Miles CA, Fursey GA, Birch HL, Young RD. Factors affecting the ultrasonic properties of equine digital flexor tendons.
ULTRASOUND IN MEDICINE & BIOLOGY 1996;
22:907-915. [PMID:
8923709 DOI:
10.1016/0301-5629(96)00085-3]
[Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The velocity, attenuation and apparent backscattering coefficient of 6-11-MHz ultrasound were measured in three orthogonal directions in equine deep digital flexor (DDF) and superficial digital flexor (SDF) tendons at 0 degree C. Ultrasonic measurements were examined for correlation with tendon water, collagen, DNA and glycosaminoglycans contents, determined by chemical analyses and with structure observed by scanning electron microscopy. The SDF tendon contained more water, more DNA (i.e., more cells), less collagen and less glycosaminoglycans and exhibited lower velocities and attenuations than the DDF tendon. Velocities were governed primarily by the adiabatic bulk modulus and density, perturbed by a highly direction-dependent rigidity. Ultrasound propagating across tendon generated frequency-independent backscattering which appeared to derive from the large interfaces between the fascicles, while along the fibres backscattering varied as f3.62 +/- 0.88 and appeared to derive from small structures such as collagen fibres. The mechanisms by which ultrasound is attenuated by tendon remain unknown.
Collapse