51
|
Rojas V, Ortiz YY, Rodríguez S, Araque V, Rodríguez-Acosta A, Figarella K, Uzcátegui NL. Rhinella marina oocytes: a suitable alternative expression system for functional characterization of aquaglyceroporins. Sci Rep 2019; 9:18. [PMID: 30631140 PMCID: PMC6328568 DOI: 10.1038/s41598-018-37069-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023] Open
Abstract
Amphibian oocytes have been extensively used for heterologous expression of membrane proteins for studying their biochemical and biophysical properties. So far, Xenopus laevis is the main amphibian used as oocytes source to express aquaglyceroporins in order to assess water and solutes permeability. However, this well-established amphibian model represents a threat to the biodiversity in many countries, especially in those from tropical regions. For that reason, the import of Xenopus laevis is subjected to strict control, which essentially has restricted its use in these regions. Therefore, a wider variety of expression systems for aquaglyceroporins is needed. Rhinella marina is extensively distributed in the Americas and its native range spreads from South America to Texas, US. Here we report the use of Rhinella marina oocytes as an alternative expression system for aquaglyceroporins and demonstrated its suitability to determine the permeability to water and non-ionic solutes. Rhinella marina oocytes were able to functionally express channels from human and the protozoan pathogen Trypanosoma brucei, two very distant organisms on the evolutionary scale. Permeability values obtained from Rhinella marina oocytes expressing members of aquaporin family were similar and comparable to those values reported in the literature for the same channels expressed in Xenopus laevis oocytes.
Collapse
Affiliation(s)
- Vania Rojas
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Yulexi Y Ortiz
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Sheridan Rodríguez
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Vladimir Araque
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Alexis Rodríguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Katherine Figarella
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Néstor L Uzcátegui
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
52
|
Cane toads (Rhinella marina) rely on water access, not drought tolerance, to invade xeric Australian environments. Oecologia 2018; 189:307-316. [DOI: 10.1007/s00442-018-4321-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/04/2018] [Indexed: 01/12/2023]
|
53
|
Stuart KC, Shine R, Brown GP. Proximate mechanisms underlying the rapid modification of phenotypic traits in cane toads (Rhinella marina) across their invasive range within Australia. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Katarina C Stuart
- The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| | - Richard Shine
- The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| | - Gregory P Brown
- The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| |
Collapse
|
54
|
Richardson MF, Sequeira F, Selechnik D, Carneiro M, Vallinoto M, Reid JG, West AJ, Crossland MR, Shine R, Rollins LA. Improving amphibian genomic resources: a multitissue reference transcriptome of an iconic invader. Gigascience 2018; 7:1-7. [PMID: 29186423 PMCID: PMC5765561 DOI: 10.1093/gigascience/gix114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/16/2017] [Indexed: 01/23/2023] Open
Abstract
Background Cane toads (Rhinella marina) are an iconic invasive species introduced to 4 continents and well utilized for studies of rapid evolution in introduced environments. Despite the long introduction history of this species, its profound ecological impacts, and its utility for demonstrating evolutionary principles, genetic information is sparse. Here we produce a de novo transcriptome spanning multiple tissues and life stages to enable investigation of the genetic basis of previously identified rapid phenotypic change over the introduced range. Findings Using approximately 1.9 billion reads from developing tadpoles and 6 adult tissue-specific cDNA libraries, as well as a transcriptome assembly pipeline encompassing 100 separate de novo assemblies, we constructed 62 202 transcripts, of which we functionally annotated ∼50%. Our transcriptome assembly exhibits 90% full-length completeness of the Benchmarking Universal Single-Copy Orthologs data set. Robust assembly metrics and comparisons with several available anuran transcriptomes and genomes indicate that our cane toad assembly is one of the most complete anuran genomic resources available. Conclusions This comprehensive anuran transcriptome will provide a valuable resource for investigation of genes under selection during invasion in cane toads, but will also greatly expand our general knowledge of anuran genomes, which are underrepresented in the literature. The data set is publically available in NCBI and GigaDB to serve as a resource for other researchers.
Collapse
Affiliation(s)
- Mark F Richardson
- Deakin University, Bioinformatics Core Research Group, 75 Pigdons Road, Locked Bag 20000, Geelong, VIC 3220, Australia.,Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology (Waurn Ponds Campus), 75 Pigdons Road, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - Fernando Sequeira
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
| | - Daniel Selechnik
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Miguel Carneiro
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n., 4169-007 Porto, Portugal
| | - Marcelo Vallinoto
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
| | - Jack G Reid
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology (Waurn Ponds Campus), 75 Pigdons Road, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - Andrea J West
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology (Waurn Ponds Campus), 75 Pigdons Road, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - Michael R Crossland
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Lee A Rollins
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology (Waurn Ponds Campus), 75 Pigdons Road, Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
55
|
Edwards RJ, Tuipulotu DE, Amos TG, O'Meally D, Richardson MF, Russell TL, Vallinoto M, Carneiro M, Ferrand N, Wilkins MR, Sequeira F, Rollins LA, Holmes EC, Shine R, White PA. Draft genome assembly of the invasive cane toad, Rhinella marina. Gigascience 2018; 7:5096832. [PMID: 30101298 PMCID: PMC6145236 DOI: 10.1093/gigascience/giy095] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/22/2018] [Indexed: 12/28/2022] Open
Abstract
Background The cane toad (Rhinella marina formerly Bufo marinus) is a species native to Central and South America that has spread across many regions of the globe. Cane toads are known for their rapid adaptation and deleterious impacts on native fauna in invaded regions. However, despite an iconic status, there are major gaps in our understanding of cane toad genetics. The availability of a genome would help to close these gaps and accelerate cane toad research. Findings We report a draft genome assembly for R. marina, the first of its kind for the Bufonidae family. We used a combination of long-read Pacific Biosciences RS II and short-read Illumina HiSeq X sequencing to generate 359.5 Gb of raw sequence data. The final hybrid assembly of 31,392 scaffolds was 2.55 Gb in length with a scaffold N50 of 168 kb. BUSCO analysis revealed that the assembly included full length or partial fragments of 90.6% of tetrapod universal single-copy orthologs (n = 3950), illustrating that the gene-containing regions have been well assembled. Annotation predicted 25,846 protein coding genes with similarity to known proteins in Swiss-Prot. Repeat sequences were estimated to account for 63.9% of the assembly. Conclusions The R. marina draft genome assembly will be an invaluable resource that can be used to further probe the biology of this invasive species. Future analysis of the genome will provide insights into cane toad evolution and enrich our understanding of their interplay with the ecosystem at large.
Collapse
Affiliation(s)
- Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Timothy G Amos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Denis O'Meally
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW, 2052, Australia
| | - Mark F Richardson
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, VIC, 3216, Australia.,Bioinformatics Core Research Group, Deakin University, Geelong, VIC, 3216, Australia
| | - Tonia L Russell
- Ramaciotti Centre for Genomics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Marcelo Vallinoto
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Laboratório de Evolução, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Nuno Ferrand
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland Park, South Africa
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.,Ramaciotti Centre for Genomics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fernando Sequeira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Lee A Rollins
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, VIC, 3216, Australia.,Evolution and Ecology Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
56
|
Bower DS, Yasumiba K, Trumbo DR, Alford RA, Schwarzkopf L. Spinal arthritis in cane toads across the Australian landscape. Sci Rep 2018; 8:12458. [PMID: 30127531 PMCID: PMC6102202 DOI: 10.1038/s41598-018-30099-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/19/2018] [Indexed: 01/03/2023] Open
Abstract
Loss of fitness can be a consequence of selection for rapid dispersal ability in invasive species. Increased prevalence of spinal arthritis may occur in cane toad populations at the invasion front as a cost of increased invasiveness, but our knowledge of the ecological drivers of this condition is lacking. We aimed to determine the factors explaining the prevalence of spinal arthritis in populations across the Australian landscape. We studied populations across a gradient of invasion histories. We collected 2415 toads over five years and determined the presence and size of spondylosis for each individual. We examined the effect of host size, leg length and invasion history on the prevalence of spondylosis. Host size was a significant predictor of spondylosis across populations. Contrary to our expectation, the overall prevalence of spondylosis was not positively related to invasion history and did not correlate with toad relative leg length. Rather than invasion age, the latitude at which populations were sampled provided an alternate explanation for the prevalence of spondylosis in cane toad populations and suggested that the incidence of this condition did not increase as a physiological cost of invasion, but is instead related to physical variables, such as climate.
Collapse
Affiliation(s)
- Deborah S Bower
- College of Science and Engineering, James Cook University, Townsville, 4811, Queensland, Australia. .,School of Environmental and Rural Science, University of New England, Armidale, 2351, New South Wales, Australia.
| | - Kiyomi Yasumiba
- College of Science and Engineering, James Cook University, Townsville, 4811, Queensland, Australia
| | - Daryl R Trumbo
- Washington State University, School of Biological Sciences, Pullman, WA, 99164, United States of America
| | - Ross A Alford
- College of Science and Engineering, James Cook University, Townsville, 4811, Queensland, Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, 4811, Queensland, Australia
| |
Collapse
|
57
|
Quinn TP, Crowley TM, Richardson MF. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods. BMC Bioinformatics 2018; 19:274. [PMID: 30021534 PMCID: PMC6052553 DOI: 10.1186/s12859-018-2261-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Count data generated by next-generation sequencing assays do not measure absolute transcript abundances. Instead, the data are constrained to an arbitrary "library size" by the sequencing depth of the assay, and typically must be normalized prior to statistical analysis. The constrained nature of these data means one could alternatively use a log-ratio transformation in lieu of normalization, as often done when testing for differential abundance (DA) of operational taxonomic units (OTUs) in 16S rRNA data. Therefore, we benchmark how well the ALDEx2 package, a transformation-based DA tool, detects differential expression in high-throughput RNA-sequencing data (RNA-Seq), compared to conventional RNA-Seq methods such as edgeR and DESeq2. RESULTS To evaluate the performance of log-ratio transformation-based tools, we apply the ALDEx2 package to two simulated, and two real, RNA-Seq data sets. One of the latter was previously used to benchmark dozens of conventional RNA-Seq differential expression methods, enabling us to directly compare transformation-based approaches. We show that ALDEx2, widely used in meta-genomics research, identifies differentially expressed genes (and transcripts) from RNA-Seq data with high precision and, given sufficient sample sizes, high recall too (regardless of the alignment and quantification procedure used). Although we show that the choice in log-ratio transformation can affect performance, ALDEx2 has high precision (i.e., few false positives) across all transformations. Finally, we present a novel, iterative log-ratio transformation (now implemented in ALDEx2) that further improves performance in simulations. CONCLUSIONS Our results suggest that log-ratio transformation-based methods can work to measure differential expression from RNA-Seq data, provided that certain assumptions are met. Moreover, these methods have very high precision (i.e., few false positives) in simulations and perform well on real data too. With previously demonstrated applicability to 16S rRNA data, ALDEx2 can thus serve as a single tool for data from multiple sequencing modalities.
Collapse
Affiliation(s)
- Thomas P. Quinn
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, 3220 Australia
- Bioinformatics Core Research Group, Deakin University, Geelong, 3220 Australia
| | - Tamsyn M. Crowley
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, 3220 Australia
- Bioinformatics Core Research Group, Deakin University, Geelong, 3220 Australia
- Poultry Hub Australia, University of New England, Armidale, 2351 Australia
| | - Mark F. Richardson
- Bioinformatics Core Research Group, Deakin University, Geelong, 3220 Australia
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, 3220 Australia
| |
Collapse
|
58
|
Willoughby JR, Harder AM, Tennessen JA, Scribner KT, Christie MR. Rapid genetic adaptation to a novel environment despite a genome-wide reduction in genetic diversity. Mol Ecol 2018; 27:4041-4051. [PMID: 29802799 DOI: 10.1111/mec.14726] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Janna R. Willoughby
- Department of Biological Sciences; Purdue University; West Lafayette Indiana
- Department of Forestry and Natural Resources; Purdue University; West Lafayette Indiana
| | - Avril M. Harder
- Department of Biological Sciences; Purdue University; West Lafayette Indiana
| | - Jacob A. Tennessen
- Department of Integrative Biology; Oregon State University; Corvallis Oregon
| | - Kim T. Scribner
- Department of Fisheries and Wildlife; Michigan State University; East Lansing Michigan
- Department of Integrative Biology; Michigan State University; East Lansing Michigan
| | - Mark R. Christie
- Department of Biological Sciences; Purdue University; West Lafayette Indiana
- Department of Forestry and Natural Resources; Purdue University; West Lafayette Indiana
| |
Collapse
|
59
|
Jessop TS, Lane M, Wilson RS, Narayan EJ. Testing for Short- and Long-Term Thermal Plasticity in Corticosterone Responses of an Ectothermic Vertebrate. Physiol Biochem Zool 2018; 91:967-975. [PMID: 29863953 DOI: 10.1086/698664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phenotypic plasticity, broadly defined as the capacity of one genotype to produce more than one phenotype, is a key mechanism for how animals adapt to environmental (including thermal) variation. Vertebrate glucocorticoid hormones exert broad-scale regulation of physiological, behavioral, and morphological traits that influence fitness under many life-history or environmental contexts. Yet the capacity for vertebrates to demonstrate different types of thermal plasticity, including rapid compensation or longer acclimation in glucocorticoid hormone function, when subject to different environmental temperature regimes remains poorly addressed. Here, we explore whether patterns of urinary corticosterone metabolites respond (i.e., evidence of acclimation) to repeated short-term and sustained long-term temperature exposures in an amphibian, the cane toad (Rhinella marina). In response to three repeated short (30-min) high-temperature (37°C) exposures (at 10-d intervals), toads produced urinary corticosterone metabolite responses of sequentially greater magnitude, relative to controls. However, toads subjected to 4 wk of acclimation to either cool (18°C)- or warm (30°C)-temperature environments did not differ significantly in their urinary corticosterone metabolite responses during exposure to a thermal ramp (18°-36°C). Together, these results indicate that adult toads had different, including limited, capacities for their glucocorticoid responses to demonstrate plasticity to different regimes of environmental temperature variation. We advocate further research as necessary to identify plasticity, or lack thereof, in glucocorticoid physiology, to better understand how vertebrates can regulate organismal responses to environmental variation.
Collapse
Affiliation(s)
- Tim S Jessop
- 1 Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Victoria 3220, Australia
| | - Meagan Lane
- 2 School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robbie S Wilson
- 3 School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Edward J Narayan
- 4 School of Science and Health, Hawkesbury campus, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| |
Collapse
|
60
|
Hasselman DJ, Bentzen P, Narum SR, Quinn TP. Formation of population genetic structure following the introduction and establishment of non-native American shad (Alosa sapidissima) along the Pacific Coast of North America. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1763-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
61
|
Vimercati G, Davies SJ, Measey J. Rapid adaptive response to a Mediterranean environment reduces phenotypic mismatch in a recent amphibian invader. ACTA ACUST UNITED AC 2018; 221:jeb.174797. [PMID: 29615531 DOI: 10.1242/jeb.174797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Invasive species frequently cope with ecological conditions that are different from those to which they adapted, presenting an opportunity to investigate how phenotypes change across short time scales. In 2000, the guttural toad Sclerophrys gutturalis was first detected in a peri-urban area of Cape Town, where it is now invasive. The ability of the species to invade Cape Town is surprising as the area is characterized by a Mediterranean climate significantly drier and colder than that of the native source area. We measured field hydration state of guttural toads from the invasive Cape Town population and a native source population from Durban. We also obtained from laboratory trials: rates of evaporative water loss and water uptake, sensitivity of locomotor endurance to hydration state, critical thermal minimum (CTmin) and sensitivity of CTmin to hydration state. Field hydration state of invasive toads was significantly lower than that of native toads. Although the two populations had similar rates of water loss and uptake, invasive toads were more efficient in minimizing water loss through postural adjustments. In locomotor trials, invasive individuals noticeably outperformed native individuals when dehydrated but not when fully hydrated. CTmin was lower in invasive individuals than in native individuals, independent of hydration state. Our results indicate that an invasive population that is only 20 years old shows adaptive responses that reduce phenotypic mismatch with the novel environment. The invasion potential of the species in Cape Town is higher than we could infer from its characteristics in the native source population.
Collapse
Affiliation(s)
- Giovanni Vimercati
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Sarah J Davies
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
62
|
Tingley R, Ward-Fear G, Schwarzkopf L, Greenlees MJ, Phillips BL, Brown G, Clulow S, Webb J, Capon R, Sheppard A, Strive T, Tizard M, Shine R. New Weapons in the Toad Toolkit: A Review of Methods to Control and Mitigate the Biodiversity Impacts of Invasive Cane Toads (Rhinella Marina). QUARTERLY REVIEW OF BIOLOGY 2018; 92:123-49. [PMID: 29562120 DOI: 10.1086/692167] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our best hope of developing innovative methods to combat invasive species is likely to come from the study of high-profile invaders that have attracted intensive research not only into control, but also basic biology. Here we illustrate that point by reviewing current thinking about novel ways to control one of the world’s most well-studied invasions: that of the cane toad in Australia. Recently developed methods for population suppression include more effective traps based on the toad’s acoustic and pheromonal biology. New tools for containing spread include surveillance technologies (e.g., eDNA sampling and automated call detectors), as well as landscape-level barriers that exploit the toad’s vulnerability to desiccation—a strategy that could be significantly enhanced through the introduction of sedentary, range-core genotypes ahead of the invasion front. New methods to reduce the ecological impacts of toads include conditioned taste aversion in free-ranging predators, gene banking, and targeted gene flow. Lastly, recent advances in gene editing and gene drive technology hold the promise of modifying toad phenotypes in ways that may facilitate control or buffer impact. Synergies between these approaches hold great promise for novel and more effective means to combat the toad invasion and its consequent impacts on biodiversity.
Collapse
|
63
|
Kosmala GK, Brown GP, Christian KA, Hudson CM, Shine R. The thermal dependency of locomotor performance evolves rapidly within an invasive species. Ecol Evol 2018; 8:4403-4408. [PMID: 29760882 PMCID: PMC5938468 DOI: 10.1002/ece3.3996] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 02/03/2023] Open
Abstract
Biological invasions can stimulate rapid shifts in organismal performance, via both plasticity and adaptation. We can distinguish between these two proximate mechanisms by rearing offspring from populations under identical conditions and measuring their locomotor abilities in standardized trials. We collected adult cane toads (Rhinella marina) from invasive populations that inhabit regions of Australia with different climatic conditions. We bred those toads and raised their offspring under common‐garden conditions before testing their locomotor performance. At high (but not low) temperatures, offspring of individuals from a hotter location (northwestern Australia) outperformed offspring of conspecifics from a cooler location (northeastern Australia). This disparity indicates that, within less than 100 years, thermal performance in cane toads has adapted to the novel abiotic challenges that cane toads have encountered during their invasion of tropical Australia.
Collapse
Affiliation(s)
- Georgia K Kosmala
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Gregory P Brown
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Keith A Christian
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin NT Australia
| | - Cameron M Hudson
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Richard Shine
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| |
Collapse
|
64
|
McCann SM, Kosmala GK, Greenlees MJ, Shine R. Physiological plasticity in a successful invader: rapid acclimation to cold occurs only in cool-climate populations of cane toads ( Rhinella marina). CONSERVATION PHYSIOLOGY 2018; 6:cox072. [PMID: 29399360 PMCID: PMC5786208 DOI: 10.1093/conphys/cox072] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/03/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Physiological plasticity may facilitate invasion of novel habitats; but is such plasticity present in all populations of the invader or is it elicited only by specific climatic challenges? In cold-climate areas of Australia, invasive cane toads (Rhinella marina) can rapidly acclimate to cool conditions. To investigate whether this physiological plasticity is found in all invasive cane toads or is only seen in cool climates, we measured the acclimation ability of toads from across Australia and the island of Hawai'i. We collected toads from the field and placed them at either 12 or 24°C for 12 h before measuring their righting response as a proxy for critical thermal minimum (CTmin). Toads from the coolest Australian region (New South Wales) demonstrated plasticity (as previously reported), with exposure to 12°C (vs. 24°C) decreasing CTmin by 2°C. In toads from other Australian populations, CTmins were unaffected by our thermal treatments. Hawai'ian toads from a cool, wet site also rapidly acclimated to cool conditions, whereas those from warmer and drier Hawai'ian sites did not. Thermal plasticity has diverged among populations of invasive cane toads, with rapid acclimation manifested only in two cool-climate populations from widely separated sites. Predictions about the potential range of invasive species thus must consider the possibility of geographic (intraspecific) heterogeneity in thermal plasticity; data from other parts of the species' range may fail to predict levels of plasticity elicited by thermal challenges.
Collapse
Affiliation(s)
- Samantha M McCann
- School of Life and Environmental Sciences, University of Sydney, Room 442, Heydon-Laurence Building (A08) Science Road, New South Wales 2006, Australia
| | - Georgia K Kosmala
- School of Life and Environmental Sciences, University of Sydney, Room 442, Heydon-Laurence Building (A08) Science Road, New South Wales 2006, Australia
| | - Matthew J Greenlees
- School of Life and Environmental Sciences, University of Sydney, Room 442, Heydon-Laurence Building (A08) Science Road, New South Wales 2006, Australia
| | - Richard Shine
- School of Life and Environmental Sciences, University of Sydney, Room 442, Heydon-Laurence Building (A08) Science Road, New South Wales 2006, Australia
| |
Collapse
|
65
|
Shuman-Goodier ME, Singleton GR, Propper CR. Competition and pesticide exposure affect development of invasive (Rhinella marina) and native (Fejervarya vittigera) rice paddy amphibian larvae. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1293-1304. [PMID: 28936635 DOI: 10.1007/s10646-017-1854-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 05/27/2023]
Abstract
Increased pesticide use in rice agricultural ecosystems may alter competitive interactions between invasive and native amphibian species. We conducted an experiment with two rice paddy amphibians found in Luzon, Philippines, the invasive cane toad (Rhinella marina) and the endemic Luzon wart frog (Fejervarya vittigera), to determine whether exposure to a common herbicide, butachlor, drives competitive interactions in favor of the invasive amphibian. Our results revealed that competition had a strong effect on the development of both species, but in opposing directions; Luzon wart frog tadpoles were smaller and developed slower than when raised alone, whereas cane toad tadpoles were larger and developed faster. Contrary to our predictions, development and survival of endemic wart frog tadpoles was not affected by butachlor, whereas invasive cane toad tadpoles were affected across several endpoints including gene expression, body size, and survival. We also observed an interaction between pesticide exposure and competition for the cane toad, where survival declined but body size and expression of thyroid sensitive genes increased. Taken together, our findings indicate that the success of the cane toad larvae in rice fields may be best explained by increased rates of development and larger body sizes of tadpoles in response to competition with native Luzon wart frog tadpoles rather than lower sensitivity to a common pesticide. Our results for the cane toad also provide evidence that butachlor can disrupt thyroid hormone mediated development in amphibians, and further demonstrate that important species interactions such as competition can be affected by pesticide exposure in aquatic ecosystems.
Collapse
Affiliation(s)
- Molly E Shuman-Goodier
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86001, USA.
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| | - Grant R Singleton
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Natural Resources Institute, University of Greenwich, Chatham Marina, Kent, UK
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86001, USA
| |
Collapse
|
66
|
Quinn TP, Richardson MF, Lovell D, Crowley TM. propr: An R-package for Identifying Proportionally Abundant Features Using Compositional Data Analysis. Sci Rep 2017; 7:16252. [PMID: 29176663 PMCID: PMC5701231 DOI: 10.1038/s41598-017-16520-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022] Open
Abstract
In the life sciences, many assays measure only the relative abundances of components in each sample. Such data, called compositional data, require special treatment to avoid misleading conclusions. Awareness of the need for caution in analyzing compositional data is growing, including the understanding that correlation is not appropriate for relative data. Recently, researchers have proposed proportionality as a valid alternative to correlation for calculating pairwise association in relative data. Although the question of how to best measure proportionality remains open, we present here a computationally efficient R package that implements three measures of proportionality. In an effort to advance the understanding and application of proportionality analysis, we review the mathematics behind proportionality, demonstrate its application to genomic data, and discuss some ongoing challenges in the analysis of relative abundance data.
Collapse
Affiliation(s)
- Thomas P Quinn
- Deakin University, Bioinformatics Core Research Group, Geelong, Victoria, Australia. .,Deakin University, Centre for Molecular and Medical Research, Geelong, Victoria, Australia.
| | - Mark F Richardson
- Deakin University, Bioinformatics Core Research Group, Geelong, Victoria, Australia.,Deakin University, Centre for Integrative Ecology, Geelong, Victoria, Australia
| | - David Lovell
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tamsyn M Crowley
- Deakin University, Bioinformatics Core Research Group, Geelong, Victoria, Australia.,Deakin University, Centre for Molecular and Medical Research, Geelong, Victoria, Australia
| |
Collapse
|
67
|
Quinn TP, Richardson MF, Lovell D, Crowley TM. propr: An R-package for Identifying Proportionally Abundant Features Using Compositional Data Analysis. Sci Rep 2017; 7:16252. [PMID: 29176663 DOI: 10.1101/104935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/06/2017] [Indexed: 05/27/2023] Open
Abstract
In the life sciences, many assays measure only the relative abundances of components in each sample. Such data, called compositional data, require special treatment to avoid misleading conclusions. Awareness of the need for caution in analyzing compositional data is growing, including the understanding that correlation is not appropriate for relative data. Recently, researchers have proposed proportionality as a valid alternative to correlation for calculating pairwise association in relative data. Although the question of how to best measure proportionality remains open, we present here a computationally efficient R package that implements three measures of proportionality. In an effort to advance the understanding and application of proportionality analysis, we review the mathematics behind proportionality, demonstrate its application to genomic data, and discuss some ongoing challenges in the analysis of relative abundance data.
Collapse
Affiliation(s)
- Thomas P Quinn
- Deakin University, Bioinformatics Core Research Group, Geelong, Victoria, Australia.
- Deakin University, Centre for Molecular and Medical Research, Geelong, Victoria, Australia.
| | - Mark F Richardson
- Deakin University, Bioinformatics Core Research Group, Geelong, Victoria, Australia
- Deakin University, Centre for Integrative Ecology, Geelong, Victoria, Australia
| | - David Lovell
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tamsyn M Crowley
- Deakin University, Bioinformatics Core Research Group, Geelong, Victoria, Australia
- Deakin University, Centre for Molecular and Medical Research, Geelong, Victoria, Australia
| |
Collapse
|
68
|
Selechnik D, West AJ, Brown GP, Fanson KV, Addison B, Rollins LA, Shine R. Effects of invasion history on physiological responses to immune system activation in invasive Australian cane toads. PeerJ 2017; 5:e3856. [PMID: 29018604 PMCID: PMC5633027 DOI: 10.7717/peerj.3856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The cane toad (Rhinella marina) has undergone rapid evolution during its invasion of tropical Australia. Toads from invasion front populations (in Western Australia) have been reported to exhibit a stronger baseline phagocytic immune response than do conspecifics from range core populations (in Queensland). To explore this difference, we injected wild-caught toads from both areas with the experimental antigen lipopolysaccharide (LPS, to mimic bacterial infection) and measured whole-blood phagocytosis. Because the hypothalamic-pituitary-adrenal axis is stimulated by infection (and may influence immune responses), we measured glucocorticoid response through urinary corticosterone levels. Relative to injection of a control (phosphate-buffered saline), LPS injection increased both phagocytosis and the proportion of neutrophils in the blood. However, responses were similar in toads from both populations. This null result may reflect the ubiquity of bacterial risks across the toad’s invaded range; utilization of this immune pathway may not have altered during the process of invasion. LPS injection also induced a reduction in urinary corticosterone levels, perhaps as a result of chronic stress.
Collapse
Affiliation(s)
- Daniel Selechnik
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Andrea J West
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - Gregory P Brown
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Kerry V Fanson
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - BriAnne Addison
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - Lee A Rollins
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - Richard Shine
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
69
|
Evolutionary shifts in anti-predator responses of invasive cane toads (Rhinella marina). Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2367-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
70
|
Saastamoinen M, Bocedi G, Cote J, Legrand D, Guillaume F, Wheat CW, Fronhofer EA, Garcia C, Henry R, Husby A, Baguette M, Bonte D, Coulon A, Kokko H, Matthysen E, Niitepõld K, Nonaka E, Stevens VM, Travis JMJ, Donohue K, Bullock JM, Del Mar Delgado M. Genetics of dispersal. Biol Rev Camb Philos Soc 2017; 93:574-599. [PMID: 28776950 PMCID: PMC5811798 DOI: 10.1111/brv.12356] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.
Collapse
Affiliation(s)
- Marjo Saastamoinen
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | - Julien Cote
- Laboratoire Évolution & Diversité Biologique UMR5174, CNRS, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Delphine Legrand
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Christopher W Wheat
- Population Genetics, Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Emanuel A Fronhofer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dubendorf, Switzerland
| | - Cristina Garcia
- CIBIO-InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Roslyn Henry
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K.,School of GeoSciences, University of Edinburgh, Edinburgh EH89XP, U.K
| | - Arild Husby
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Michel Baguette
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France.,Museum National d'Histoire Naturelle, Institut Systématique, Evolution, Biodiversité, UMR 7205, F-75005 Paris, France
| | - Dries Bonte
- Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | - Aurélie Coulon
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Biogéographie et Ecologie des Vertébrés, 34293 Montpellier, France.,CESCO UMR 7204, Bases écologiques de la conservation, Muséum national d'Histoire naturelle, 75005 Paris, France
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kristjan Niitepõld
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Etsuko Nonaka
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Justin M J Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | | | - James M Bullock
- NERC Centre for Ecology & Hydrology, Wallingford OX10 8BB, U.K
| | | |
Collapse
|
71
|
Range Expansion Compromises Adaptive Evolution in an Outcrossing Plant. Curr Biol 2017; 27:2544-2551.e4. [DOI: 10.1016/j.cub.2017.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/22/2017] [Accepted: 07/04/2017] [Indexed: 01/04/2023]
|
72
|
Barker BS, Rodríguez-Robles JA. ORIGINS AND GENETIC DIVERSITY OF INTRODUCED POPULATIONS OF THE PUERTO RICAN RED-EYED COQUÍ, ELEUTHERODACTYLUS ANTILLENSIS, IN SAINT CROIX (U.S. VIRGIN ISLANDS) AND PANAMÁ. COPEIA 2017. [PMID: 28649148 DOI: 10.1643/cg-16-501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Red-eyed Coquí, Eleutherodactylus antillensis, is a terrestrial frog endemic to the Puerto Rican Bank (Puerto Rico and numerous islands and cays off its eastern coast), in the eastern Caribbean Sea. The species was likely introduced in Saint Croix, an island c. 100 km southeast of Puerto Rico, in the late 1930s, and in Panamá City, Panamá, in the late 1950s or early 1960s, but the source(s) of these introductions are unknown. We analyzed sequence data from one mtDNA locus and four nuDNA introns to infer the origin(s) of the Saint Croix and Panamá City populations and quantify their genetic diversity. Saint Croix and Panamanian populations do not share any haplotypes, and they cluster with different native populations, suggesting that they are derived from separate sources in the Puerto Rican Bank. Patterns of population structure trace the probable sources of E. antillensis in Saint Croix to islands off Puerto Rico's eastern coast, which include Vieques, Culebra, Saint Thomas, Saint John, Tortola, and Virgin Gorda, and possibly to eastern Puerto Rico as well. In contrast, Panamá City E. antillensis probably originated from either western or eastern Puerto Rico. Genetic diversity in the introduced populations is similar to or lower than in populations in the species' native range, indicating that genetic diversity has not increased in the alien frogs. Our findings may facilitate the development of preventive measures to minimize introductions of non-native amphibians in the Caribbean and Central America.
Collapse
Affiliation(s)
- Brittany S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, BioSciences West room 310, 1041 E. Lowell St., Tucson, Arizona 85721.,Department of Biology, University of New Mexico, 167 Castetter Hall, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001
| | - Javier A Rodríguez-Robles
- School of Life Sciences, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, Nevada 89154-4004
| |
Collapse
|
73
|
Ricciardi A, Blackburn TM, Carlton JT, Dick JT, Hulme PE, Iacarella JC, Jeschke JM, Liebhold AM, Lockwood JL, MacIsaac HJ, Pyšek P, Richardson DM, Ruiz GM, Simberloff D, Sutherland WJ, Wardle DA, Aldridge DC. Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends Ecol Evol 2017; 32:464-474. [DOI: 10.1016/j.tree.2017.03.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 01/03/2023]
|
74
|
Richardson MF, Sherwin WB, Rollins LA. De Novo Assembly of the Liver Transcriptome of the European Starling, Sturnus vulgaris. J Genomics 2017; 5:54-57. [PMID: 28529652 PMCID: PMC5436464 DOI: 10.7150/jgen.19504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The European starling, Sturnus vulgaris, is a prolific and worldwide invasive species that also has served as an important model for avian ecological and invasion research. Although the genome sequence recently has become available, no transcriptome data have been published for this species. Here, we have sequenced and assembled the S. vulgaris liver transcriptome, which will provide a foundational resource for further annotation and validation of the draft genome. Moreover, it will be important for ecological and evolutionary studies investigating the genetic factors underlying rapid evolution and invasion success in this global invader.
Collapse
Affiliation(s)
- Mark F Richardson
- Deakin University, Bioinformatics Core Research Group, 75 Pigdons Road, Locked Bag 20000, Geelong, VIC 3220, Australia.,Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, 75 Pigdons Road, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - William B Sherwin
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.,Cetacean Research Unit, Murdoch University, South Road, Murdoch, Western Australia 6150, Australia
| | - Lee A Rollins
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.,Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, 75 Pigdons Road, Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
75
|
Pizzatto L, Both C, Brown G, Shine R. The accelerating invasion: dispersal rates of cane toads at an invasion front compared to an already-colonized location. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9896-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
76
|
Geographic divergence in dispersal-related behaviour in cane toads from range-front versus range-core populations in Australia. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2266-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
77
|
Martin LB, Kilvitis HJ, Brace AJ, Cooper L, Haussmann MF, Mutati A, Fasanello V, O'Brien S, Ardia DR. Costs of immunity and their role in the range expansion of the house sparrow in Kenya. J Exp Biol 2017; 220:2228-2235. [DOI: 10.1242/jeb.154716] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/02/2017] [Indexed: 01/09/2023]
Abstract
There are at least two reasons to study traits that mediate successful range expansions. First, dispersers will found new populations and thus impact the distribution and evolution of species. Second, organisms moving into new areas will influence the fate of resident communities, directly competing with or indirectly affecting residents by spreading non-native or spilling-back native parasites. The success of invaders in new areas is likely mediated by a counterbalancing of costly traits. In new areas where threats are comparatively rare, individuals that grow rapidly and breed prolifically should be at an advantage. High investment in defenses should thus be disfavored. In the present study, we compared the energetic, nutritional and collateral damage costs of an inflammatory response among Kenyan house sparrow (Passer domesticus) populations of different ages, asking whether costs were related to traits of individuals from three different capture sites. Kenya is among the world's most recent range expansions for this species, and we recently found that the expression of Toll-like receptors (TLRs), leukocyte receptors that instigate inflammatory responses when bound to microbial elements, was related to the range expansion across the country. Here, we found (contrary to our expectations) that energetic and nutritional costs of inflammation were higher, but damage costs were lower, in range-edge compared to core birds. Moreover, at the individual level, TLR-4 expression was negatively related to commodity costs (energy and a critical amino acid) of inflammation. Our data thus suggest that costs of inflammation, perhaps mediated by TLR expression, might mitigate successful range expansions.
Collapse
Affiliation(s)
- Lynn B. Martin
- University of South Florida, Department of Integrative Biology, Tampa FL 33620, USA
| | - Holly J. Kilvitis
- University of South Florida, Department of Integrative Biology, Tampa FL 33620, USA
| | - Amber J. Brace
- University of South Florida, Department of Integrative Biology, Tampa FL 33620, USA
| | - Laken Cooper
- Radford University, Department of Biology, Radford, VA 24142, USA
| | | | - Alex Mutati
- National Museums of Kenya, Department of Ornithology, Nairobi, Kenya
| | - Vincent Fasanello
- Bucknell University, Department of Biology, Lewisburg, PA, USA
- Washington University in Saint Louis, Department of Biology, Saint Louis, MO, USA
| | - Sara O'Brien
- Radford University, Department of Biology, Radford, VA 24142, USA
| | - Daniel R. Ardia
- Franklin and Marshall College, Department of Biology, Lancaster, PA, USA
| |
Collapse
|
78
|
Selechnik D, Rollins LA, Brown GP, Kelehear C, Shine R. The things they carried: The pathogenic effects of old and new parasites following the intercontinental invasion of the Australian cane toad ( Rhinella marina). INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2016; 6:375-385. [PMID: 30951567 PMCID: PMC5715224 DOI: 10.1016/j.ijppaw.2016.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/17/2016] [Accepted: 12/23/2016] [Indexed: 01/03/2023]
Abstract
Brought to Australia in 1935 to control agricultural pests (from French Guiana, via Martinique, Barbados, Jamaica, Puerto Rico and Hawai'i), repeated stepwise translocations of small numbers of founders enabled the cane toad (Rhinella marina) to escape many parasites and pathogens from its native range. However, the infective organisms that survived the journey continue to affect the dynamics of the toad in its new environment. In Australia, the native-range lungworm Rhabdias pseudosphaerocephala decreases its host's cardiac capacity, as well as growth and survival, but not rate of dispersal. The lungworm is most prevalent in long-colonised areas within the toads' Australian range, and absent from the invasion front. Several parasites and pathogens of Australian taxa have host-shifted to cane toads in Australia; for example, invasion-front toads are susceptible to spinal arthritis caused by the soil bacterium, Ochrobactrum anthropi. The pentastome Raillietiella frenata has host-shifted to toads and may thereby expand its Australian range due to the continued range expansion of the invasive toads. Spill-over and spill-back of parasites may be detrimental to other host species; however, toads may also reduce parasite loads in native taxa by acting as terminal hosts. We review the impact of the toad's parasites and pathogens on the invasive anuran's biology in Australia, as well as collateral effects of toad-borne parasites and pathogens on other host species in Australia. Both novel and co-evolved pathogens and parasites may have played significant roles in shaping the rapid evolution of immune system responses in cane toads within their invaded range. Invasive cane toads have lost many parasites due to serial translocations. One native lungworm (Rhabdias pseudosphaerocephala) has been retained. Toads have also acquired novel parasites and pathogens from Australian hosts. Toads either amplify parasite numbers or act as a parasite sink. Differences in immune function exist between toad populations within Australia.
Collapse
Affiliation(s)
- D Selechnik
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, 2006, Australia
| | - L A Rollins
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Pigdons Road, Geelong, VIC, 3217, Australia
| | - G P Brown
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, 2006, Australia
| | - C Kelehear
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama, Panama
| | - R Shine
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
79
|
Denton RD, Greenwald KR, Gibbs HL. Locomotor endurance predicts differences in realized dispersal between sympatric sexual and unisexual salamanders. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Robert D. Denton
- Department of Evolution, Ecology and Organismal Biology Ohio State University, 300 Aronoff Laboratory, 318 West 12th Avenue Columbus OH 43210 USA
- Ohio Biodiversity Conservation Partnership Ohio State University, 300 Aronoff Laboratory, 318 West 12th Avenue Columbus OH 43210 USA
| | - Katherine R. Greenwald
- Department of Biology Eastern Michigan University, 441 Mark Jefferson Science Complex Ypsilanti MI 48197 USA
| | - H. Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology Ohio State University, 300 Aronoff Laboratory, 318 West 12th Avenue Columbus OH 43210 USA
- Ohio Biodiversity Conservation Partnership Ohio State University, 300 Aronoff Laboratory, 318 West 12th Avenue Columbus OH 43210 USA
| |
Collapse
|
80
|
Hudson CM, Brown GP, Shine R. It is lonely at the front: contrasting evolutionary trajectories in male and female invaders. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160687. [PMID: 28083108 PMCID: PMC5210690 DOI: 10.1098/rsos.160687] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/21/2016] [Indexed: 05/28/2023]
Abstract
Invasive species often exhibit rapid evolutionary changes, and can provide powerful insights into the selective forces shaping phenotypic traits that influence dispersal rates and/or sexual interactions. Invasions also may modify sexual dimorphism. We measured relative lengths of forelimbs and hindlimbs of more than 3000 field-caught adult cane toads (Rhinella marina) from 67 sites in Hawai'i and Australia (1-80 years post-colonization), along with 489 captive-bred individuals from multiple Australian sites raised in a 'common garden' (to examine heritability and reduce environmental influences on morphology). As cane toads spread from east to west across Australia, the ancestral condition (long limbs, especially in males) was modified. Limb length relative to body size was first reduced (perhaps owing to natural selection on locomotor ability), but then increased again (perhaps owing to spatial sorting) in the invasion vanguard. In contrast, the sex disparity in relative limb length has progressively decreased during the toads' Australian invasion. Offspring reared in a common environment exhibited similar geographical divergences in morphology as did wild-caught animals, suggesting a genetic basis to the changes. Limb dimensions showed significant heritability (2-17%), consistent with the possibility of an evolved response. Cane toad populations thus have undergone a major shift in sexual dimorphism in relative limb lengths during their brief (81 years) spread through tropical Australia.
Collapse
|
81
|
Estoup A, Ravigné V, Hufbauer R, Vitalis R, Gautier M, Facon B. Is There a Genetic Paradox of Biological Invasion? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032116] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arnaud Estoup
- Unité Mixte de Recherche Centre de Biologie pour la Gestion des Populations, Institut National de la Recherche Agronomique, 34988 Montferrier sur Lez, France;
| | - Virginie Ravigné
- Unité Mixte de Recherche Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, 97410 Saint-Pierre, La Réunion, France
| | - Ruth Hufbauer
- Department of Bioagricultural Science and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Renaud Vitalis
- Unité Mixte de Recherche Centre de Biologie pour la Gestion des Populations, Institut National de la Recherche Agronomique, 34988 Montferrier sur Lez, France;
| | - Mathieu Gautier
- Unité Mixte de Recherche Centre de Biologie pour la Gestion des Populations, Institut National de la Recherche Agronomique, 34988 Montferrier sur Lez, France;
| | - Benoit Facon
- Unité Mixte de Recherche Centre de Biologie pour la Gestion des Populations, Institut National de la Recherche Agronomique, 34988 Montferrier sur Lez, France;
- Unité Mixte de Recherche Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, 97410 Saint-Pierre, La Réunion, France
| |
Collapse
|
82
|
Arnold PA, Cassey P, White CR. Functional traits in red flour beetles: the dispersal phenotype is associated with leg length but not body size nor metabolic rate. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12772] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pieter A. Arnold
- School of Biological Sciences The University of Queensland Brisbane Queensland4072 Australia
| | - Phillip Cassey
- School of Biological Sciences The University of Adelaide Adelaide South Australia5005 Australia
| | - Craig R. White
- School of Biological Sciences The University of Queensland Brisbane Queensland4072 Australia
- Centre for Geometric Biology School of Biological Sciences Monash University Melbourne Victoria3800 Australia
| |
Collapse
|
83
|
Juhásová L, Králová-Hromadová I, Bazsalovicsová E, Minárik G, Štefka J, Mikulíček P, Pálková L, Pybus M. Population structure and dispersal routes of an invasive parasite, Fascioloides magna, in North America and Europe. Parasit Vectors 2016; 9:547. [PMID: 27737705 PMCID: PMC5064932 DOI: 10.1186/s13071-016-1811-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
Background Fascioloides magna (Trematoda: Fasciolidae) is an important liver parasite of a wide range of free-living and domestic ruminants; it represents a remarkable species due to its large spatial distribution, invasive character, and potential to colonize new territories. The present study provides patterns of population genetic structure and admixture in F. magna across all enzootic regions in North America and natural foci in Europe, and infers migratory routes of the parasite on both continents. Methods In total, 432 individuals from five North American enzootic regions and three European foci were analysed by 11 microsatellite loci. Genetic data were evaluated by several statistical approaches: (i) the population genetic structure of F. magna was inferred using program STRUCTURE; (ii) the genetic interrelationships between populations were analysed by PRINCIPAL COORDINATES ANALYSIS; and (iii) historical dispersal routes in North America and recent invasion routes in Europe were explored using MIGRATE. Results The analysis of dispersal routes of the parasite in North America revealed west-east and south-north lineages that partially overlapped in the central part of the continent, where different host populations historically met. The exact origin of European populations of F. magna and their potential translocation routes were determined. Flukes from the first European focus, Italy, were related to F. magna from northern Pacific coast, while parasites from the Czech focus originated from south-eastern USA, particularly South Carolina. The Danube floodplain forests (third and still expanding focus) did not display relationship with any North American population; instead the Czech origin of the Danube population was indicated. A serial dilution of genetic diversity along the dispersion route across central and eastern Europe was observed. The results of microsatellite analyses were compared to previously acquired outputs from mitochondrial haplotype data and correlated with past human-directed translocations and natural migration of the final cervid hosts of F. magna. Conclusions The present study revealed a complex picture of the population genetic structure and interrelationships of North American and European populations, global distribution and migratory routes of F. magna and an origin of European foci. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1811-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ludmila Juhásová
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia
| | - Ivica Králová-Hromadová
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia.
| | - Eva Bazsalovicsová
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovakia
| | - Gabriel Minárik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 842 15, Bratislava, Slovakia.,Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08, Bratislava, Slovakia.,Geneton Ltd, Ilkovičova 3, 841 04, Bratislava, Slovakia
| | - Jan Štefka
- Biology Centre CAS, Institute of Parasitology and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Peter Mikulíček
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 842 15, Bratislava, Slovakia
| | - Lenka Pálková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Margo Pybus
- Alberta Fish and Wildlife Division and Department of Biological Sciences, University of Alberta, 6909-116 St, Edmonton, AB, T6H 4P2, Canada
| |
Collapse
|
84
|
Le Gros A, Clergeau P, Zuccon D, Cornette R, Mathys B, Samadi S. Invasion history and demographic processes associated with rapid morphological changes in the Red-whiskered bulbul established on tropical islands. Mol Ecol 2016; 25:5359-5376. [DOI: 10.1111/mec.13853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 07/22/2016] [Accepted: 09/04/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Ariane Le Gros
- Sorbonne Paris Cité; Université Paris Diderot; 5 Rue Thomas Mann 75013 Paris France
- MNHN; CNRS; UPMC; CP51; Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR7204); Sorbonne Universités; 55 rue Buffon 75005 Paris France
- MNHN; CNRS; UPMC; CP26; Institut de Systématique; Evolution; Biodiversité (ISYEB UMR 7205); Sorbonne Universités; 57 rue Cuvier 75005 Paris France
| | - Philippe Clergeau
- MNHN; CNRS; UPMC; CP51; Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR7204); Sorbonne Universités; 55 rue Buffon 75005 Paris France
| | - Dario Zuccon
- MNHN; CNRS; UPMC; CP26; Institut de Systématique; Evolution; Biodiversité (ISYEB UMR 7205); Sorbonne Universités; 57 rue Cuvier 75005 Paris France
| | - Raphaël Cornette
- MNHN; CNRS; UPMC; CP26; Institut de Systématique; Evolution; Biodiversité (ISYEB UMR 7205); Sorbonne Universités; 57 rue Cuvier 75005 Paris France
| | - Blake Mathys
- Division of Mathematics; Computer and Natural Sciences; Ohio Dominican University; Columbus OH 43219 USA
| | - Sarah Samadi
- MNHN; CNRS; UPMC; CP26; Institut de Systématique; Evolution; Biodiversité (ISYEB UMR 7205); Sorbonne Universités; 57 rue Cuvier 75005 Paris France
| |
Collapse
|
85
|
Richardson MF, Sherman CDH, Lee RS, Bott NJ, Hirst AJ. Multiple dispersal vectors drive range expansion in an invasive marine species. Mol Ecol 2016; 25:5001-5014. [PMID: 27552100 DOI: 10.1111/mec.13817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022]
Abstract
The establishment and subsequent spread of invasive species is widely recognized as one of the most threatening processes contributing to global biodiversity loss. This is especially true for marine and estuarine ecosystems, which have experienced significant increases in the number of invasive species with the increase in global maritime trade. Understanding the rate and mechanisms of range expansion is therefore of significant interest to ecologists and conservation managers alike. Using a combination of population genetic surveys, environmental DNA (eDNA) plankton sampling and hydrodynamic modelling, we examined the patterns of introduction of the predatory Northern Pacific seastar (Asterias amurensis) and pathways of secondary spread within southeast Australia. Genetic surveys across the invasive range reveal some genetic divergence between the two main invasive regions and no evidence of ongoing gene flow, a pattern that is consistent with the establishment of the second invasive region via a human-mediated translocation event. In contrast, hydrodynamic modelling combined with eDNA plankton sampling demonstrated that the establishment of range expansion populations within a region is consistent with natural larval dispersal and recruitment. Our results suggest that both anthropogenic and natural dispersal vectors have played an important role in the range expansion of this species in Australia. The multiple modes of spread combined with high levels of fecundity and a long larval duration in A. amurensis suggests it is likely to continue its range expansion and significantly impact Australian marine ecosystems.
Collapse
Affiliation(s)
- Mark F Richardson
- Bioinformatics Core Research Group, Deakin University, 75 Pigdons Road, Locked Bag 20000, Geelong, Vic., 3220, Australia. .,School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds Campus, 75 Pigdons Road, Locked Bag 20000, Geelong, Vic., 3220, Australia.
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds Campus, 75 Pigdons Road, Locked Bag 20000, Geelong, Vic., 3220, Australia
| | - Randall S Lee
- Applied Sciences Group, Environmental Protection Authority, Vic., 3085, Australia
| | - Nathan J Bott
- School of Science and Centre for Environmental Sustainability and Remediation, RMIT University, PO Box 71, Bundoora, Vic., 3083, Australia
| | - Alastair J Hirst
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds Campus, 75 Pigdons Road, Locked Bag 20000, Geelong, Vic., 3220, Australia
| |
Collapse
|
86
|
The Tangled Evolutionary Legacies of Range Expansion and Hybridization. Trends Ecol Evol 2016; 31:677-688. [DOI: 10.1016/j.tree.2016.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/15/2023]
|
87
|
Trumbo DR, Epstein B, Hohenlohe PA, Alford RA, Schwarzkopf L, Storfer A. Mixed population genomics support for the central marginal hypothesis across the invasive range of the cane toad (Rhinella marina) in Australia. Mol Ecol 2016; 25:4161-76. [PMID: 27393238 PMCID: PMC5021610 DOI: 10.1111/mec.13754] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 12/26/2022]
Abstract
Understanding factors that cause species' geographic range limits is a major focus in ecology and evolution. The central marginal hypothesis (CMH) predicts that species cannot adapt to conditions beyond current geographic range edges because genetic diversity decreases from core to edge due to smaller, more isolated edge populations. We employed a population genomics framework using 24 235-33 112 SNP loci to test major predictions of the CMH in the ongoing invasion of the cane toad (Rhinella marina) in Australia. Cane toad tissue samples were collected along broad-scale, core-to-edge transects across their invasive range. Geographic and ecological core areas were identified using GIS and habitat suitability indices from ecological niche modelling. Bayesian clustering analyses revealed three genetic clusters, in the northwest invasion-front region, northeast precipitation-limited region and southeast cold temperature-limited region. Core-to-edge patterns of genetic diversity and differentiation were consistent with the CMH in the southeast, but were not supported in the northeast and showed mixed support in the northwest. Results suggest cold temperatures are a likely contributor to southeastern range limits, consistent with CMH predictions. In the northeast and northwest, ecological processes consisting of a steep physiological barrier and ongoing invasion dynamics, respectively, are more likely explanations for population genomic patterns than the CMH.
Collapse
Affiliation(s)
- Daryl R. Trumbo
- Washington State University; School of Biological Sciences; Abelson Hall, Room 305; Pullman, WA 990164, USA
| | - Brendan Epstein
- Washington State University; School of Biological Sciences; Abelson Hall, Room 305; Pullman, WA 990164, USA
| | - Paul A. Hohenlohe
- University of Idaho; Department of Biological Sciences; Life Sciences South 252; Moscow, ID 83844, USA
| | - Ross A. Alford
- James Cook University; College of Marine and Environmental Sciences; Building 28; Townsville, QLD 4811, Australia
| | - Lin Schwarzkopf
- James Cook University; College of Marine and Environmental Sciences; Building 28; Townsville, QLD 4811, Australia
| | - Andrew Storfer
- Washington State University; School of Biological Sciences; Abelson Hall, Room 305; Pullman, WA 990164, USA
| |
Collapse
|
88
|
Measey GJ, Vimercati G, de Villiers FA, Mokhatla M, Davies SJ, Thorp CJ, Rebelo AD, Kumschick S. A global assessment of alien amphibian impacts in a formal framework. DIVERS DISTRIB 2016. [DOI: 10.1111/ddi.12462] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- G. J. Measey
- Centre for Invasion Biology; Department of Botany and Zoology; Stellenbosch University; Stellenbosch South Africa
| | - G. Vimercati
- Centre for Invasion Biology; Department of Botany and Zoology; Stellenbosch University; Stellenbosch South Africa
| | - F. A. de Villiers
- Centre for Invasion Biology; Department of Botany and Zoology; Stellenbosch University; Stellenbosch South Africa
| | - M. Mokhatla
- Centre for Invasion Biology; Department of Botany and Zoology; Stellenbosch University; Stellenbosch South Africa
| | - S. J. Davies
- Centre for Invasion Biology; Department of Botany and Zoology; Stellenbosch University; Stellenbosch South Africa
| | - C. J. Thorp
- Centre for Invasion Biology; Department of Botany and Zoology; Stellenbosch University; Stellenbosch South Africa
| | - A. D. Rebelo
- Centre for Invasion Biology; Department of Botany and Zoology; Stellenbosch University; Stellenbosch South Africa
| | - S. Kumschick
- Centre for Invasion Biology; Department of Botany and Zoology; Stellenbosch University; Stellenbosch South Africa
- Invasive Species Programme; South African National Biodiversity Institute; Kirstenbosch National Botanical Gardens; Claremont 7735 South Africa
| |
Collapse
|
89
|
Bessa-Silva AR, Vallinoto M, Sodré D, da Cunha DB, Hadad D, Asp NE, Sampaio I, Schneider H, Sequeira F. Patterns of Genetic Variability in Island Populations of the Cane Toad (Rhinella marina) from the Mouth of the Amazon. PLoS One 2016; 11:e0152492. [PMID: 27073849 PMCID: PMC4830453 DOI: 10.1371/journal.pone.0152492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/15/2016] [Indexed: 11/19/2022] Open
Abstract
The Amazonian coast has several unique geological characteristics resulting from the interaction between drainage pattern of the Amazon River and the Atlantic Ocean. It is one of the most extensive and sedimentologically dynamic regions of the world, with a large number of continental islands mostly formed less than 10,000 years ago. The natural distribution of the cane toad (Rhinella marina), one of the world's most successful invasive species, in this complex Amazonian system provides an intriguing model for the investigation of the effects of isolation or the combined effects of isolation and habitat dynamic changes on patterns of genetic variability and population differentiation. We used nine fast-evolving microsatellite loci to contrast patterns of genetic variability in six coastal (three mainlands and three islands) populations of the cane toad near the mouth of the Amazon River. Results from Bayesian multilocus clustering approach and Discriminant Analyses of Principal Component were congruent in showing that each island population was genetically differentiated from the mainland populations. All FST values obtained from all pairwise comparisons were significant, ranging from 0.048 to 0.186. Estimates of both recent and historical gene flow were not significantly different from zero across all population pairs, except the two mainland populations inhabiting continuous habitats. Patterns of population differentiation, with a high level of population substructure and absence/restricted gene flow, suggested that island populations of R. marina are likely isolated since the Holocene sea-level rise. However, considering the similar levels of genetic variability found in both island and mainland populations, it is reliable to assume that they were also isolated for longer periods. Given the genetic uniqueness of each cane toad population, together with the high natural vulnerability of the coastal regions and intense human pressures, we suggest that these populations should be treated as discrete units for conservation management purposes.
Collapse
Affiliation(s)
- Adam Rick Bessa-Silva
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
| | - Marcelo Vallinoto
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
- * E-mail:
| | - Davidson Sodré
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
| | - Divino Bruno da Cunha
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
| | - Dante Hadad
- Laboratório de Evolução (LEVO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
| | - Nils Edvin Asp
- Laboratório de Geologia Costeira (LAGECO), Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
| | - Iracilda Sampaio
- Laboratório de Filogenômica e Bioinformática, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
| | - Horacio Schneider
- Laboratório de Filogenômica e Bioinformática, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brasil
| | - Fernando Sequeira
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
90
|
Rapid morphological changes, admixture and invasive success in populations of Ring-necked parakeets (Psittacula krameri) established in Europe. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1103-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
91
|
Rieseberg L, Geraldes A. Editorial 2016. Mol Ecol 2016; 25:433-49. [DOI: 10.1111/mec.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
92
|
Richardson MF, Sherman CDH. De Novo Assembly and Characterization of the Invasive Northern Pacific Seastar Transcriptome. PLoS One 2015; 10:e0142003. [PMID: 26529321 PMCID: PMC4631335 DOI: 10.1371/journal.pone.0142003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
Invasive species are a major threat to global biodiversity but can also serve as valuable model systems to examine important evolutionary processes. While the ecological aspects of invasions have been well documented, the genetic basis of adaptive change during the invasion process has been hampered by a lack of genomic resources for the majority of invasive species. Here we report the first larval transcriptomic resource for the Northern Pacific Seastar, Asterias amurensis, an invasive marine predator in Australia. Approximately 117.5 million 100 base-pair (bp) paired-end reads were sequenced from a single RNA-Seq library from a pooled set of full-sibling A. amurensis bipinnaria larvae. We evaluated the efficacy of a pre-assembly error correction pipeline on subsequent de novo assembly. Error correction resulted in small but important improvements to the final assembly in terms of mapping statistics and core eukaryotic genes representation. The error-corrected de novo assembly resulted in 115,654 contigs after redundancy clustering. 41,667 assembled contigs were homologous to sequences from NCBI’s non-redundant protein and UniProt databases. We assigned Gene Ontology, KEGG Orthology, Pfam protein domain terms and predicted protein-coding sequences to > 36,000 contigs. The final transcriptome dataset generated here provides functional information for 18,319 unique proteins, comprising at least 11,355 expressed genes. Furthermore, we identified 9,739 orthologs to P. miniata proteins, evaluated our annotation pipeline and generated a list of 150 candidate genes for responses to several environmental stressors that may be important for adaptation of A. amurensis in the invasive range. Our study has produced a large set of A. amurensis RNA contigs with functional annotations that can serve as a resource for future comparisons to other echinoderm transcriptomes and gene expression studies. Our data can be used to study the genetic basis of adaptive change and other important evolutionary processes during a successful invasion.
Collapse
Affiliation(s)
- Mark F. Richardson
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Integrative Ecology, (Waurn Ponds Campus). 75 Pigdons Road. Locked Bag 20000, Geelong, VIC 3220, Australia
- * E-mail:
| | - Craig D. H. Sherman
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Integrative Ecology, (Waurn Ponds Campus). 75 Pigdons Road. Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
93
|
McCartney-Melstad E, Shaffer HB. Amphibian molecular ecology and how it has informed conservation. Mol Ecol 2015; 24:5084-109. [PMID: 26437125 DOI: 10.1111/mec.13391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 02/02/2023]
Abstract
Molecular ecology has become one of the key tools in the modern conservationist's kit. Here we review three areas where molecular ecology has been applied to amphibian conservation: genes on landscapes, within-population processes, and genes that matter. We summarize relevant analytical methods, recent important studies from the amphibian literature, and conservation implications for each section. Finally, we include five in-depth examples of how molecular ecology has been successfully applied to specific amphibian systems.
Collapse
Affiliation(s)
- Evan McCartney-Melstad
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, 610 Charles E Young Drive South, Los Angeles, CA, USA
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, 610 Charles E Young Drive South, Los Angeles, CA, USA
| |
Collapse
|
94
|
Sultan SE, Matesanz S. An ideal weed: plasticity and invasiveness in Polygonum cespitosum. Ann N Y Acad Sci 2015; 1360:101-19. [PMID: 26457473 DOI: 10.1111/nyas.12946] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The introduced Asian plant Polygonum cespitosum has only recently become invasive in northeastern North America, spreading into sunny as well as shaded habitats. We present findings from a multiyear case study of this ongoing species invasion, drawing on field environmental measurements, glasshouse plasticity and resurrection experiments, and molecular genetic (microsatellite) data. We focus in particular on patterns of individual phenotypic plasticity (norms of reaction), their diversity within and among populations in the species' introduced range, and their contribution to its potential to evolve even greater invasiveness. Genotypes from introduced-range P. cespitosum populations have recently evolved to express greater adaptive plasticity to full sun and/or dry conditions without any loss of fitness in shade. Evidently, this species may evolve the sort of "general-purpose genotypes" hypothesized by Herbert Baker to characterize an "ideal weed." Indeed, we identified certain genotypes capable of extremely high reproductive output across contrasting conditions, including sunny, shaded, moist, and dry. Populations containing these high-performance genotypes had consistently higher fitness in all glasshouse habitats; there was no evidence for local adaptive differentiation among populations from sunny, shaded, moist, or dry sites. Norm of reaction data may provide valuable insights to invasion biology: the presence of broadly adaptive, high-performance genotypes can promote a species' ecological spread while providing the fuel for increased invasiveness to evolve.
Collapse
Affiliation(s)
- Sonia E Sultan
- Biology Department, Wesleyan University, Middletown, Connecticut
| | - Silvia Matesanz
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Universidad Rey Juan Carlos, c/ Tulipán s/n, Móstoles, Spain
| |
Collapse
|
95
|
Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH. What we still don't know about invasion genetics. Mol Ecol 2015; 24:2277-97. [PMID: 25474505 DOI: 10.1111/mec.13032] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Publication of The Genetics of Colonizing Species in 1965 launched the field of invasion genetics and highlighted the value of biological invasions as natural ecological and evolutionary experiments. Here, we review the past 50 years of invasion genetics to assess what we have learned and what we still don't know, focusing on the genetic changes associated with invasive lineages and the evolutionary processes driving these changes. We also suggest potential studies to address still-unanswered questions. We now know, for example, that rapid adaptation of invaders is common and generally not limited by genetic variation. On the other hand, and contrary to prevailing opinion 50 years ago, the balance of evidence indicates that population bottlenecks and genetic drift typically have negative effects on invasion success, despite their potential to increase additive genetic variation and the frequency of peak shifts. Numerous unknowns remain, such as the sources of genetic variation, the role of so-called expansion load and the relative importance of propagule pressure vs. genetic diversity for successful establishment. While many such unknowns can be resolved by genomic studies, other questions may require manipulative experiments in model organisms. Such studies complement classical reciprocal transplant and field-based selection experiments, which are needed to link trait variation with components of fitness and population growth rates. We conclude by discussing the potential for studies of invasion genetics to reveal the limits to evolution and to stimulate the development of practical strategies to either minimize or maximize evolutionary responses to environmental change.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Room 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|