51
|
A general unified framework to assess the sampling variance of heritability estimates using pedigree or marker-based relationships. Genetics 2014; 199:223-32. [PMID: 25361897 PMCID: PMC4286686 DOI: 10.1534/genetics.114.171017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heritability is a population parameter of importance in evolution, plant and animal breeding, and human medical genetics. It can be estimated using pedigree designs and, more recently, using relationships estimated from markers. We derive the sampling variance of the estimate of heritability for a wide range of experimental designs, assuming that estimation is by maximum likelihood and that the resemblance between relatives is solely due to additive genetic variation. We show that well-known results for balanced designs are special cases of a more general unified framework. For pedigree designs, the sampling variance is inversely proportional to the variance of relationship in the pedigree and it is proportional to 1/N, whereas for population samples it is approximately proportional to 1/N(2), where N is the sample size. Variation in relatedness is a key parameter in the quantification of the sampling variance of heritability. Consequently, the sampling variance is high for populations with large recent effective population size (e.g., humans) because this causes low variation in relationship. However, even using human population samples, low sampling variance is possible with high N.
Collapse
|
52
|
Abstract
Parasite burden varies widely between individuals within a population, and can covary with multiple aspects of individual phenotype. Here we investigate the sources of variation in faecal strongyle eggs counts, and its association with body weight and a suite of haematological measures, in a cohort of indigenous zebu calves in Western Kenya, using relatedness matrices reconstructed from single nucleotide polymorphism (SNP) genotypes. Strongyle egg count was heritable (h2 = 23·9%, s.e. = 11·8%) and we also found heritability of white blood cell counts (WBC) (h2 = 27·6%, s.e. = 10·6%). All the traits investigated showed negative phenotypic covariances with strongyle egg count throughout the first year: high worm counts were associated with low values of WBC, red blood cell count, total serum protein and absolute eosinophil count. Furthermore, calf body weight at 1 week old was a significant predictor of strongyle EPG at 16–51 weeks, with smaller calves having a higher strongyle egg count later in life. Our results indicate a genetic basis to strongyle EPG in this population, and also reveal consistently strong negative associations between strongyle infection and other important aspects of the multivariate phenotype.
Collapse
|
53
|
Malenfant RM, Coltman DW, Davis CS. Design of a 9K illumina BeadChip for polar bears (Ursus maritimus) from RAD and transcriptome sequencing. Mol Ecol Resour 2014; 15:587-600. [DOI: 10.1111/1755-0998.12327] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/30/2022]
Affiliation(s)
- René M. Malenfant
- Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building Edmonton AB T6G 2E9 Canada
| | - David W. Coltman
- Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building Edmonton AB T6G 2E9 Canada
| | - Corey S. Davis
- Department of Biological Sciences; University of Alberta; CW405 Biological Sciences Building Edmonton AB T6G 2E9 Canada
| |
Collapse
|
54
|
Bérénos C, Ellis PA, Pilkington JG, Pemberton JM. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol Ecol 2014; 23:3434-51. [PMID: 24917482 PMCID: PMC4149785 DOI: 10.1111/mec.12827] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 01/11/2023]
Abstract
The estimation of quantitative genetic parameters in wild populations is generally limited by the accuracy and completeness of the available pedigree information. Using relatedness at genomewide markers can potentially remove this limitation and lead to less biased and more precise estimates. We estimated heritability, maternal genetic effects and genetic correlations for body size traits in an unmanaged long-term study population of Soay sheep on St Kilda using three increasingly complete and accurate estimates of relatedness: (i) Pedigree 1, using observation-derived maternal links and microsatellite-derived paternal links; (ii) Pedigree 2, using SNP-derived assignment of both maternity and paternity; and (iii) whole-genome relatedness at 37 037 autosomal SNPs. In initial analyses, heritability estimates were strikingly similar for all three methods, while standard errors were systematically lower in analyses based on Pedigree 2 and genomic relatedness. Genetic correlations were generally strong, differed little between the three estimates of relatedness and the standard errors declined only very slightly with improved relatedness information. When partitioning maternal effects into separate genetic and environmental components, maternal genetic effects found in juvenile traits increased substantially across the three relatedness estimates. Heritability declined compared to parallel models where only a maternal environment effect was fitted, suggesting that maternal genetic effects are confounded with direct genetic effects and that more accurate estimates of relatedness were better able to separate maternal genetic effects from direct genetic effects. We found that the heritability captured by SNP markers asymptoted at about half the SNPs available, suggesting that denser marker panels are not necessarily required for precise and unbiased heritability estimates. Finally, we present guidelines for the use of genomic relatedness in future quantitative genetics studies in natural populations.
Collapse
Affiliation(s)
- Camillo Bérénos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| | | | | | | |
Collapse
|
55
|
Schielzeth H, Husby A. Challenges and prospects in genome-wide quantitative trait loci mapping of standing genetic variation in natural populations. Ann N Y Acad Sci 2014; 1320:35-57. [PMID: 24689944 DOI: 10.1111/nyas.12397] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A considerable challenge in evolutionary genetics is to understand the genetic mechanisms that facilitate or impede evolutionary adaptation in natural populations. For this, we must understand the genetic loci contributing to trait variation and the selective forces acting on them. The decreased costs and increased feasibility of obtaining genotypic data on a large number of individuals have greatly facilitated gene mapping in natural populations, particularly because organisms whose genetics have been historically difficult to study are now within reach. Here we review the methods available to evolutionary ecologists interested in dissecting the genetic basis of traits in natural populations. Our focus lies on standing genetic variation in outbred populations. We present an overview of the current state of research in the field, covering studies on both plants and animals. We also draw attention to particular challenges associated with the discovery of quantitative trait loci and discuss parallels to studies on crops, livestock, and humans. Finally, we point to some likely future developments in genetic mapping studies.
Collapse
Affiliation(s)
- Holger Schielzeth
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
56
|
Santure AW, De Cauwer I, Robinson MR, Poissant J, Sheldon BC, Slate J. Genomic dissection of variation in clutch size and egg mass in a wild great tit (Parus major) population. Mol Ecol 2014; 22:3949-62. [PMID: 23889544 DOI: 10.1111/mec.12376] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/10/2013] [Accepted: 02/20/2013] [Indexed: 01/01/2023]
Abstract
Clutch size and egg mass are life history traits that have been extensively studied in wild bird populations, as life history theory predicts a negative trade-off between them, either at the phenotypic or at the genetic level. Here, we analyse the genomic architecture of these heritable traits in a wild great tit (Parus major) population, using three marker-based approaches - chromosome partitioning, quantitative trait locus (QTL) mapping and a genome-wide association study (GWAS). The variance explained by each great tit chromosome scales with predicted chromosome size, no location in the genome contains genome-wide significant QTL, and no individual SNPs are associated with a large proportion of phenotypic variation, all of which may suggest that variation in both traits is due to many loci of small effect, located across the genome. There is no evidence that any regions of the genome contribute significantly to both traits, which combined with a small, nonsignificant negative genetic covariance between the traits, suggests the absence of genetic constraints on the independent evolution of these traits. Our findings support the hypothesis that variation in life history traits in natural populations is likely to be determined by many loci of small effect spread throughout the genome, which are subject to continued input of variation by mutation and migration, although we cannot exclude the possibility of an additional input of major effect genes influencing either trait.
Collapse
Affiliation(s)
- Anna W Santure
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | | | | | | | | | | |
Collapse
|
57
|
Abstract
For many molecular ecologists, the mantra and mission of the field of ecological genomics could be encapsulated by the phrase 'to find the genes that matter' (Mitchell-Olds ; Rockman ). This phrase of course refers to the early hope and current increasing success in the search for genes whose variation underlies phenotypic variation and fitness in natural populations. In the years since the modern incarnation of the field of ecological genomics, many would agree that the low-hanging fruit has, at least in principle, been plucked: we now have several elegant examples of genes whose variation influences key adaptive traits in natural populations, and these examples have revealed important insights into the architecture of adaptive variation (Hoekstra et al. ; Shapiro et al. ; Chan et al. ). But how well will these early examples, often involving single genes of large effect on discrete or near-discrete phenotypes, represent the dynamics of adaptive change for the totality of phenotypes in nature? Will traits exhibiting continuous rather than discrete variation in natural populations have as simple a genetic basis as these early examples suggest (Prasad et al. ; Rockman )? Two papers in this issue (Robinson et al. ; Santure et al. ) not only suggest answers to these questions but also provide useful extensions of statistical approaches for ecological geneticists to study the genetics of continuous variation in nature. Together these papers, by the same research groups studying evolution in a natural population of Great Tits (Parus major), provide a glimpse of what we should expect as the field begins to dissect the genetic basis of what is arguably the most common type of variation in nature, and how genome-wide surveys of variation can be applied to natural populations without pedigrees.
Collapse
Affiliation(s)
- Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
58
|
van Oers K, Santure AW, De Cauwer I, van Bers NEM, Crooijmans RPMA, Sheldon BC, Visser ME, Slate J, Groenen MAM. Replicated high-density genetic maps of two great tit populations reveal fine-scale genomic departures from sex-equal recombination rates. Heredity (Edinb) 2014; 112:307-16. [PMID: 24149651 PMCID: PMC3931172 DOI: 10.1038/hdy.2013.107] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/16/2013] [Indexed: 01/03/2023] Open
Abstract
Linking variation in quantitative traits to variation in the genome is an important, but challenging task in the study of life-history evolution. Linkage maps provide a valuable tool for the unravelling of such trait-gene associations. Moreover, they give insight into recombination landscapes and between-species karyotype evolution. Here we used genotype data, generated from a 10k single-nucleotide polymorphism (SNP) chip, of over 2000 individuals to produce high-density linkage maps of the great tit (Parus major), a passerine bird that serves as a model species for ecological and evolutionary questions. We created independent maps from two distinct populations: a captive F2-cross from The Netherlands (NL) and a wild population from the United Kingdom (UK). The two maps contained 6554 SNPs in 32 linkage groups, spanning 2010 cM and 1917 cM for the NL and UK populations, respectively, and were similar in size and marker order. Subtle levels of heterochiasmy within and between chromosomes were remarkably consistent between the populations, suggesting that the local departures from sex-equal recombination rates have evolved. This key and surprising result would have been impossible to detect if only one population was mapped. A comparison with zebra finch Taeniopygia guttata, chicken Gallus gallus and the green anole lizard Anolis carolinensis genomes provided further insight into the evolution of avian karyotypes.
Collapse
Affiliation(s)
- K van Oers
- Department of Animal Ecology, Netherlands
Institute of Ecology (NIOO-KNAW), Wageningen, The
Netherlands
| | - A W Santure
- Department of Animal and Plant Sciences,
University of Sheffield, Sheffield, UK
| | - I De Cauwer
- Department of Animal and Plant Sciences,
University of Sheffield, Sheffield, UK
- Laboratoire de Génétique et
Evolution des Populations Végétales, UMR CNRS 8198, Bâtiment SN2,
Université des Sciences et Technologies de Lille - Lille 1,
Villeneuve d'Ascq Cedex, France
| | - N EM van Bers
- Department of Animal Ecology, Netherlands
Institute of Ecology (NIOO-KNAW), Wageningen, The
Netherlands
- Animal Breeding and Genomics Centre,
Wageningen University, De Elst 1, Wageningen, The
Netherlands
| | - R PMA Crooijmans
- Animal Breeding and Genomics Centre,
Wageningen University, De Elst 1, Wageningen, The
Netherlands
| | - B C Sheldon
- Edward Grey Institute, Department of Zoology,
University of Oxford, Oxford, UK
| | - M E Visser
- Department of Animal Ecology, Netherlands
Institute of Ecology (NIOO-KNAW), Wageningen, The
Netherlands
| | - J Slate
- Department of Animal and Plant Sciences,
University of Sheffield, Sheffield, UK
| | - M AM Groenen
- Animal Breeding and Genomics Centre,
Wageningen University, De Elst 1, Wageningen, The
Netherlands
| |
Collapse
|
59
|
Ekblom R, Wennekes P, Horsburgh GJ, Burke T. Characterization of the house sparrow (Passer domesticus) transcriptome: a resource for molecular ecology and immunogenetics. Mol Ecol Resour 2014; 14:636-46. [PMID: 24345231 DOI: 10.1111/1755-0998.12213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/04/2013] [Accepted: 12/11/2013] [Indexed: 11/30/2022]
Abstract
The house sparrow (Passer domesticus) is an important model species in ecology and evolution. However, until recently, genomic resources for molecular ecological projects have been lacking in this species. Here, we present transcriptome sequencing data (RNA-Seq) from three different house sparrow tissues (spleen, blood and bursa). These tissues were specifically chosen to obtain a diverse representation of expressed genes and to maximize the yield of immune-related gene functions. After de novo assembly, 15,250 contigs were identified, representing sequence data from a total of 8756 known avian genes (as inferred from the closely related zebra finch). The transcriptome assembly contain sequence data from nine manually annotated MHC genes, including an almost complete MHC class I coding sequence. There were 407, 303 and 68 genes overexpressed in spleen, blood and bursa, respectively. Gene ontology terms related to ribosomal function were associated with overexpression in spleen and oxygen transport functions with overexpression in blood. In addition to the transcript sequences, we provide 327 gene-linked microsatellites (SSRs) with sufficient flanking sequences for primer design, and 3177 single-nucleotide polymorphisms (SNPs) within genes, that can be used in follow-up molecular ecology studies of this ecological well-studied species.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-75236, Sweden; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | |
Collapse
|
60
|
Stanton-Geddes J, Yoder JB, Briskine R, Young ND, Tiffin P. Estimating heritability using genomic data. Methods Ecol Evol 2013. [DOI: 10.1111/2041-210x.12129] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- John Stanton-Geddes
- Department of Plant Biology; University of Minnesota; Saint Paul MN 55108 USA
| | - Jeremy B. Yoder
- Department of Plant Biology; University of Minnesota; Saint Paul MN 55108 USA
| | - Roman Briskine
- Department of Computer Science and Engineering; University of Minnesota; Minneapolis MN 55455 USA
| | - Nevin D. Young
- Department of Plant Biology; University of Minnesota; Saint Paul MN 55108 USA
- Department of Plant Pathology; University of Minnesota; Saint Paul MN 55108 USA
| | - Peter Tiffin
- Department of Plant Biology; University of Minnesota; Saint Paul MN 55108 USA
| |
Collapse
|