a key role in the development of melanocytes and glial cells from neural crest precursors. SOX10 is involved in melanoma initiation, proliferation, invasion, and survival. However, specific mediators which impart its oncogenic properties remain widely unknown. To identify target genes of SOX10, we performed RNA sequencing after ectopic expression of SOX10 in human melanoma cells. Among nine differentially regulated genes, peripheral myelin protein 2 (PMP2) was consistently upregulated in several cell lines. Direct regulation of PMP2 by SOX10 was shown by chromatin immunoprecipitation, electrophoretic mobility shift, and luciferase reporter assays. Moreover, a coregulation of PMP2 by SOX10 and early growth response 2 in melanoma cells was found. Phenotypical investigation demonstrated that PMP2 expression can increase melanoma cell invasion. As PMP2 protein was detected only in a subset of melanoma cell lines, it might contribute to melanoma heterogeneity.
Collapse
Affiliation(s)
- Saskia Anna Graf
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Markus Vincent Heppt
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Anja Wessely
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Gene Center, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Claudia Kammerbauer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Eva Hornig
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Annamarie Strieder
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Helmut Blum
- Gene Center, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Anja-Katrin Bosserhoff
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Emil Fischer Center, University of Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Carola Berking
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
52
|
Jin Y, Qin X, Jia G. SOX10-dependent CMTM7 expression inhibits cell proliferation and tumor growth in gastric carcinoma. Biochem Biophys Res Commun 2018; 507:91-99. [DOI: 10.1016/j.bbrc.2018.10.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022]
|
53
|
The miR-31-SOX10 axis regulates tumor growth and chemotherapy resistance of melanoma via PI3K/AKT pathway. Biochem Biophys Res Commun 2018; 503:2451-2458. [DOI: 10.1016/j.bbrc.2018.06.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/30/2018] [Indexed: 12/22/2022]
|
54
|
Hong CS, Saint-Jeannet JP. The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/β-catenin signaling. Dev Biol 2018; 442:162-172. [PMID: 30016640 DOI: 10.1016/j.ydbio.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/02/2018] [Accepted: 07/13/2018] [Indexed: 12/30/2022]
Abstract
Hes3 belongs to the Hes basic helix-loop-helix family of transcriptional repressors that play central roles in maintaining progenitor cells and regulating binary cell fate decisions in the embryo. During Xenopus laevis development, hes3 is expressed in the embryonic ectoderm in a horseshoe shape domain at the edge of the developing neural pate. Hes3 mis-expression at early neurula stage blocks neural crest (snai2, sox8, sox9 and sox10) and cranial placode (six1 and dmrta1) gene expression, and promotes neural plate (sox2 and sox3) fate. At tailbud stage, these embryos exhibited a massive up-regulation of both sox8 and sox10 expression, associated with an increase in genes important for melanocytes differentiation (mitf and dct). Using a hormone inducible construct we show that Hes3 does not induce a pigment cell differentiation program de novo, rather it maintains progenitor cells in an undifferentiated state, and as Hes3 expression subsides overtime these cells adopt a pigment cell fate. We demonstrate that mechanistically Hes3 mediates its activity through inhibition of Wnt/β-catenin signaling, a molecular pathway critical for neural crest specification and pigment cell lineage differentiation. We propose that Hes3 at the edge of the neural plate spatially restricts the response to mesoderm-derived Wnt ligands, thereby contributing to the establishment of sharp boundaries of gene expression at the neural plate border.
Collapse
Affiliation(s)
- Chang-Soo Hong
- Department of Biological Sciences, Daegu University, Gyeongsan, Republic of Korea; Department of Basic Science&Craniofacial Biology, College of Dentistry, New York University, New York, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Basic Science&Craniofacial Biology, College of Dentistry, New York University, New York, USA.
| |
Collapse
|
55
|
Eliades P, Abraham BJ, Ji Z, Miller DM, Christensen CL, Kwiatkowski N, Kumar R, Njauw CN, Taylor M, Miao B, Zhang T, Wong KK, Gray NS, Young RA, Tsao H. High MITF Expression Is Associated with Super-Enhancers and Suppressed by CDK7 Inhibition in Melanoma. J Invest Dermatol 2018; 138:1582-1590. [PMID: 29408204 PMCID: PMC6019629 DOI: 10.1016/j.jid.2017.09.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 01/04/2023]
Abstract
Cutaneous melanoma is an aggressive tumor that accounts for most skin cancer deaths. Among the physiological barriers against therapeutic success is a strong survival program driven by genes such as MITF that specify melanocyte identity, a phenomenon known in melanoma biology as lineage dependency. MITF overexpression is occasionally explained by gene amplification, but here we show that super-enhancers are also important determinants of MITF overexpression in some melanoma cell lines and tumors. Although compounds that directly inhibit MITF are unavailable, a covalent CDK7 inhibitor, THZ1, has recently been shown to potently suppress the growth of various cancers through the depletion of master transcription-regulating oncogenes and the disruption of their attendant super-enhancers. We also show that melanoma cells are highly sensitive to CDK7 inhibition both in vitro and in vivo and that THZ1 can dismantle the super-enhancer apparatus at MITF and SOX10 in some cell lines, thereby extinguishing their intracellular levels. Our results show a dimension to MITF regulation in melanoma cells and point to CDK7 inhibition as a potential strategy to deprive oncogenic transcription and suppress tumor growth in melanoma.
Collapse
Affiliation(s)
- Philip Eliades
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Dermatology, Weill Cornell Medical College, New York, New York, USA; Signature Healthcare Brockton Hospital, Brockton, Massachusetts, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Miller
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Camilla L Christensen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Raj Kumar
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ching Ni Njauw
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Taylor
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benchun Miao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
56
|
Harbhajanka A, Chahar S, Miskimen K, Silverman P, Harris L, Williams N, Varadan V, Gilmore H. Clinicopathological, immunohistochemical and molecular correlation of neural crest transcription factor SOX10 expression in triple-negative breast carcinoma. Hum Pathol 2018; 80:163-169. [PMID: 29894722 DOI: 10.1016/j.humpath.2018.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022]
Abstract
The transcription factor SOX10 mediates the differentiation of neural crest-derived cells, and SOX10 by immunohistochemistry (IHC) is used primarily for the diagnosis of melanoma. SOX10 expression has been previously documented in benign breast myoepithelial cells. However there is limited literature on its expression in triple-negative breast carcinoma (TNBC). The aim was to study the clinical, pathologic and molecular profiles of SOX10+ tumors in TNBC. Tissue microarrays of TNBC were evaluated for SOX10 expression in 48 cases. SOX10 expression was correlated with clinical and pathologic features such as age, grade, and stage. Gene expression was analyzed on RNA extracted from formalin-fixed paraffin-embedded (FFPE) specimens with Affymetrix 2.0 HTA. Co-expression of SOX10 with androgen receptor (AR), WT1, gross cystic disease fluid protein-15 (GCDFP-15), mammaglobin, epidermal growth factor receptor (EGFR), CK5/6 and GATA transcription factor 3 (GATA3) were also assessed. The mean age was 59.38 (range, 28-90 years). Overall, 37.5% cases (18/48) were SOX10+. There was no association between SOX10 expression and age, grade or stage of patients; 6 of 10 (60%) cases of basal-like 1 (BL1), and 5 of 8 cases of unstable (UNS) molecular subtype were SOX10+. One of 5 basal-like-2 (BL2), 1 of 6 immunomodulatory (IM), 1 of 4 mesenchymal (M), 1 of 5 luminal androgen receptor (LAR) and 2 of 8 mesenchymal stem cell (MSL) showed lower frequencies of SOX10 expression. There was negative correlation between SOX10 and AR+ subtypes (P < .002). SOX10 was positively correlated with WT1 (P = .05). SOX10 did not show significant correlation with mammaglobin, GCDFP15, EGFR, CK5/6 and GATA3. SOX10 expression in the basal-like and unstable molecular subtypes supports the concept that these neoplasms show myoepithelial differentiation.
Collapse
Affiliation(s)
- Aparna Harbhajanka
- Department of Pathology, University Hospitals Cleveland Medical Center, 44106 Cleveland, OH.
| | - Satyapal Chahar
- Department of Pathology, University Hospitals Cleveland Medical Center, 44106 Cleveland, OH
| | - Kristy Miskimen
- Department of Epidemiology and Biostatistics, Case Western Reserve University, 44106 Cleveland, OH
| | - Paula Silverman
- Department of Medicine, University Hospitals Cleveland Medical Center, 44106 Cleveland, OH
| | | | - Nicole Williams
- Department of Medicine, The Ohio State University Hospitals, 43210 Columbus, OH
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, 44106 Cleveland, OH
| | - Hannah Gilmore
- Department of Pathology, University Hospitals Cleveland Medical Center, 44106 Cleveland, OH
| |
Collapse
|
57
|
The role of sex-determining region Y-box 6 in melanogenesis in alpaca melanocytes. J Dermatol Sci 2018; 91:268-275. [PMID: 29857961 DOI: 10.1016/j.jdermsci.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Sex-determining region Y-box (SOX) proteins function as transcriptional regulators. The derivation of melanocytes from nerve crest cells has been reported to depend on SOX proteins, including SOX10 and SOX5. Whether SOX6 is expressed and has a functional role in melanocytes is unknown. OBJECTIVE We aimed to study the effect of transcription factor SOX6 on melanogenesis in alpaca melanocytes. METHODS We verified the role of SOX6 in melanogenesis by overexpressing and inhibiting SOX6 in melanocytes. Co-immunoprecipitation (co-IP) experiments were performed to further explore the function of SOX6 in melanogenesis and its mechanism of melanin production. We found that SOX6 interacted with cyclin-dependent kinase (CDK5), β-catenin, and Cyclin D1. RESULTS Bioinformatics analysis suggested that SOX6 has a phosphorylation site for CDK5, which regulates melanogenesis, suggesting that SOX6 might play a role in melanogenesis. Co-IP experiments indicated that SOX6 interacted with CDK5, β-catenin, and Cyclin D1. Quantitative real-time polymerase chain reaction and western blot analyses of SOX6-overexpressing melanocytes revealed increased mRNA and protein expression of Cyclin D1, CDK5, microphthalmia transcription factor (MITF), tyrosinase (TYR), tyrosine related protein-1 (TYRP1), and dopachrome-tautomerase (DCT), whereas β-catenin levels decreased in SOX6-overexpressing melanocytes. The opposite results were observed upon SOX6 knockdown. The melanin content was significantly increased or decreased, respectively, by SOX6 overexpression or knockdown. CONCLUSION Our results suggest that SOX6 might enhance melanogenesis by binding with β-catenin to increase Cyclin D1 and MITF expression.
Collapse
|
58
|
Brighton HE, Angus SP, Bo T, Roques J, Tagliatela AC, Darr DB, Karagoz K, Sciaky N, Gatza ML, Sharpless NE, Johnson GL, Bear JE. New Mechanisms of Resistance to MEK Inhibitors in Melanoma Revealed by Intravital Imaging. Cancer Res 2018; 78:542-557. [PMID: 29180473 PMCID: PMC6132242 DOI: 10.1158/0008-5472.can-17-1653] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/06/2017] [Accepted: 11/10/2017] [Indexed: 11/16/2022]
Abstract
Targeted therapeutics that are initially effective in cancer patients nearly invariably engender resistance at some stage, an inherent challenge in the use of any molecular-targeted drug in cancer settings. In this study, we evaluated resistance mechanisms arising in metastatic melanoma to MAPK pathway kinase inhibitors as a strategy to identify candidate strategies to limit risks of resistance. To investigate longitudinal responses, we developed an intravital serial imaging approach that can directly visualize drug response in an inducible RAF-driven, autochthonous murine model of melanoma incorporating a fluorescent reporter allele (tdTomatoLSL). Using this system, we visualized formation and progression of tumors in situ, starting from the single-cell level longitudinally over time. Reliable reporting of the status of primary murine tumors treated with the selective MEK1/2 inhibitor (MEKi) trametinib illustrated a time-course of initial drug response and persistence, followed by the development of drug resistance. We found that tumor cells adjacent to bundled collagen had a preferential persistence in response to MEKi. Unbiased transcriptional and kinome reprogramming analyses from selected treatment time points suggested increased c-Kit and PI3K/AKT pathway activation in resistant tumors, along with enhanced expression of epithelial genes and epithelial-mesenchymal transition downregulation signatures with development of MEKi resistance. Similar trends were observed following simultaneous treatment with BRAF and MEK inhibitors aligned to standard-of-care combination therapy, suggesting these reprogramming events were not specific to MEKi alone. Overall, our results illuminate the integration of tumor-stroma dynamics with tissue plasticity in melanoma progression and provide new insights into the basis for drug response, persistence, and resistance.Significance: A longitudinal study tracks the course of MEKi treatment in an autochthonous imageable murine model of melanoma from initial response to therapeutic resistance, offering new insights into the basis for drug response, persistence, and resistance. Cancer Res; 78(2); 542-57. ©2017 AACR.
Collapse
Affiliation(s)
- Hailey E Brighton
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Steven P Angus
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tao Bo
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jose Roques
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alicia C Tagliatela
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David B Darr
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kubra Karagoz
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael L Gatza
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Norman E Sharpless
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gary L Johnson
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
59
|
Cronin JC, Loftus SK, Baxter LL, Swatkoski S, Gucek M, Pavan WJ. Identification and functional analysis of SOX10 phosphorylation sites in melanoma. PLoS One 2018; 13:e0190834. [PMID: 29315345 PMCID: PMC5760019 DOI: 10.1371/journal.pone.0190834] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
The transcription factor SOX10 plays an important role in vertebrate neural crest development, including the establishment and maintenance of the melanocyte lineage. SOX10 is also highly expressed in melanoma tumors, and SOX10 expression increases with tumor progression. The suppression of SOX10 in melanoma cells activates TGF-β signaling and can promote resistance to BRAF and MEK inhibitors. Since resistance to BRAF/MEK inhibitors is seen in the majority of melanoma patients, there is an immediate need to assess the underlying biology that mediates resistance and to identify new targets for combinatorial therapeutic approaches. Previously, we demonstrated that SOX10 protein is required for tumor initiation, maintenance and survival. Here, we present data that support phosphorylation as a mechanism employed by melanoma cells to tightly regulate SOX10 expression. Mass spectrometry identified eight phosphorylation sites contained within SOX10, three of which (S24, S45 and T240) were selected for further analysis based on their location within predicted MAPK/CDK binding motifs. SOX10 mutations were generated at these phosphorylation sites to assess their impact on SOX10 protein function in melanoma cells, including transcriptional activation on target promoters, subcellular localization, and stability. These data further our understanding of SOX10 protein regulation and provide critical information for identification of molecular pathways that modulate SOX10 protein levels in melanoma, with the ultimate goal of discovering novel targets for more effective combinatorial therapeutic approaches for melanoma patients.
Collapse
Affiliation(s)
- Julia C. Cronin
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Stacie K. Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Laura L. Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Steve Swatkoski
- Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
60
|
Han S, Ren Y, He W, Liu H, Zhi Z, Zhu X, Yang T, Rong Y, Ma B, Purwin TJ, Ouyang Z, Li C, Wang X, Wang X, Yang H, Zheng Y, Aplin AE, Liu J, Shao Y. ERK-mediated phosphorylation regulates SOX10 sumoylation and targets expression in mutant BRAF melanoma. Nat Commun 2018; 9:28. [PMID: 29295999 PMCID: PMC5750221 DOI: 10.1038/s41467-017-02354-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022] Open
Abstract
In human mutant BRAF melanoma cells, the stemness transcription factor FOXD3 is rapidly induced by inhibition of ERK1/2 signaling and mediates adaptive resistance to RAF inhibitors. However, the mechanism underlying ERK signaling control of FOXD3 expression remains unknown. Here we show that SOX10 is both necessary and sufficient for RAF inhibitor-induced expression of FOXD3 in mutant BRAF melanoma cells. SOX10 activates the transcription of FOXD3 by binding to a regulatory element in FOXD3 promoter. Phosphorylation of SOX10 by ERK inhibits its transcription activity toward multiple target genes by interfering with the sumoylation of SOX10 at K55, which is essential for its transcription activity. Finally, depletion of SOX10 sensitizes mutant BRAF melanoma cells to RAF inhibitors in vitro and in vivo. Thus, our work discovers a novel phosphorylation-dependent regulatory mechanism of SOX10 transcription activity and completes an ERK1/2/SOX10/FOXD3/ERBB3 axis that mediates adaptive resistance to RAF inhibitors in mutant BRAF melanoma cells.
Collapse
Affiliation(s)
- Shujun Han
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yibo Ren
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wangxiao He
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huadong Liu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhe Zhi
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinliang Zhu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tielin Yang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yu Rong
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bohan Ma
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Zhenlin Ouyang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Caixia Li
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xun Wang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xueqiang Wang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huizi Yang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan Zheng
- Department of Dermatology, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jiankang Liu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China.
| | - Yongping Shao
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
61
|
Tudrej KB, Czepielewska E, Kozłowska-Wojciechowska M. SOX10-MITF pathway activity in melanoma cells. Arch Med Sci 2017; 13:1493-1503. [PMID: 29181082 PMCID: PMC5701683 DOI: 10.5114/aoms.2016.60655] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/16/2016] [Indexed: 01/28/2023] Open
Abstract
Melanoma is one of the most dangerous and lethal skin cancers, with a considerable metastatic potential and drug resistance. It involves a malignant transformation of melanocytes. The exact course of events in which melanocytes become melanoma cells remains unclear. Nevertheless, this process is said to be dependent on the occurrence of cells with the phenotype of progenitor cells - cells characterized by expression of proteins such as nestin, CD-133 or CD-271. The development of these cells and their survival were found to be potentially dependent on the neural crest stem cell transcription factor SOX10. This is just one of the possible roles of SOX10, which contributes to melanomagenesis by regulating the SOX10-MITF pathway, but also to melanoma cell survival, proliferation and metastasis formation. The aim of this review is to describe the broad influence of the SOX10-MITF pathway on melanoma cells.
Collapse
Affiliation(s)
- Karol B Tudrej
- Department of Clinical Pharmacology and Pharmaceutical Care, Medical University of Warsaw, Warsaw, Poland
| | - Edyta Czepielewska
- Department of Clinical Pharmacology and Pharmaceutical Care, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
62
|
Kandukuri SR, Lin F, Gui L, Gong Y, Fan F, Chen L, Cai G, Liu H. Application of Immunohistochemistry in Undifferentiated Neoplasms: A Practical Approach. Arch Pathol Lab Med 2017; 141:1014-1032. [DOI: 10.5858/arpa.2016-0518-ra] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context.—
Advances in interventional technology have enhanced the ability to safely sample deep-seated suspicious lesions by fine-needle aspiration procedures. These procedures often yield scant amounts of diagnostic material, yet there is an increasing demand for the performance of more ancillary tests, especially immunohistochemistry and, not infrequently, molecular assays, to increase diagnostic sensitivity and specificity. A systematic approach to conserving diagnostic material is the key, and our previously proposed algorithm can be applied aptly in this context.
Objective.—
To elaborate a simple stepwise approach to the evaluation of cytology fine-needle aspiration specimens and small biopsy tissue specimens, illustrating the algorithmic application of small panels of immunohistochemical stains in providing an accurate diagnosis with scant amounts of tissue, including the potential pitfalls that may arise while using immunohistochemical staining on small quantities of tissue.
Data Sources.—
The sources include literature (PubMed), the first Chinese American Pathologists Association Diagnostic Pathology Course material, and the review authors' research data as well as practice experience. Seven examples selected from the CoPath database at Geisinger Medical Center (Danville, Pennsylvania) are illustrated.
Conclusions.—
A stepwise approach to the evaluation of fine-needle aspiration and small biopsy tissue specimens in conjunction with a small panel of select immunohistochemical stains has been successful in accurately assessing the lineage/origin of the metastatic tumors of unknown primaries. The awareness of the common pitfalls of these biomarkers is essential in many instances.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haiyan Liu
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania (Drs Kandukuri, Lin, and Liu); the Department of Pathology, Northwest Arkansas Pathology Group, Fayetteville (Dr Gui); the Department of Pathology, MD Anderson Cancer Center, Houston, Texas (Dr Gong); the Department of Pathology, The University of Kansas Medical Center, Kansas City (Dr Fan); the Departmen
| |
Collapse
|
63
|
Human Adipose Mesenchymal Cells Inhibit Melanocyte Differentiation and the Pigmentation of Human Skin via Increased Expression of TGF-β1. J Invest Dermatol 2017; 137:2560-2569. [PMID: 28774590 DOI: 10.1016/j.jid.2017.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/30/2017] [Accepted: 06/14/2017] [Indexed: 01/06/2023]
Abstract
There is accumulating evidence that interactions between epidermal melanocytes and stromal cells play an important role in the regulation of skin pigmentation. In this study we established a pigmented dermo-epidermal skin model, melDESS, of human origin to investigate the effects of distinct stromal cells on melanogenesis. melDESS is a complex, clinically relevant skin equivalent composed of an epidermis containing both melanocytes and keratinocytes. Its dermal compartment consists either of adipose tissue-derived stromal cells, dermal fibroblasts (Fbs), or a mixture of both cell types. These skin substitutes were transplanted for 5 weeks on the backs of immuno-incompetent rats and analyzed. Gene expression and Western blot analyses showed a significantly higher expression of transforming growth factor-β1 by adipose tissue-derived stromal cells compared with dermal Fbs. In addition, we showed that melanocytes responded to the increased levels of transforming growth factor-β1 by down-regulating the expression of key melanogenic enzymes such as tyrosinase. This caused decreased melanin synthesis and, consequently, greatly reduced pigmentation of melDESS. The conclusions are of utmost clinical relevance, namely that adipose tissue-derived stromal cells derived from the hypodermis fail to appropriately interact with epidermal melanocytes, thus preventing the sustainable restoration of the patient's native skin color in bioengineered skin grafts.
Collapse
|
64
|
Cheng Q, Wu J, Zhang Y, Liu X, Xu N, Zuo F, Xu J. SOX4 promotes melanoma cell migration and invasion though the activation of the NF-κB signaling pathway. Int J Mol Med 2017. [PMID: 28627651 PMCID: PMC5504990 DOI: 10.3892/ijmm.2017.3030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
SOX4 has been reported to be abnormally expressed in many types of cancer, including melanoma. However, its role in cell proliferation and metastasis remains controversial. In this study, SOX4 was downregulated or overexpressed in A375, A2058 and A875 melanoma cells by siRNA or lentivirus transfection, respectively. Cell metastasis was observed by Transwell assay. In an aim to elucidate the underlying mechanisms, we determined the expression of nuclear factor-κB (NF-κB) by real-time PCR assay and western blot analysis. Our data indicated that SOX4 knockdown inhibited melanoma cell migration and invasion. In the melanoma cells in which SOX4 was downregulated, the expression levels of NF-κB/p65, matrix metalloproteinase (MMP)2 and MMP9 were suppressed at both the mRNA and protein levels. Conversely, the overexpression of SOX4 promoted melanoma cell migration and invasion. In the melanoma cells in which SOX4 was overexpressed, the expression levels of NF-κB/p65, MMP2 and MMP9 were increased at both the mRNA and protein level. On the whole, our findings indicate that SOX4 promotes melanoma cell migration and invasion through the activation of the NF-κB/p65 signaling pathway. Thus, SOX4 may prove to be a potential therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Qiong Cheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yaohua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Nan Xu
- Department of Dermatology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Fuguo Zuo
- Department of Dermatology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
65
|
Han D, Zhang Y, Chen J, Hua G, Li J, Deng X, Deng X. Transcriptome analyses of differential gene expression in the bursa of Fabricius between Silky Fowl and White Leghorn. Sci Rep 2017; 7:45959. [PMID: 28406147 PMCID: PMC5390260 DOI: 10.1038/srep45959] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
Hyperpigmentation in Silky Fowl (SF) results in aberrant immune cell development. However, how melanocytes regulate B-cell proliferation in the bursa of Fabricius (BF) is unclear. To resolve this conundrum, we collected BFs from three-week-old SF and White Leghorn (WL) female chickens for RNA sequencing. The BF development was relatively weaker in SF than in WL. The transcriptome analyses identified 4848 differentially expressed genes, 326 long noncoding RNAs (lncRNAs), and 67 microRNAs in the BF of SF. The genes associated with melanogenesis was significantly higher, but that of the genes associated with the cytokine-cytokine receptor interactions and JAK-STAT signalling pathway was significantly lower in SF than in WL. Crucial biological processes, such as the receptor activity, cell communication, and cellular responses to stimuli, were clustered in SF. The predicted target lncRNAs genes were mainly associated with cell proliferation pathways such as JAK-STAT, WNT, MAPK, and Notch signalling pathways. Except for the above pathways, the target microRNA genes were related to the metabolism, melanogenesis, autophagy, and NOD-like and Toll-like receptor signalling pathways. The lncRNAs and microRNAs were predicted to regulate the JAK2, STAT3, and IL-15 genes. Thus, B-cell development in the BF of SF might be regulated and affected by noncoding RNAs.
Collapse
Affiliation(s)
- Deping Han
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China.,College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Jianfei Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Guoying Hua
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Xuegong Deng
- College of Science, Northeastern University, Shenyang 110004, China
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
66
|
Regulation of SOX10 stability via ubiquitination-mediated degradation by Fbxw7α modulates melanoma cell migration. Oncotarget 2017; 6:36370-82. [PMID: 26461473 PMCID: PMC4742183 DOI: 10.18632/oncotarget.5639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/29/2015] [Indexed: 01/01/2023] Open
Abstract
Dysregulation of SOX10 was reported to be correlated with the progression of multiple cancer types, including melanocytic tumors and tumors of the nervous system. However, the mechanisms by which SOX10 is dysregulated in these tumors are poorly understood. In this study, we report that SOX10 is a direct substrate of Fbxw7α E3 ubiquitin ligase, a tumor suppressor in multiple cancers. Fbxw7α promotes SOX10 ubiquitination-mediated turnover through CPD domain of SOX10. Besides, GSK3β phosphorylates SOX10 at CPD domain and facilitates Fbxw7α-mediated SOX10 degradation. Moreover, SOX10 protein levels were inversely correlated with Fbxw7α in melanoma cells, and modulation of Fbxw7α levels regulated the expression of SOX10 and its downstream gene MIA. More importantly, SOX10 reversed Fbxw7α-mediated suppression of melanoma cell migration. This study provides evidence that the tumor suppressor Fbxw7α is the E3 ubiquitin ligase responsible for the degradation of SOX10, and suggests that reduced Fbxw7α might contribute to the upregulation of SOX10 in melanoma cells.
Collapse
|
67
|
Panaccione A, Guo Y, Yarbrough WG, Ivanov SV. Expression Profiling of Clinical Specimens Supports the Existence of Neural Progenitor-Like Stem Cells in Basal Breast Cancers. Clin Breast Cancer 2017; 17:298-306.e7. [PMID: 28216417 DOI: 10.1016/j.clbc.2017.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/09/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND We previously characterized in salivary adenoid cystic carcinoma (ACC) a novel population of cancer stem cells (CSCs) marked by coexpression of 2 stemness genes, sex-determining region Y (SRY)-related HMG box-containing factor 10 (SOX10) and CD133. We also reported that in ACC and basal-like breast carcinoma (BBC), a triple-negative breast cancer subtype, expression of SOX10 similarly demarcates a highly conserved gene signature enriched with neural stem cell genes. On the basis of these findings, we hypothesized that BBC might be likewise driven by SOX10-positive (SOX10+)/CD133+ cells with neural stem cell properties. MATERIALS AND METHODS To validate our hypothesis on clinical data, we used a novel approach to meta-analysis that merges gene expression data from independent breast cancer studies and ranks genes according to statistical significance of their coexpression with the gene of interest. Genes that showed strong association with CD133/PROM1 as well as SOX10 were validated across different platforms and data sets and analyzed for enrichment with genes involved in neurogenesis. RESULTS We identified in clinical breast cancer data sets a highly conserved SOX10/PROM1 gene signature that contains neural stem cell markers common for Schwann cells, ACC, BBC, and melanoma. Identification of tripartite motif-containing 2 (TRIM2), TRIM29, MPZL2, potassium calcium-activated channel subfamily N member 4 (KCNN4), and V-set domain containing T cell activation inhibitor 1 (VTCN1)/B7 homolog 4 (B7H4) within this signature provides insight into molecular mechanisms of CSC maintenance. CONCLUSION Our results suggest that BBC is driven by SOX10+/CD133+ cells that express neural stem cell-specific markers and share molecular similarities with CSCs of neural crest origin. Our study provides clinically relevant information on possible drivers of these cells that might facilitate development of CSC-targeting therapies against this cancer distinguished with poor prognosis and resistance to conventional therapies.
Collapse
Affiliation(s)
- Alex Panaccione
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, New Haven, CT
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Wendell G Yarbrough
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, New Haven, CT; Head and Neck Disease Center, Smilow Cancer Hospital, New Haven, CT; Molecular Virology Program, Yale Cancer Center, New Haven, CT
| | - Sergey V Ivanov
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
68
|
Abstract
Dysregulation of the normal gene expression program is the cause of a broad range of diseases, including cancer. Detecting the specific perturbed regulators that have an effect on the generation and the development of the disease is crucial for understanding the disease mechanism and for taking decisions on efficient preventive and curative therapies. Moreover, detecting such perturbations at the patient level is even more important from the perspective of personalized medicine. We applied the Transcription Factor Target Enrichment Analysis, a method that detects the activity of transcription factors based on the quantification of the collective transcriptional activation of their targets, to a large collection of 5607 cancer samples covering eleven cancer types. We produced for the first time a comprehensive catalogue of altered transcription factor activities in cancer, a considerable number of them significantly associated to patient’s survival. Moreover, we described several interesting TFs whose activity do not change substantially in the cancer with respect to the normal tissue but ultimately play an important role in patient prognostic determination, which suggest they might be promising therapeutic targets. An additional advantage of this method is that it allows obtaining personalized TF activity estimations for individual patients.
Collapse
|
69
|
Kato M, Nishihara H, Hayashi H, Kimura T, Ishida Y, Wang L, Tsuda M, Tanino MA, Tanaka S. Clinicopathological evaluation of Sox10 expression in diffuse-type gastric adenocarcinoma. Med Oncol 2016; 34:8. [DOI: 10.1007/s12032-016-0865-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 12/25/2022]
|
70
|
Babaian A, Mager DL. Endogenous retroviral promoter exaptation in human cancer. Mob DNA 2016; 7:24. [PMID: 27980689 PMCID: PMC5134097 DOI: 10.1186/s13100-016-0080-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer arises from a series of genetic and epigenetic changes, which result in abnormal expression or mutational activation of oncogenes, as well as suppression/inactivation of tumor suppressor genes. Aberrant expression of coding genes or long non-coding RNAs (lncRNAs) with oncogenic properties can be caused by translocations, gene amplifications, point mutations or other less characterized mechanisms. One such mechanism is the inappropriate usage of normally dormant, tissue-restricted or cryptic enhancers or promoters that serve to drive oncogenic gene expression. Dispersed across the human genome, endogenous retroviruses (ERVs) provide an enormous reservoir of autonomous gene regulatory modules, some of which have been co-opted by the host during evolution to play important roles in normal regulation of genes and gene networks. This review focuses on the “dark side” of such ERV regulatory capacity. Specifically, we discuss a growing number of examples of normally dormant or epigenetically repressed ERVs that have been harnessed to drive oncogenes in human cancer, a process we term onco-exaptation, and we propose potential mechanisms that may underlie this phenomenon.
Collapse
Affiliation(s)
- Artem Babaian
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
71
|
Gopinath C, Law WD, Rodríguez-Molina JF, Prasad AB, Song L, Crawford GE, Mullikin JC, Svaren J, Antonellis A. Stringent comparative sequence analysis reveals SOX10 as a putative inhibitor of glial cell differentiation. BMC Genomics 2016; 17:887. [PMID: 27821050 PMCID: PMC5100263 DOI: 10.1186/s12864-016-3167-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background The transcription factor SOX10 is essential for all stages of Schwann cell development including myelination. SOX10 cooperates with other transcription factors to activate the expression of key myelin genes in Schwann cells and is therefore a context-dependent, pro-myelination transcription factor. As such, the identification of genes regulated by SOX10 will provide insight into Schwann cell biology and related diseases. While genome-wide studies have successfully revealed SOX10 target genes, these efforts mainly focused on myelinating stages of Schwann cell development. We propose that less-biased approaches will reveal novel functions of SOX10 outside of myelination. Results We developed a stringent, computational-based screen for genome-wide identification of SOX10 response elements. Experimental validation of a pilot set of predicted binding sites in multiple systems revealed that SOX10 directly regulates a previously unreported alternative promoter at SOX6, which encodes a transcription factor that inhibits glial cell differentiation. We further explored the utility of our computational approach by combining it with DNase-seq analysis in cultured Schwann cells and previously published SOX10 ChIP-seq data from rat sciatic nerve. Remarkably, this analysis enriched for genomic segments that map to loci involved in the negative regulation of gliogenesis including SOX5, SOX6, NOTCH1, HMGA2, HES1, MYCN, ID4, and ID2. Functional studies in Schwann cells revealed that: (1) all eight loci are expressed prior to myelination and down-regulated subsequent to myelination; (2) seven of the eight loci harbor validated SOX10 binding sites; and (3) seven of the eight loci are down-regulated upon repressing SOX10 function. Conclusions Our computational strategy revealed a putative novel function for SOX10 in Schwann cells, which suggests a model where SOX10 activates the expression of genes that inhibit myelination during non-myelinating stages of Schwann cell development. Importantly, the computational and functional datasets we present here will be valuable for the study of transcriptional regulation, SOX protein function, and glial cell biology. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3167-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chetna Gopinath
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - William D Law
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - José F Rodríguez-Molina
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Arjun B Prasad
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.,Department of Pediatrics, Duke University Medical Center, Durham, NC, 27708, USA
| | - James C Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
72
|
Lee TH, Park S, Yoo G, Jang C, Kim MH, Kim SH, Kim SY. Demethyleugenol β-Glucopyranoside Isolated from Agastache rugosa Decreases Melanin Synthesis via Down-regulation of MITF and SOX9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7733-7742. [PMID: 27673705 DOI: 10.1021/acs.jafc.6b03256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Agastache rugosa (Fisch. & C. A. Mey.) Kuntze has been well-known for its antioxidative properties. This study investigated the anti-melanogenesis effect of demethyleugenol β-d-glucopyranoside (1) from A. rugosa by studying molecular regulation of melanogenesis in melan-a mouse melanocytes and normal human epidermal melanocytes (NHEMs) and in in vivo models. The SRY (sex-determining region on the Y chromosome)-related high-mobility group (HMG) box 9 (SOX9), one of the critical factors that affect skin pigmentation, is up-regulated. Interestingly, 1 down-regulated the expression of SOX9 and microphthalmia-associated transcription factor (MITF). Reduction of these two transcription factors resulted in a decrease in melanogenic enzymes such as tyrosinase, tyrosinase-related protein 1, and dopachrome tautomerase. As a result, 1 significantly inhibited melanin synthesis in melan-a mouse melanocytes and NHEMs. In addition, the anti-melanogenic effect of 1 was confirmed in zebrafish and reconstructed skin tissue models. In conclusion, 1, as a potent SOX9 regulator, ameliorates skin pigmentation.
Collapse
Affiliation(s)
- Taek Hwan Lee
- College of Pharmacy, Yonsei University , 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - SeonJu Park
- College of Pharmacy, Yonsei University , 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Guijae Yoo
- College of Pharmacy, Yonsei University , 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Cheongyun Jang
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Mi-Hyun Kim
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
- Gachon Institute of Pharmaceutical Science, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei University , 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Sun Yeou Kim
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
- Gachon Medical Research Institute, Gil Medical Center , Incheon 21565, Republic of Korea
- Gachon Institute of Pharmaceutical Science, Gachon University , 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
73
|
Gambichler T, Petig AL, Stockfleth E, Stücker M. Expression of SOX10, ABCB5 and CD271 in melanocytic lesions and correlation with survival data of patients with melanoma. Clin Exp Dermatol 2016; 41:709-16. [DOI: 10.1111/ced.12928] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 11/26/2022]
Affiliation(s)
- T. Gambichler
- Skin Cancer Center of the Department of Dermatology; Ruhr-University Bochum; Bochum Germany
| | - A.-L. Petig
- Skin Cancer Center of the Department of Dermatology; Ruhr-University Bochum; Bochum Germany
| | - E. Stockfleth
- Skin Cancer Center of the Department of Dermatology; Ruhr-University Bochum; Bochum Germany
| | - M. Stücker
- Skin Cancer Center of the Department of Dermatology; Ruhr-University Bochum; Bochum Germany
| |
Collapse
|
74
|
Zage PE, Whittle SB, Shohet JM. CD114: A New Member of the Neural Crest-Derived Cancer Stem Cell Marker Family. J Cell Biochem 2016; 118:221-231. [PMID: 27428599 DOI: 10.1002/jcb.25656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022]
Abstract
The neural crest is a population of cells in the vertebrate embryo that gives rise to a wide range of tissues and cell types, including components of the peripheral nervous system and the craniofacial skeleton as well as melanocytes and the adrenal medulla. Aberrations in neural crest development can lead to numerous diseases, including cancers such as melanoma and neuroblastoma. Cancer stem cells (CSCs) have been identified in these neural crest-derived tumors, and these CSCs demonstrate resistance to treatment and are likely key contributors to disease relapse. Patients with neural crest-derived tumors often have poor outcomes due to frequent relapses, likely due to the continued presence of residual treatment-resistant CSCs, and therapies directed against these CSCs are likely to improve patient outcomes. CSCs share many of the same genetic and biologic features of primordial neural crest cells, and therefore a better understanding of neural crest development will likely lead to the development of effective therapies directed against these CSCs. Signaling through STAT3 has been shown to be required for neural crest development, and granulocyte colony stimulating factor (GCSF)-mediated activation of STAT3 has been shown to play a role in the pathogenesis of neural crest-derived tumors. Expression of the cell surface marker CD114 (the receptor for GCSF) has been identified as a potential marker for CSCs in neural crest-derived tumors, suggesting that CD114 expression and function may contribute to disease relapse and poor patient outcomes. Here we review the processes of neural crest development and tumorigenesis and we discuss the previously identified markers for CSC subpopulations identified in neural crest tumors and their role in neural crest tumor biology. We also discuss the potential for CD114 and downstream intracellular signaling pathways as potential targets for CSC-directed therapy. J. Cell. Biochem. 118: 221-231, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter E Zage
- Division of Hematology-Oncology, Department of Pediatrics, University of California San Diego, La Jolla, California.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, California
| | - Sarah B Whittle
- Department of Pediatrics, Section of Hematology-Oncology, Children's Cancer Center, Houston, Texas
| | - Jason M Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Children's Cancer Center, Houston, Texas.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
75
|
Signaling Pathways in Melanogenesis. Int J Mol Sci 2016; 17:ijms17071144. [PMID: 27428965 PMCID: PMC4964517 DOI: 10.3390/ijms17071144] [Citation(s) in RCA: 543] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/03/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022] Open
Abstract
Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis.
Collapse
|
76
|
Wang HY, Lian P, Zheng PS. SOX9, a potential tumor suppressor in cervical cancer, transactivates p21WAF1/CIP1 and suppresses cervical tumor growth. Oncotarget 2016; 6:20711-22. [PMID: 26036262 PMCID: PMC4653037 DOI: 10.18632/oncotarget.4133] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/22/2015] [Indexed: 01/09/2023] Open
Abstract
Sex-determining region Y-box 9 protein (SOX9) is a transcription factor that may act as both oncogene and tumor suppressor depending on tumor origin. Here we found that SOX9 expression was progressively decreased in cervical carcinoma in situ and especially in invasive cervical carcinoma, compared with normal cervix tissue. The effects of SOX9 on the proliferation, viability, and tumor formation of cervical carcinoma cells were assessed through the silencing and overexpression of SOX9. Overexpression of SOX9 in cervical carcinoma cells (SiHa and C33A) inhibited cell growth in vitro and tumor formation in vivo. In agreement, the silencing of SOX9 in HeLa cells promoted cell growth in culture and tumor formation in mice. Overexpression of SOX9 transactivated p21WAF1/CIP1 via a specific promoter region, thus blocking G1/S transition. The quantitative chromatin immunoprecipitation analysis revealed physical interaction between SOX9 and the specific region of the p21WAF1/CIP1 promoter. We suggest that SOX9 is a potential therapeutic target in cervical carcinoma, that specifically transactivates p21WAF1/CIP1.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University Medical School, Xi'an, China
| | - Ping Lian
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University Medical School, Xi'an, China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University Medical School, Xi'an, China
| |
Collapse
|
77
|
Wang P, Zhao Y, Fan R, Chen T, Dong C. MicroRNA-21a-5p Functions on the Regulation of Melanogenesis by Targeting Sox5 in Mouse Skin Melanocytes. Int J Mol Sci 2016; 17:ijms17070959. [PMID: 27347933 PMCID: PMC4964364 DOI: 10.3390/ijms17070959] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/02/2016] [Accepted: 06/12/2016] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRNAs) play an important role in regulating almost all biological processes. miRNAs bind to the 3′ untranslated region (UTR) of mRNAs by sequence matching. In a previous study, we demonstrated that miR-21 was differently expressed in alpaca skin with different hair color. However, the molecular and cellular mechanisms for miR-21 to regulate the coat color are not yet completely understood. In this study, we transfected miR-21a-5p into mouse melanocytes and demonstrated its function on melanogenesis of miR-21a-5p by targeting Sox5, which inhibits melanogenesis in mouse melanocytes. The results suggested that miR-21a-5p targeted Sox5 gene based on the binding site in 3′ UTR of Sox5 and overexpression of miR-21a-5p significantly down-regulated Sox5 mRNA and protein expression. Meanwhile, mRNA and protein expression of microphthalmia transcription factor (MITF) and Tyrosinase (TYR) were up-regulated, which subsequently make the melanin production in melanocytes increased. The results suggest that miR-21a-5p regulates melanogenesis via MITF by targeting Sox5.
Collapse
Affiliation(s)
- Pengchao Wang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yuanyuan Zhao
- Wujiang River Institute of Agriculture & Forestry Economics, Tongren University, Tongren 554300, Guizhou, China.
| | - Ruiwen Fan
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Tianzhi Chen
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Changsheng Dong
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
78
|
Ma J, Zhang TS, Lin K, Sun H, Jiang HC, Yang YL, Low F, Gao YQ, Ruan B. Waardenburg syndrome type II in a Chinese patient caused by a novel nonsense mutation in the SOX10 gene. Int J Pediatr Otorhinolaryngol 2016; 85:56-61. [PMID: 27240497 DOI: 10.1016/j.ijporl.2016.03.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Waardenburg syndrome is a congenital genetic disorder. It is the most common type of syndromic hearing impairment with highly genetic heterogeneity and proved to be related by 6 genes as follows: PAX3, MITF, SNAI2, EDN3, EDNRB and SOX10. This article aims to identify the genetic causes of a Chinese WS child patient. METHODS A Chinese WS child was collected for clinical data collection by questionnaire survey. DNA samples of proband and his parents were extracted from peripheral blood samples. Six candidate genes were sequenced by the Trusight One sequencing panel on the illumina NextSeq 500 platform. RESULTS A novel nonsense heterozygous mutation was found in the coding region of exon 2 in the SOX10 gene of proband. The novel nonsense heterozygous mutation could cause the replacement of the 55th lysine codon by stop codon (484T > C, C142R) and further more possibly cause terminating the protein translation in advance. However, both proband's parents had no mutation of genes above mentioned. CONCLUSION The gene mutation of SOX10 [NM_006941.3 c.163A > T] is a novel nonsense mutation. No record of this mutation has been found in dbSNP, HGMD, 1000 Genomes Project, ClinVar and ESP6500 databases. It meets the condition of PS2 of strong evidence in 2015 ACMG Standards and Guidelines.
Collapse
Affiliation(s)
- Jing Ma
- Department of Otolaryngology, Head & Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Tie-Song Zhang
- Department of Otolaryngology, Head & Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Ken Lin
- Department of Otolaryngology, Head & Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union of Medical College, Kunming, Yunnan, China
| | - Hong-Chao Jiang
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yan-Li Yang
- Department of Otolaryngology, First Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fan Low
- Department of Otolaryngology, Head & Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Ying-Qin Gao
- Department of Otolaryngology, Head & Neck Surgery, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Biao Ruan
- Department of Otolaryngology, First Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
79
|
Melanoma addiction to the long non-coding RNA SAMMSON. Nature 2016; 531:518-22. [DOI: 10.1038/nature17161] [Citation(s) in RCA: 380] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/21/2016] [Indexed: 01/02/2023]
|
80
|
RAB7 counteracts PI3K-driven macropinocytosis activated at early stages of melanoma development. Oncotarget 2016; 6:11848-62. [PMID: 26008978 PMCID: PMC4494909 DOI: 10.18632/oncotarget.4055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 04/20/2015] [Indexed: 12/28/2022] Open
Abstract
Derailed endolysosomal trafficking is emerging as a widespread feature of aggressive neoplasms. However, the oncogenic signals that alter membrane homeostasis and their specific contribution to cancer progression remain unclear. Understanding the upstream drivers and downstream regulators of aberrant vesicular trafficking is distinctly important in melanoma. This disease is notorious for its inter- and intra-tumoral heterogeneity. Nevertheless, melanomas uniformly overexpress a cluster of endolysosomal genes, being particularly addicted to the membrane traffic regulator RAB7. Still, the underlying mechanisms and temporal determinants of this dependency have yet to be defined. Here we addressed these questions by combining electron microscopy, real time imaging and mechanistic analyses of vesicular trafficking in normal and malignant human melanocytic cells. This strategy revealed Class I PI3K as the key trigger of a hyperactive influx of macropinosomes that melanoma cells counteract via RAB7-mediated lysosomal degradation. In addition, gain- and loss-of-function in vitro studies followed by histopathological validation in clinical biopsies and genetically-engineered mouse models, traced back the requirement of RAB7 to the suppression of premature cellular senescence traits elicited in melanocytes by PI3K-inducing oncogenes. Together, these results provide new insight into the regulators and modes of action of RAB7, broadening the impact of endosomal fitness on melanoma development.
Collapse
|
81
|
Callahan SJ, Mica Y, Studer L. Feeder-free Derivation of Melanocytes from Human Pluripotent Stem Cells. J Vis Exp 2016:e53806. [PMID: 26967464 PMCID: PMC4828213 DOI: 10.3791/53806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) represent a platform to study human development in vitro under both normal and disease conditions. Researchers can direct the differentiation of hPSCs into the cell type of interest by manipulating the culture conditions to recapitulate signals seen during development. One such cell type is the melanocyte, a pigment-producing cell of neural crest (NC) origin responsible for protecting the skin against UV irradiation. This protocol presents an extension of a currently available in vitro Neural Crest differentiation protocol from hPSCs to further differentiate NC into fully pigmented melanocytes. Melanocyte precursors can be enriched from the Neural Crest protocol via a timed exposure to activators of WNT, BMP, and EDN3 signaling under dual-SMAD-inhibition conditions. The resultant melanocyte precursors are then purified and matured into fully pigmented melanocytes by culture in a selective medium. The resultant melanocytes are fully pigmented and stain appropriately for proteins characteristic of mature melanocytes.
Collapse
Affiliation(s)
- Scott J Callahan
- The Center for Stem Cell Biology, Developmental Biology Program, Memorial Sloan-Kettering Cancer Center; Cancer Biology and Genetics Program, Gerstner Sloan-Kettering Graduate School, Sloan-Kettering Institute for Cancer Research
| | | | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Memorial Sloan-Kettering Cancer Center;
| |
Collapse
|
82
|
Kordaß T, Weber CEM, Oswald M, Ast V, Bernhardt M, Novak D, Utikal J, Eichmüller SB, König R. SOX5 is involved in balanced MITF regulation in human melanoma cells. BMC Med Genomics 2016; 9:10. [PMID: 26927636 PMCID: PMC4772287 DOI: 10.1186/s12920-016-0170-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/21/2016] [Indexed: 02/07/2023] Open
Abstract
Background Melanoma is a cancer with rising incidence and new therapeutics are needed. For this, it is necessary to understand the molecular mechanisms of melanoma development and progression. Melanoma differs from other cancers by its ability to produce the pigment melanin via melanogenesis; this biosynthesis is essentially regulated by microphthalmia-associated transcription factor (MITF). MITF regulates various processes such as cell cycling and differentiation. MITF shows an ambivalent role, since high levels inhibit cell proliferation and low levels promote invasion. Hence, well-balanced MITF homeostasis is important for the progression and spread of melanoma. Therefore, it is difficult to use MITF itself for targeted therapy, but elucidating its complex regulation may lead to a promising melanoma-cell specific therapy. Method We systematically analyzed the regulation of MITF with a novel established transcription factor based gene regulatory network model. Starting from comparative transcriptomics analysis using data from cells originating from nine different tumors and a melanoma cell dataset, we predicted the transcriptional regulators of MITF employing ChIP binding information from a comprehensive set of databases. The most striking regulators were experimentally validated by functional assays and an MITF-promoter reporter assay. Finally, we analyzed the impact of the expression of the identified regulators on clinically relevant parameters of melanoma, i.e. the thickness of primary tumors and patient overall survival. Results Our model predictions identified SOX10 and SOX5 as regulators of MITF. We experimentally confirmed the role of the already well-known regulator SOX10. Additionally, we found that SOX5 knockdown led to MITF up-regulation in melanoma cells, while double knockdown with SOX10 showed a rescue effect; both effects were validated by reporter assays. Regarding clinical samples, SOX5 expression was distinctively up-regulated in metastatic compared to primary melanoma. In contrast, survival analysis of melanoma patients with predominantly metastatic disease revealed that low SOX5 levels were associated with a poor prognosis. Conclusion MITF regulation by SOX5 has been shown only in murine cells, but not yet in human melanoma cells. SOX5 has a strong inhibitory effect on MITF expression and seems to have a decisive clinical impact on melanoma during tumor progression. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0170-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Theresa Kordaß
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany. .,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany.
| | - Claudia E M Weber
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany.
| | - Marcus Oswald
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany. .,Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745, Jena, Germany.
| | - Volker Ast
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany. .,Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745, Jena, Germany.
| | - Mathias Bernhardt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany. .,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany. .,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany. .,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| | - Stefan B Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), INF 280, 69120, Heidelberg, Germany.
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany. .,Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745, Jena, Germany. .,Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121, Heidelberg, Germany.
| |
Collapse
|
83
|
SOX10: a useful marker for identifying metastatic melanoma in sentinel lymph nodes. Appl Immunohistochem Mol Morphol 2015; 23:109-12. [PMID: 25356946 DOI: 10.1097/pai.0000000000000097] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
SOX10 (Sry-related HMg-Box gene 10) is a key nuclear transcription factor in the differentiation of neural crest progenitor cells to melanocytes. It has been shown to be a sensitive and specific marker of malignant melanoma of multiple histologic types. We evaluated the immunohistochemical profile of SOX10 in 107 sentinel lymph nodes and compared it to S100 protein, HMB-45, and Melan-A. Seventy-seven lymph nodes originally reported as positive for metastatic melanoma, and 30 reported as negative were reviewed. SOX10 identified metastatic melanoma in 58 of 58 (100%) positive cases included in the final analysis. SOX10 staining showed a statistically significant increase in staining intensity when compared with S100 protein, HMB-45, and Melan-A (P = 0.000, 0.000, and 0.003, respectively). In addition, there was a statistically significant increase in percentage of tumor cells stained by SOX10, compared with S100 protein, HMB-45, and Melan-A (P = 0.015, 0.000, and 0.001, respectively). SOX10 stained nodal nevi in a similar manner to S100 protein and Melan-A in 4 cases. Interpretation of nodal nevus staining (negative by HMB-45) was significantly aided by the crisp nuclear staining produced by SOX10 as compared with the obscuring cytoplasmic staining produced by S100 protein and Melan-A in 3 cases. Identification of micrometastases was facilitated by the nuclear staining pattern of SOX10 and lack of background dendritic cell staining seen in S100 protein. We conclude that given the sensitivity and specificity of SOX10 for detecting metastatic melanoma in sentinel lymph nodes, it is a reliable marker for supplementing and potentially replacing traditionally utilized immunohistochemical stains.
Collapse
|
84
|
Rambow F, Job B, Petit V, Gesbert F, Delmas V, Seberg H, Meurice G, Van Otterloo E, Dessen P, Robert C, Gautheret D, Cornell RA, Sarasin A, Larue L. New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis. Cell Rep 2015; 13:840-853. [PMID: 26489459 PMCID: PMC5970542 DOI: 10.1016/j.celrep.2015.09.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/30/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
Molecular signatures specific to particular tumor types are required to design treatments for resistant tumors. However, it remains unclear whether tumors and corresponding cell lines used for drug development share such signatures. We developed similarity core analysis (SCA), a universal and unsupervised computational framework for extracting core molecular features common to tumors and cell lines. We applied SCA to mRNA/miRNA expression data from various sources, comparing melanoma cell lines and metastases. The signature obtained was associated with phenotypic characteristics in vitro, and the core genes CAPN3 and TRIM63 were implicated in melanoma cell migration/invasion. About 90% of the melanoma signature genes belong to an intrinsic network of transcription factors governing neural development (TFAP2A, DLX2, ALX1, MITF, PAX3, SOX10, LEF1, and GAS7) and miRNAs (211-5p, 221-3p, and 10a-5p). The SCA signature effectively discriminated between two subpopulations of melanoma patients differing in overall survival, and classified MEKi/BRAFi-resistant and -sensitive melanoma cell lines.
Collapse
Affiliation(s)
- Florian Rambow
- Institut Curie, Normal and Pathological Development of Melanocytes, 91405 Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France; INSERM U1021, 91405 Orsay, France; Equipe Labellisée - Ligue Nationale contre le Cancer, 91405 Orsay, France
| | - Bastien Job
- Plateforme de Bioinformatique, UMS AMMICA, Gustave-Roussy, 94805 Villejuif, France
| | - Valérie Petit
- Institut Curie, Normal and Pathological Development of Melanocytes, 91405 Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France; INSERM U1021, 91405 Orsay, France; Equipe Labellisée - Ligue Nationale contre le Cancer, 91405 Orsay, France
| | - Franck Gesbert
- Institut Curie, Normal and Pathological Development of Melanocytes, 91405 Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France; INSERM U1021, 91405 Orsay, France; Equipe Labellisée - Ligue Nationale contre le Cancer, 91405 Orsay, France
| | - Véronique Delmas
- Institut Curie, Normal and Pathological Development of Melanocytes, 91405 Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France; INSERM U1021, 91405 Orsay, France; Equipe Labellisée - Ligue Nationale contre le Cancer, 91405 Orsay, France
| | - Hannah Seberg
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Guillaume Meurice
- Plateforme de Bioinformatique, UMS AMMICA, Gustave-Roussy, 94805 Villejuif, France
| | - Eric Van Otterloo
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Philippe Dessen
- Plateforme de Bioinformatique, UMS AMMICA, Gustave-Roussy, 94805 Villejuif, France
| | | | - Daniel Gautheret
- Plateforme de Bioinformatique, UMS AMMICA, Gustave-Roussy, 94805 Villejuif, France
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Alain Sarasin
- Centre National de la Recherche Scientifique (CNRS) UMR8200, Gustave-Roussy and University Paris-Sud, 94805 Villejuif, France
| | - Lionel Larue
- Institut Curie, Normal and Pathological Development of Melanocytes, 91405 Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France; INSERM U1021, 91405 Orsay, France; Equipe Labellisée - Ligue Nationale contre le Cancer, 91405 Orsay, France.
| |
Collapse
|
85
|
Brenig B, Duan Y, Xing Y, Ding N, Huang L, Schütz E. Porcine SOX9 Gene Expression Is Influenced by an 18 bp Indel in the 5'-Untranslated Region. PLoS One 2015; 10:e0139583. [PMID: 26430891 PMCID: PMC4592210 DOI: 10.1371/journal.pone.0139583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/15/2015] [Indexed: 12/03/2022] Open
Abstract
Sex determining region Y-box 9 (SOX9) is an important regulator of sex and skeletal development and is expressed in a variety of embryonal and adult tissues. Loss or gain of function resulting from mutations within the coding region or chromosomal aberrations of the SOX9 locus lead to a plethora of detrimental phenotypes in humans and animals. One of these phenotypes is the so-called male-to-female or female-to-male sex-reversal which has been observed in several mammals including pig, dog, cat, goat, horse, and deer. In 38,XX sex-reversal French Large White pigs, a genome-wide association study suggested SOX9 as the causal gene, although no functional mutations were identified in affected animals. However, besides others an 18bp indel had been detected in the 5′-untranslated region of the SOX9 gene by comparing affected animals and controls. We have identified the same indel (Δ18) between position +247bp and +266bp downstream the transcription start site of the porcine SOX9 gene in four other pig breeds; i.e., German Large White, Laiwu Black, Bamei, and Erhualian. These animals have been genotyped in an attempt to identify candidate genes for porcine inguinal and/or scrotal hernia. Because the 18bp segment in the wild type 5′-UTR harbours a highly conserved cAMP-response element (CRE) half-site, we analysed its role in SOX9 expression in vitro. Competition and immunodepletion electromobility shift assays demonstrate that the CRE half-site is specifically recognized by CREB. Both binding of CREB to the wild type as well as the absence of the CRE half-site in Δ18 reduced expression efficiency in HEK293T, PK–15, and ATDC5 cells significantly. Transfection experiments of wild type and Δ18 SOX9 promoter luciferase constructs show a significant reduction of RNA and protein levels depending on the presence or absence of the 18bp segment. Hence, the data presented here demonstrate that the 18bp indel in the porcine SOX9 5′-UTR is of functional importance and may therefore indeed be a causative variation in SOX9 associated traits.
Collapse
Affiliation(s)
- Bertram Brenig
- Institute of Veterinary Medicine, Georg-August-University, Burckhardtweg 2, D-37077, Göttingen, Germany
- * E-mail:
| | - Yanyu Duan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Yuyun Xing
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Nengshui Ding
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Ekkehard Schütz
- Institute of Veterinary Medicine, Georg-August-University, Burckhardtweg 2, D-37077, Göttingen, Germany
| |
Collapse
|
86
|
Fufa TD, Harris ML, Watkins-Chow DE, Levy D, Gorkin DU, Gildea DE, Song L, Safi A, Crawford GE, Sviderskaya EV, Bennett DC, Mccallion AS, Loftus SK, Pavan WJ. Genomic analysis reveals distinct mechanisms and functional classes of SOX10-regulated genes in melanocytes. Hum Mol Genet 2015; 24:5433-50. [PMID: 26206884 PMCID: PMC4572067 DOI: 10.1093/hmg/ddv267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/09/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
SOX10 is required for melanocyte development and maintenance, and has been linked to melanoma initiation and progression. However, the molecular mechanisms by which SOX10 guides the appropriate gene expression programs necessary to promote the melanocyte lineage are not fully understood. Here we employ genetic and epigenomic analysis approaches to uncover novel genomic targets and previously unappreciated molecular roles of SOX10 in melanocytes. Through global analysis of SOX10-binding sites and epigenetic characteristics of chromatin states, we uncover an extensive catalog of SOX10 targets genome-wide. Our findings reveal that SOX10 predominantly engages 'open' chromatin regions and binds to distal regulatory elements, including novel and previously known melanocyte enhancers. Integrated chromatin occupancy and transcriptome analysis suggest a role for SOX10 in both transcriptional activation and repression to regulate functionally distinct classes of genes. We demonstrate that distinct epigenetic signatures and cis-regulatory sequence motifs predicted to bind putative co-regulatory transcription factors define SOX10-activated and SOX10-repressed target genes. Collectively, these findings uncover a central role of SOX10 as a global regulator of gene expression in the melanocyte lineage by targeting diverse regulatory pathways.
Collapse
Affiliation(s)
- Temesgen D Fufa
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melissa L Harris
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Denise Levy
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David U Gorkin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Derek E Gildea
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA, Department of Pediatrics, Division of Molecular Genetics, Duke University, Durham, NC 27708, USA and
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA, Department of Pediatrics, Division of Molecular Genetics, Duke University, Durham, NC 27708, USA and
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA, Department of Pediatrics, Division of Molecular Genetics, Duke University, Durham, NC 27708, USA and
| | - Elena V Sviderskaya
- Molecular Cell Sciences Research Centre, St George's, University of London, London SW17 0RE, UK
| | - Dorothy C Bennett
- Molecular Cell Sciences Research Centre, St George's, University of London, London SW17 0RE, UK
| | - Andrew S Mccallion
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA,
| |
Collapse
|
87
|
Jin SG, Xiong W, Wu X, Yang L, Pfeifer GP. The DNA methylation landscape of human melanoma. Genomics 2015; 106:322-30. [PMID: 26384656 DOI: 10.1016/j.ygeno.2015.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022]
Abstract
Using MIRA-seq, we have characterized the DNA methylome of metastatic melanoma and normal melanocytes. Individual tumors contained several thousand hypermethylated regions. We discovered 179 tumor-specific methylation peaks present in all (27/27) melanomas that may be effective disease biomarkers, and 3113 methylation peaks were seen in >40% of the tumors. We found that 150 of the approximately 1200 tumor-associated methylation peaks near transcription start sites (TSSs) were marked by H3K27me3 in melanocytes. DNA methylation in melanoma was specific for distinct H3K27me3 peaks rather than for broadly covered regions. However, numerous H3K27me3 peak-associated TSS regions remained devoid of DNA methylation in tumors. There was no relationship between BRAF mutations and the number of methylation peaks. Gene expression analysis showed upregulated immune response genes in melanomas presumably as a result of lymphocyte infiltration. Down-regulated genes were enriched for melanocyte differentiation factors; e.g., KIT, PAX3 and SOX10 became methylated and downregulated in melanoma.
Collapse
Affiliation(s)
- Seung-Gi Jin
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Wenying Xiong
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lu Yang
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
88
|
Tong X, Li L, Li X, Heng L, Zhong L, Su X, Rong R, Hu S, Liu W, Jia B, Liu X, Kou G, Han J, Guo S, Hu Y, Li C, Tao Q, Guo Y. SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/β-catenin pathway. Oncotarget 2015; 5:10571-83. [PMID: 25301735 PMCID: PMC4279394 DOI: 10.18632/oncotarget.2512] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022] Open
Abstract
SOX10 was identified as a methylated gene in our previous cancer methylome study. Here we further analyzed its epigenetic inactivation, biological functions and related cell signaling in digestive cancers (colorectal, gastric and esophageal cancers) in detail. SOX10 expression was decreased in multiple digestive cancer cell lines as well as primary tumors due to its promoter methylation. Pharmacologic or genetic demethylation reversed SOX10 silencing. Ectopic expression of SOX10in SOX10-deficient cancer cells inhibits their proliferation, tumorigenicity, and metastatic potentials in vitro and in vivo. SOX10 also suppressed the epithelial to mesenchymal transition (EMT) and stemness properties of digestive tumor cells. Mechanistically, SOX10 competes with TCF4 to bind β-catenin and transrepresses its downstream target genes via its own DNA-binding property. SOX10 mutations that disrupt the SOX10-β-catenin interaction partially prevented tumor suppression. SOX10is thus a commonly inactivated tumor suppressor that antagonizes Wnt/β-catenin signaling in cancer cells from different digestive tissues.
Collapse
Affiliation(s)
- Xin Tong
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China. PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China. Department of Pharmacy, Liao Cheng University, Shandong, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xiaoyan Li
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China. PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Lei Heng
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China
| | - Lan Zhong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xianwei Su
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Rong Rong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Shi Hu
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China
| | - Wenjia Liu
- PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Baoqing Jia
- PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Xing Liu
- 150 hospital of Chinese PLA, Luoyang, China
| | - Geng Kou
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China. Department of Pharmacy, Liao Cheng University, Shandong, China
| | - Jun Han
- Department of Pharmacy, Liao Cheng University, Shandong, China. State Key Laboratory of Antibody Medicine & Targeting Therapy and Shanghai Key Laboratory of Cell Engineering & Antibody, Shanghai, China
| | - Shangjing Guo
- Department of Pharmacy, Liao Cheng University, Shandong, China
| | - Yi Hu
- PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Cheng Li
- PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China. PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China. Department of Pharmacy, Liao Cheng University, Shandong, China. State Key Laboratory of Antibody Medicine & Targeting Therapy and Shanghai Key Laboratory of Cell Engineering & Antibody, Shanghai, China
| |
Collapse
|
89
|
Shiseki M, Masuda A, Yoshinaga K, Mori N, Okada M, Motoji T, Tanaka J. Identification of the SOX5 gene as a novel IGH-involved translocation partner in BCL2-negative follicular lymphoma with t(12;14)(p12.2;q32). Int J Hematol 2015; 102:633-8. [DOI: 10.1007/s12185-015-1823-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
|
90
|
Chaoui A, Kavo A, Baral V, Watanabe Y, Lecerf L, Colley A, Mendoza-Londono R, Pingault V, Bondurand N. Subnuclear re-localization of SOX10 and p54NRB correlates with a unique neurological phenotype associated with SOX10 missense mutations. Hum Mol Genet 2015; 24:4933-47. [PMID: 26060192 DOI: 10.1093/hmg/ddv215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/04/2015] [Indexed: 11/12/2022] Open
Abstract
SOX10 is a transcription factor with well-known functions in neural crest and oligodendrocyte development. Mutations in SOX10 were first associated with Waardenburg-Hirschsprung disease (WS4; deafness, pigmentation defects and intestinal aganglionosis). However, variable phenotypes that extend beyond the WS4 definition are now reported. The neurological phenotypes associated with some truncating mutations are suggested to be the result of escape from the nonsense-mediated mRNA decay pathway; but, to date, no mechanism has been suggested for missense mutations, of which approximately 20 have now been reported, with about half of the latter shown to be redistributed to nuclear bodies of undetermined nature and function in vitro. Here, we report that p54NRB, which plays a crucial role in the regulation of gene expression during many cellular processes including differentiation, interacts synergistically with SOX10 to regulate several target genes. Interestingly, this paraspeckle protein, as well as two other members of the Drosophila behavior human splicing (DBHS) protein family, co-localize with SOX10 mutants in nuclear bodies, suggesting the possible paraspeckle nature of these foci or re-localization of the DBHS members to other subnuclear compartments. Remarkably, the co-transfection of wild-type and mutant SOX10 constructs led to the sequestration of wild-type protein in mutant-induced foci. In contrast to mutants presenting with additional cytoplasmic re-localization, those exclusively found in the nucleus alter synergistic activity between SOX10 and p54NRB. We propose that such a dominant negative effect may contribute to or be at the origin of the unique progressive and severe neurological phenotype observed in affected patients.
Collapse
Affiliation(s)
- Asma Chaoui
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Anthula Kavo
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Viviane Baral
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Yuli Watanabe
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Laure Lecerf
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Alison Colley
- Department of Clinical Genetics, Liverpool Hospital, Australia and
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Veronique Pingault
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Nadege Bondurand
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France,
| |
Collapse
|
91
|
Compton LA, Murphy GF, Lian CG. Diagnostic Immunohistochemistry in Cutaneous Neoplasia: An Update. Dermatopathology (Basel) 2015; 2:15-42. [PMID: 27047932 PMCID: PMC4816435 DOI: 10.1159/000377698] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Immunohistochemistry (IHC) is an important adjunct in the diagnosis of neoplastic skin diseases. In addition to the many established IHC markers currently in use, new markers continue to emerge, although their general acceptance and routine application requires robust validation. Here, we summarize the most well-established and commonly used biomarkers along with an array of newer ones reported in the past several decades that either demonstrate or hold high clinical promise in the field of cutaneous pathology. We also highlight recent applications of novel IHC markers in melanoma diagnosis including genetic mutation status markers [e.g. BRAF (v-raf murine sarcoma viral oncogene homolog B) and NRAS (neuroblastoma RAS viral oncogene homolog)] and an epigenetic alteration marker (e.g. 5-hydroxymethylcytosine). We specifically focus on the role of IHC in the differential diagnosis of cutaneous lesions that fall under the following categories: melanoma, epidermal tumors with an intraepidermal epitheliomatous pattern, spindle cell lesions of the dermis, small round blue cell tumors of the dermis, and cutaneous adnexal tumors. While IHC is a valuable tool in diagnostic dermatopathology, marker selection and interpretation must be highly informed by clinical context and the histologic differential diagnosis. With rapid progress in our understanding of the genetic and epigenetic mechanisms of tumorigenesis, new IHC markers will continue to emerge in the field of diagnostic dermatopathology.
Collapse
Affiliation(s)
- Leigh A Compton
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass., USA
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass., USA
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass., USA
| |
Collapse
|
92
|
Coelho SG, Valencia JC, Yin L, Smuda C, Mahns A, Kolbe L, Miller SA, Beer JZ, Zhang G, Tuma PL, Hearing VJ. UV exposure modulates hemidesmosome plasticity, contributing to long-term pigmentation in human skin. J Pathol 2015; 236:17-29. [PMID: 25488118 DOI: 10.1002/path.4497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 11/09/2022]
Abstract
Human skin colour, ie pigmentation, differs widely among individuals, as do their responses to various types of ultraviolet radiation (UV) and their risks of skin cancer. In some individuals, UV-induced pigmentation persists for months to years in a phenomenon termed long-lasting pigmentation (LLP). It is unclear whether LLP is an indicator of potential risk for skin cancer. LLP seems to have similar features to other forms of hyperpigmentation, eg solar lentigines or age spots, which are clinical markers of photodamage and risk factors for precancerous lesions. To investigate what UV-induced molecular changes may persist in individuals with LLP, clinical specimens from non-sunburn-inducing repeated UV exposures (UVA, UVB or UVA + UVB) at 4 months post-exposure (short-term LLP) were evaluated by microarray analysis and dataset mining. Validated targets were further evaluated in clinical specimens from six healthy individuals (three LLP+ and three LLP-) followed for more than 9 months (long-term LLP) who initially received a single sunburn-inducing UVA + UVB exposure. The results support a UV-induced hyperpigmentation model in which basal keratinocytes have an impaired ability to remove melanin that leads to a compensatory mechanism by neighbouring keratinocytes with increased proliferative capacity to maintain skin homeostasis. The attenuated expression of SOX7 and other hemidesmosomal components (integrin α6β4 and plectin) leads to increased melanosome uptake by keratinocytes and points to a spatial regulation within the epidermis. The reduced density of hemidesmosomes provides supporting evidence for plasticity at the epidermal-dermal junction. Altered hemidesmosome plasticity, and the sustained nature of LLP, may be mediated by the role of SOX7 in basal keratinocytes. The long-term sustained subtle changes detected are modest, but sufficient to create dramatic visual differences in skin colour. These results suggest that the hyperpigmentation phenomenon leading to increased interdigitation develops in order to maintain normal skin homeostasis in individuals with LLP.
Collapse
Affiliation(s)
- Sergio G Coelho
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Ribero S, Glass D, Aviv A, Spector TD, Bataille V. Height and bone mineral density are associated with naevus count supporting the importance of growth in melanoma susceptibility. PLoS One 2015; 10:e0116863. [PMID: 25612317 PMCID: PMC4303431 DOI: 10.1371/journal.pone.0116863] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022] Open
Abstract
Naevus count is the strongest risk factor for melanoma. Body Mass Index (BMI) has been linked to melanoma risk. In this study, we investigate the link between naevus count and height, weight and bone mineral density (BMD) in the TwinsUK cohort (N = 2119). In addition we adjusted for leucocyte telomere length (LTL) as LTL is linked to both BMD and naevus count. Naevus count was positively associated with height (p = 0.001) but not with weight (p = 0.187) despite adjusting for age and twin relatedness. This suggests that the previously reported melanoma association with BMI may be explained by height alone. Further adjustment for LTL did not affect the significance of the association between height and naevus count so LTL does not fully explain these results. BMD was associated with naevus count at the spine (coeff 18.9, p = 0.01), hip (coeff = 18.9, p = 0.03) and forearm (coeff = 32.7, p = 0.06) despite adjusting for age, twin relatedness, weight, height and LTL. This large study in healthy individuals shows that growth via height, probably in early life, and bone mass are risk factors for melanoma via increased naevus count. The link between these two phenotypes may possibly be explained by telomere biology, differentiation genes from the neural crests but also other yet unknown factors which may influence both bones and melanocytes biology.
Collapse
Affiliation(s)
- Simone Ribero
- Department of Twin Research & Genetic Epidemiology, King's College London, United Kingdom; Section of Dermatology, Departments of Medical Sciences, University of Turin, Turin, Italy
| | - Daniel Glass
- Department of Twin Research & Genetic Epidemiology, King's College London, United Kingdom; Dermatology Department, Northwick Park Hospital, Middlesex, United Kingdom
| | - Abraham Aviv
- Centre of Human Development and Ageing, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Timothy David Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, United Kingdom
| | - Veronique Bataille
- Department of Twin Research & Genetic Epidemiology, King's College London, United Kingdom; Dermatology Department, West Herts NHS Trust, Herts, United Kingdom
| |
Collapse
|
94
|
Schacht T, Oswald M, Eils R, Eichmüller SB, König R. Estimating the activity of transcription factors by the effect on their target genes. ACTA ACUST UNITED AC 2015; 30:i401-7. [PMID: 25161226 PMCID: PMC4147899 DOI: 10.1093/bioinformatics/btu446] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Motivation: Understanding regulation of transcription is central for elucidating cellular regulation. Several statistical and mechanistic models have come up the last couple of years explaining gene transcription levels using information of potential transcriptional regulators as transcription factors (TFs) and information from epigenetic modifications. The activity of TFs is often inferred by their transcription levels, promoter binding and epigenetic effects. However, in principle, these methods do not take hard-to-measure influences such as post-transcriptional modifications into account. Results: For TFs, we present a novel concept circumventing this problem. We estimate the regulatory activity of TFs using their cumulative effects on their target genes. We established our model using expression data of 59 cell lines from the National Cancer Institute. The trained model was applied to an independent expression dataset of melanoma cells yielding excellent expression predictions and elucidated regulation of melanogenesis. Availability and implementation: Using mixed-integer linear programming, we implemented a switch-like optimization enabling a constrained but optimal selection of TFs and optimal model selection estimating their effects. The method is generic and can also be applied to further regulators of transcription. Contact:rainer.koenig@uni-jena.de Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Theresa Schacht
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer R
| | - Marcus Oswald
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Roland Eils
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Stefan B Eichmüller
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, D-07747 Jena, Erlanger Allee 101, Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Beutenbergstrasse 11a, 07745 Jena, Theoretical Bioinformatics, German Cancer Research Center, INF 580, 69121 Heidelberg, Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and Bioquant, University of Heidelberg, Im Neuenheimer Feld 267 and Division Translational Immunology, Group Tumor Antigens, German Cancer R
| |
Collapse
|
95
|
Harris ML, Levy DJ, Watkins-Chow DE, Pavan WJ. Ectopic differentiation of melanocyte stem cells is influenced by genetic background. Pigment Cell Melanoma Res 2015; 28:223-8. [PMID: 25495036 DOI: 10.1111/pcmr.12344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/01/2014] [Indexed: 01/13/2023]
Abstract
Hair graying in mouse is attributed to the loss of melanocyte stem cell function and the progressive depletion of the follicular melanocyte population. Single-gene, hair graying mouse models have pointed to a number of critical pathways involved in melanocyte stem cell biology; however, the broad range of phenotypic variation observed in human hair graying suggests that additional genetic variants involved in this process may yet be discovered. Using a sensitized approach, we ask here whether natural genetic variation influences a predominant cellular mechanism of hair graying in mouse, melanocyte stem cell differentiation. We developed an innovative method to quantify melanocyte stem cell differentiation by measuring ectopically pigmented melanocyte stem cells in response to the melanocyte-specific transgene Tg(Dct-Sox10). We make the novel observation that the production of ectopically pigmented melanocyte stem cells varies considerably across strains. The success of sensitizing for melanocyte stem cell differentiation by Tg(Dct-Sox10) sets the stage for future investigations into the genetic basis of strain-specific contributions to melanocyte stem cell biology.
Collapse
Affiliation(s)
- Melissa L Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
96
|
Biedermann T, Klar AS, Böttcher-Haberzeth S, Michalczyk T, Schiestl C, Reichmann E, Meuli M. Long-term expression pattern of melanocyte markers in light- and dark-pigmented dermo-epidermal cultured human skin substitutes. Pediatr Surg Int 2015; 31:69-76. [PMID: 25326121 DOI: 10.1007/s00383-014-3622-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 12/25/2022]
Abstract
PURPOSE Transplantation of pigmented tissue-engineered human autologous skin substitutes represents a promising procedure to cover skin defects. We have already demonstrated that we can restore the patient's native light or dark skin color by adding melanocytes to our dermo-epidermal skin analogs. In this long-term study, we investigated if melanocytes in our skin substitutes continue to express markers as BCL2, SOX9, and MITF, known to be involved in survival, differentiation, and function of melanocytes. METHODS Human epidermal melanocytes and keratinocytes, as well as dermal fibroblasts from light- and dark-pigmented skin biopsies were isolated and cultured. Bovine collagen hydrogels containing fibroblasts were prepared, and melanocytes and keratinocytes were seeded in a 1:5 ratio onto the gels. Pigmented dermo-epidermal skin substitutes were transplanted onto full-thickness wounds of immuno-incompetent rats and analyzed for the expression of melanocyte markers after 15 weeks. RESULTS Employing immunofluorescence staining techniques, we observed that our light and dark dermo-epidermal skin substitutes expressed the same typical melanocyte markers including BCL2, SOX9, and MITF 15 weeks after transplantation as normal human light and dark skin. CONCLUSIONS These data suggest that, even in the long run, our light and dark dermo-epidermal tissue-engineered skin substitutes contain melanocytes that display a characteristic expression pattern as seen in normal pigmented human skin. These findings have crucial clinical implications as such grafts transplanted onto patients should warrant physiological numbers, distribution, and function of melanocytes.
Collapse
Affiliation(s)
- Thomas Biedermann
- Tissue Biology Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
97
|
Haltaufderhyde KD, Oancea E. Genome-wide transcriptome analysis of human epidermal melanocytes. Genomics 2014; 104:482-9. [PMID: 25451175 DOI: 10.1016/j.ygeno.2014.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023]
Abstract
Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signaling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 transcript isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets.
Collapse
Affiliation(s)
- Kirk D Haltaufderhyde
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02192, USA
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02192, USA.
| |
Collapse
|
98
|
Wolkow N, Li Y, Maminishkis A, Song Y, Alekseev O, Iacovelli J, Song D, Lee JC, Dunaief JL. Iron upregulates melanogenesis in cultured retinal pigment epithelial cells. Exp Eye Res 2014; 128:92-101. [PMID: 25277027 DOI: 10.1016/j.exer.2014.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 09/12/2014] [Accepted: 09/26/2014] [Indexed: 12/20/2022]
Abstract
The purpose of our studies was to examine the relationship between iron and melanogenesis in retinal pigment epithelial cells, as prior observations had suggested that iron may promote melanogenesis. This relationship has potential clinical importance, as both iron overload and hyperpigmentation are associated with age-related macular degeneration (AMD). Human fetal retinal pigment epithelial cells and ARPE-19 cells were treated with iron in the form of ferric ammonium citrate, after which quantitative RT-PCR and electron microscopy were performed. Melanogenesis genes tyrosinase, tyrosinase-related protein 1, Hermansky-Pudlak Syndrome 3, premelanosome protein and dopachrome tautomerase were upregulated, as was the melanogenesis-controlling transcription factor, microphthalmia-associated transcription factor (MITF). Iron-treated cells had increased pigmentation and melanosome number. Multiple transcription factors upstream of MITF were upregulated by iron.
Collapse
Affiliation(s)
- Natalie Wolkow
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104, USA
| | - Yafeng Li
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104, USA
| | - Arvydas Maminishkis
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bldg. 10, Rm. 10B04, MSC 1861, 10 Center Drive, Bethesda, MD 20892, USA
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104, USA
| | - Oleg Alekseev
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104, USA
| | - Jared Iacovelli
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104, USA
| | - Delu Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104, USA
| | - Jennifer C Lee
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104, USA
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, 305 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
99
|
Yin L, Coelho SG, Ebsen D, Smuda C, Mahns A, Miller SA, Beer JZ, Kolbe L, Hearing VJ. Epidermal gene expression and ethnic pigmentation variations among individuals of Asian, European and African ancestry. Exp Dermatol 2014; 23:731-5. [DOI: 10.1111/exd.12518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Lanlan Yin
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | - Sergio G. Coelho
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | - Dominik Ebsen
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | | | - Andre Mahns
- R&D Skin Research; Beiersdorf AG; Hamburg Germany
| | - Sharon A. Miller
- Center for Devices and Radiological Health, Food and Drug Administration; Silver Spring MD USA
| | - Janusz Z. Beer
- Center for Devices and Radiological Health, Food and Drug Administration; Silver Spring MD USA
| | - Ludger Kolbe
- R&D Skin Research; Beiersdorf AG; Hamburg Germany
| | - Vincent J. Hearing
- Laboratory of Cell Biology; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| |
Collapse
|
100
|
Kawai H, Satomi K, Morishita Y, Murata Y, Sugano M, Nakano N, Noguchi M. Developmental markers of ganglion cells in the enteric nervous system and their application for evaluation of Hirschsprung disease. Pathol Int 2014; 64:432-42. [DOI: 10.1111/pin.12191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Hitomi Kawai
- Department of Pathology; Tsukuba University Hospital; University of Tsukuba; Tsukuba Japan
| | - Kaishi Satomi
- Department of Diagnostic Pathology; Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| | - Yukio Morishita
- Department of Diagnostic Pathology; Tokyo Medical University Ibaraki Medical Center; Ami Japan
| | - Yoshihiko Murata
- Department of Diagnostic Pathology; Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tsukuba Japan
| | - Masato Sugano
- Department of Diagnostic Pathology; Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| | - Noriyuki Nakano
- Department of Diagnostic Pathology; Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tsukuba Japan
| | - Masayuki Noguchi
- Department of Diagnostic Pathology; Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| |
Collapse
|