51
|
Schmickl R, Marburger S, Bray S, Yant L. Hybrids and horizontal transfer: introgression allows adaptive allele discovery. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5453-5470. [PMID: 29096001 DOI: 10.1093/jxb/erx297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evolution has devised countless remarkable solutions to diverse challenges. Understanding the mechanistic basis of these solutions provides insights into how biological systems can be subtly tweaked without maladaptive consequences. The knowledge gained from illuminating these mechanisms is equally important to our understanding of fundamental evolutionary mechanisms as it is to our hopes of developing truly rational plant breeding and synthetic biology. In particular, modern population genomic approaches are proving very powerful in the detection of candidate alleles for mediating consequential adaptations that can be tested functionally. Especially striking are signals gained from contexts involving genetic transfers between populations, closely related species, or indeed between kingdoms. Here we discuss two major classes of these scenarios, adaptive introgression and horizontal gene flow, illustrating discoveries made across kingdoms.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic
| | - Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sian Bray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
52
|
Wen D, Nakhleh L. Coestimating Reticulate Phylogenies and Gene Trees from Multilocus Sequence Data. Syst Biol 2017; 67:439-457. [DOI: 10.1093/sysbio/syx085] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/24/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Luay Nakhleh
- Department of Computer Science
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|
53
|
Wei X, Qi Y, Zhang X, Luo L, Shang H, Wei R, Liu H, Zhang B. Phylogeny, historical biogeography and characters evolution of the drought resistant fern Pyrrosia Mirbel (Polypodiaceae) inferred from plastid and nuclear markers. Sci Rep 2017; 7:12757. [PMID: 28986552 PMCID: PMC5630607 DOI: 10.1038/s41598-017-12839-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/14/2017] [Indexed: 11/09/2022] Open
Abstract
Pyrrosia s.l. comprises ca. 60 species with a disjunct Africa/Asia and Australia distribution. The infrageneric classification of Pyrrosia s.l. is controversial based on the phylogenetic analyses of chloroplast markers and morphology. Based on the expanded taxon sampling of Pyrrosia s.l. (51 species), we investigated its phylogeny, biogeography, character evolution and environmental adaptation by employing five chloroplastid markers (rbcL, matK, psbA-trnH, and rps4 + rps4-trnS) and one single (low)-copy nuclear gene, LEAFY. Pyrrosia s.l. was divided into six major clades and eight subclades. Reticulate evolution was revealed both among clades and among species in Pyrrosia s.l. Ancestral character state optimization revealed high levels of homoplastic evolution of the diagnostic characters in Pyrrosia s.l., while the crassulacean acid metabolism pathway seems to have an independent origin. Molecular dating and biogeographic diversification analyses suggested that Pyrrosia s.l. originated no later than the Oligocene and the main clades diversified during the Oligocene and Miocene, with southern Asia, the Indo-China Peninsula and southwestern and southern China as the most likely ancestral areas. Transoceanic long-distance dispersal, rather than vicariance, contributed to the intercontinental disjunction. Diversification scenarios of Pyrrosia s.l. under geological movements and climate fluctuation are also discussed.
Collapse
Affiliation(s)
- Xueping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yaodong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xianchun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Li Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hui Shang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences; Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
54
|
Fouet C, Kamdem C, Gamez S, White BJ. Genomic insights into adaptive divergence and speciation among malaria vectors of the Anopheles nili group. Evol Appl 2017; 10:897-906. [PMID: 29151881 PMCID: PMC5680430 DOI: 10.1111/eva.12492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/27/2017] [Indexed: 01/16/2023] Open
Abstract
Ongoing speciation in the most important African malaria vectors gives rise to cryptic populations, which differ remarkably in their behavior, ecology, and capacity to vector malaria parasites. Understanding the population structure and the drivers of genetic differentiation among mosquitoes is crucial for effective disease control because heterogeneity within vector species contributes to variability in malaria cases and allow fractions of populations to escape control efforts. To examine population structure and the potential impacts of recent large-scale control interventions, we have investigated the genomic patterns of differentiation in mosquitoes belonging to the Anopheles nili group-a large taxonomic group that diverged ~3 Myr ago. Using 4,343 single nucleotide polymorphisms (SNPs), we detected strong population structure characterized by high-FST values between multiple divergent populations adapted to different habitats within the Central African rainforest. Delineating the cryptic species within the Anopheles nili group is challenging due to incongruence between morphology, ribosomal DNA, and SNP markers consistent with incomplete lineage sorting and/or interspecific gene flow. A very high proportion of loci are fixed (FST = 1) within the genome of putative species, which suggests that ecological and/or reproductive barriers are maintained by strong selection on a substantial number of genes.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of EntomologyUniversity of CaliforniaRiversideCAUSA
| | - Colince Kamdem
- Department of EntomologyUniversity of CaliforniaRiversideCAUSA
| | - Stephanie Gamez
- Department of EntomologyUniversity of CaliforniaRiversideCAUSA
| | - Bradley J. White
- Department of EntomologyUniversity of CaliforniaRiversideCAUSA
- Center for Disease Vector ResearchInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|
55
|
Richards EJ, Martin CH. Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes. PLoS Genet 2017; 13:e1006919. [PMID: 28796803 PMCID: PMC5552031 DOI: 10.1371/journal.pgen.1006919] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Rapid diversification often involves complex histories of gene flow that leave variable and conflicting signatures of evolutionary relatedness across the genome. Identifying the extent and source of variation in these evolutionary relationships can provide insight into the evolutionary mechanisms involved in rapid radiations. Here we compare the discordant evolutionary relationships associated with species phenotypes across 42 whole genomes from a sympatric adaptive radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas and several outgroup pupfish species in order to understand the rarity of these trophic specialists within the larger radiation of Cyprinodon. 82% of the genome depicts close evolutionary relationships among the San Salvador Island species reflecting their geographic proximity, but the vast majority of variants fixed between specialist species lie in regions with discordant topologies. Top candidate adaptive introgression regions include signatures of selective sweeps and adaptive introgression of genetic variation from a single population in the northwestern Bahamas into each of the specialist species. Hard selective sweeps of genetic variation on San Salvador Island contributed 5 times more to speciation of trophic specialists than adaptive introgression of Caribbean genetic variation; however, four of the 11 introgressed regions came from a single distant island and were associated with the primary axis of oral jaw divergence within the radiation. For example, standing variation in a proto-oncogene (ski) known to have effects on jaw size introgressed into one San Salvador Island specialist from an island 300 km away approximately 10 kya. The complex emerging picture of the origins of adaptive radiation on San Salvador Island indicates that multiple sources of genetic variation contributed to the adaptive phenotypes of novel trophic specialists on the island. Our findings suggest that a suite of factors, including rare adaptive introgression, may be necessary for adaptive radiation in addition to ecological opportunity.
Collapse
Affiliation(s)
- Emilie J. Richards
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christopher H. Martin
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
56
|
Vargas OM, Ortiz EM, Simpson BB. Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium). THE NEW PHYTOLOGIST 2017; 214:1736-1750. [PMID: 28333396 DOI: 10.1111/nph.14530] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 02/19/2017] [Indexed: 05/21/2023]
Abstract
High-throughput sequencing is helping biologists to overcome the difficulties of inferring the phylogenies of recently diverged taxa. The present study analyzes the phylogenetic signal of genomic regions with different inheritance patterns using genome skimming and ddRAD-seq in a species-rich Andean genus (Diplostephium) and its allies. We analyzed the complete nuclear ribosomal cistron, the complete chloroplast genome, a partial mitochondrial genome, and a nuclear-ddRAD matrix separately with phylogenetic methods. We applied several approaches to understand the causes of incongruence among datasets, including simulations and the detection of introgression using the D-statistic (ABBA-BABA test). We found significant incongruence among the nuclear, chloroplast, and mitochondrial phylogenies. The strong signal of hybridization found by simulations and the D-statistic among genera and inside the main clades of Diplostephium indicate reticulate evolution as a main cause of phylogenetic incongruence. Our results add evidence for a major role of reticulate evolution in events of rapid diversification. Hybridization and introgression confound chloroplast and mitochondrial phylogenies in relation to the species tree as a result of the uniparental inheritance of these genomic regions. Practical implications regarding the prevalence of hybridization are discussed in relation to the phylogenetic method.
Collapse
Affiliation(s)
- Oscar M Vargas
- Integrative Biology and Plant Resources Center, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 N. University Ave, Ann Arbor, MI, 48109, USA
| | - Edgardo M Ortiz
- Integrative Biology and Plant Resources Center, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Beryl B Simpson
- Integrative Biology and Plant Resources Center, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
57
|
Challenges in Species Tree Estimation Under the Multispecies Coalescent Model. Genetics 2017; 204:1353-1368. [PMID: 27927902 DOI: 10.1534/genetics.116.190173] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/25/2016] [Indexed: 11/18/2022] Open
Abstract
The multispecies coalescent (MSC) model has emerged as a powerful framework for inferring species phylogenies while accounting for ancestral polymorphism and gene tree-species tree conflict. A number of methods have been developed in the past few years to estimate the species tree under the MSC. The full likelihood methods (including maximum likelihood and Bayesian inference) average over the unknown gene trees and accommodate their uncertainties properly but involve intensive computation. The approximate or summary coalescent methods are computationally fast and are applicable to genomic datasets with thousands of loci, but do not make an efficient use of information in the multilocus data. Most of them take the two-step approach of reconstructing the gene trees for multiple loci by phylogenetic methods and then treating the estimated gene trees as observed data, without accounting for their uncertainties appropriately. In this article we review the statistical nature of the species tree estimation problem under the MSC, and explore the conceptual issues and challenges of species tree estimation by focusing mainly on simple cases of three or four closely related species. We use mathematical analysis and computer simulation to demonstrate that large differences in statistical performance may exist between the two classes of methods. We illustrate that several counterintuitive behaviors may occur with the summary methods but they are due to inefficient use of information in the data by summary methods and vanish when the data are analyzed using full-likelihood methods. These include (i) unidentifiability of parameters in the model, (ii) inconsistency in the so-called anomaly zone, (iii) singularity on the likelihood surface, and (iv) deterioration of performance upon addition of more data. We discuss the challenges and strategies of species tree inference for distantly related species when the molecular clock is violated, and highlight the need for improving the computational efficiency and model realism of the likelihood methods as well as the statistical efficiency of the summary methods.
Collapse
|
58
|
Lu B, Zhang L, Leong HW. A program to compute the soft Robinson-Foulds distance between phylogenetic networks. BMC Genomics 2017; 18:111. [PMID: 28361712 PMCID: PMC5374702 DOI: 10.1186/s12864-017-3500-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Over the past two decades, phylogenetic networks have been studied to model reticulate evolutionary events. The relationships among phylogenetic networks, phylogenetic trees and clusters serve as the basis for reconstruction and comparison of phylogenetic networks. To understand these relationships, two problems are raised: the tree containment problem, which asks whether a phylogenetic tree is displayed in a phylogenetic network, and the cluster containment problem, which asks whether a cluster is represented at a node in a phylogenetic network. Both the problems are NP-complete. Results A fast exponential-time algorithm for the cluster containment problem on arbitrary networks is developed and implemented in C. The resulting program is further extended into a computer program for fast computation of the Soft Robinson–Foulds distance between phylogenetic networks. Conclusions Two computer programs are developed for facilitating reconstruction and validation of phylogenetic network models in evolutionary and comparative genomics. Our simulation tests indicated that they are fast enough for use in practice. Additionally, the distribution of the Soft Robinson–Foulds distance between phylogenetic networks is demonstrated to be unlikely normal by our simulation data. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3500-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bingxin Lu
- Department of Computer Science, National University of Singapore, 13 Computing Drive, Singapore, 117417, Singapore
| | - Louxin Zhang
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge, Singapore, 119076, Singapore.
| | - Hon Wai Leong
- Department of Computer Science, National University of Singapore, 13 Computing Drive, Singapore, 117417, Singapore
| |
Collapse
|
59
|
Potter S, Bragg JG, Blom MPK, Deakin JE, Kirkpatrick M, Eldridge MDB, Moritz C. Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies. Front Genet 2017; 8:10. [PMID: 28265284 PMCID: PMC5301020 DOI: 10.3389/fgene.2017.00010] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to "chromosomal speciation." Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale. We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciation.
Collapse
Affiliation(s)
- Sally Potter
- Research School of Biology, Australian National University, ActonACT, Australia
- Australian Museum Research Institute, Australian Museum, SydneyNSW, Australia
| | - Jason G. Bragg
- National Herbarium of New South Wales, The Royal Botanic Gardens and Domain Trust, SydneyNSW, Australia
| | - Mozes P. K. Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural HistoryStockholm, Sweden
| | - Janine E. Deakin
- Institute for Applied Ecology, University of Canberra, BruceACT, Australia
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, AustinTX, USA
| | - Mark D. B. Eldridge
- Australian Museum Research Institute, Australian Museum, SydneyNSW, Australia
| | - Craig Moritz
- Research School of Biology, Australian National University, ActonACT, Australia
| |
Collapse
|
60
|
Goulet BE, Roda F, Hopkins R. Hybridization in Plants: Old Ideas, New Techniques. PLANT PHYSIOLOGY 2017; 173:65-78. [PMID: 27895205 PMCID: PMC5210733 DOI: 10.1104/pp.16.01340] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/24/2016] [Indexed: 05/18/2023]
Abstract
Hybridization has played an important role in the evolution of many lineages. With the growing availability of genomic tools and advancements in genomic analyses, it is becoming increasingly clear that gene flow between divergent taxa can generate new phenotypic diversity, allow for adaptation to novel environments, and contribute to speciation. Hybridization can have immediate phenotypic consequences through the expression of hybrid vigor. On longer evolutionary time scales, hybridization can lead to local adaption through the introgression of novel alleles and transgressive segregation and, in some cases, result in the formation of new hybrid species. Studying both the abundance and the evolutionary consequences of hybridization has deep historical roots in plant biology. Many of the hypotheses concerning how and why hybridization contributes to biological diversity currently being investigated were first proposed tens and even hundreds of years ago. In this Update, we discuss how new advancements in genomic and genetic tools are revolutionizing our ability to document the occurrence of and investigate the outcomes of hybridization in plants.
Collapse
Affiliation(s)
- Benjamin E Goulet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (B.E.G., F.R., R.H.); and
- Arnold Arboretum of Harvard University, Boston, Massachusetts 02131 (R.H.)
| | - Federico Roda
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (B.E.G., F.R., R.H.); and
- Arnold Arboretum of Harvard University, Boston, Massachusetts 02131 (R.H.)
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (B.E.G., F.R., R.H.); and
- Arnold Arboretum of Harvard University, Boston, Massachusetts 02131 (R.H.)
| |
Collapse
|
61
|
Abstract
BACKGROUND Phylogenetic networks model reticulate evolutionary histories. The last two decades have seen an increased interest in establishing mathematical results and developing computational methods for inferring and analyzing these networks. A salient concept underlying a great majority of these developments has been the notion that a network displays a set of trees and those trees can be used to infer, analyze, and study the network. RESULTS In this paper, we show that in the presence of coalescence effects, the set of displayed trees is not sufficient to capture the network. We formally define the set of parental trees of a network and make three contributions based on this definition. First, we extend the notion of anomaly zone to phylogenetic networks and report on anomaly results for different networks. Second, we demonstrate how coalescence events could negatively affect the ability to infer a species tree that could be augmented into the correct network. Third, we demonstrate how a phylogenetic network can be viewed as a mixture model that lends itself to a novel inference approach via gene tree clustering. CONCLUSIONS Our results demonstrate the limitations of focusing on the set of trees displayed by a network when analyzing and inferring the network. Our findings can form the basis for achieving higher accuracy when inferring phylogenetic networks and open up new venues for research in this area, including new problem formulations based on the notion of a network's parental trees.
Collapse
Affiliation(s)
- Jiafan Zhu
- Department of Computer Science, Rice University, Houston, 77005 Texas USA
| | - Yun Yu
- Department of Computer Science, Rice University, Houston, 77005 Texas USA
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, 77005 Texas USA
- Department of BioSciences, Rice University, Houston, 77005 Texas USA
| |
Collapse
|
62
|
Yu Y, Jermaine C, Nakhleh L. Exploring phylogenetic hypotheses via Gibbs sampling on evolutionary networks. BMC Genomics 2016; 17:784. [PMID: 28185563 PMCID: PMC5123299 DOI: 10.1186/s12864-016-3099-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Phylogenetic networks are leaf-labeled graphs used to model and display complex evolutionary relationships that do not fit a single tree. There are two classes of phylogenetic networks: Data-display networks and evolutionary networks. While data-display networks are very commonly used to explore data, they are not amenable to incorporating probabilistic models of gene and genome evolution. Evolutionary networks, on the other hand, can accommodate such probabilistic models, but they are not commonly used for exploration. Results In this work, we show how to turn evolutionary networks into a tool for statistical exploration of phylogenetic hypotheses via a novel application of Gibbs sampling. We demonstrate the utility of our work on two recently available genomic data sets, one from a group of mosquitos and the other from a group of modern birds. We demonstrate that our method allows the use of evolutionary networks not only for explicit modeling of reticulate evolutionary histories, but also for exploring conflicting treelike hypotheses. We further demonstrate the performance of the method on simulated data sets, where the true evolutionary histories are known. Conclusion We introduce an approach to explore phylogenetic hypotheses over evolutionary phylogenetic networks using Gibbs sampling. The hypotheses could involve reticulate and non-reticulate evolutionary processes simultaneously as we illustrate on mosquito and modern bird genomic data sets.
Collapse
Affiliation(s)
- Yun Yu
- Department of Computer Science, Rice University, Houston, Texas, 77005, USA
| | | | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, Texas, 77005, USA. .,Department of BioSciences, Rice University, Houston, Texas, 77005, USA.
| |
Collapse
|
63
|
Huang J. Parapatric genetic introgression and phenotypic assimilation: testing conditions for introgression between Hercules beetles (
Dynastes
, Dynastinae). Mol Ecol 2016; 25:5513-5526. [DOI: 10.1111/mec.13849] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Jen‐Pan Huang
- Museum of Zoology Department of Ecology and Evolutionary Biology University of Michigan 1109 Geddes Ave. Ann Arbor MI 48109‐1079 USA
| |
Collapse
|
64
|
Zarza E, Faircloth BC, Tsai WL, Bryson RW, Klicka J, McCormack JE. Hidden histories of gene flow in highland birds revealed with genomic markers. Mol Ecol 2016; 25:5144-5157. [DOI: 10.1111/mec.13813] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Eugenia Zarza
- Moore Laboratory of Zoology Occidental College Los Angeles CA 90041 USA
| | - Brant C. Faircloth
- Department of Biological Sciences and Museum of Natural Science Louisiana State University Baton Rouge LA 70803 USA
| | - Whitney L.E. Tsai
- Moore Laboratory of Zoology Occidental College Los Angeles CA 90041 USA
| | - Robert W. Bryson
- Moore Laboratory of Zoology Occidental College Los Angeles CA 90041 USA
- Burke Museum of Natural History and Culture and Department of Biology University of Washington Seattle WA 98195 USA
| | - John Klicka
- Burke Museum of Natural History and Culture and Department of Biology University of Washington Seattle WA 98195 USA
| | - John E. McCormack
- Moore Laboratory of Zoology Occidental College Los Angeles CA 90041 USA
| |
Collapse
|
65
|
Bayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent. PLoS Genet 2016; 12:e1006006. [PMID: 27144273 PMCID: PMC4856265 DOI: 10.1371/journal.pgen.1006006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary history of a set of genomes, or species, could be reticulate due to the occurrence of evolutionary processes such as hybridization or horizontal gene transfer. We report on a novel method for Bayesian inference of genome and species phylogenies under the multispecies network coalescent (MSNC). This framework models gene evolution within the branches of a phylogenetic network, thus incorporating reticulate evolutionary processes, such as hybridization, in addition to incomplete lineage sorting. As phylogenetic networks with different numbers of reticulation events correspond to points of different dimensions in the space of models, we devise a reversible-jump Markov chain Monte Carlo (RJMCMC) technique for sampling the posterior distribution of phylogenetic networks under MSNC. We implemented the methods in the publicly available, open-source software package PhyloNet and studied their performance on simulated and biological data. The work extends the reach of Bayesian inference to phylogenetic networks and enables new evolutionary analyses that account for reticulation. Trees have long formed in biology the basic structure with which to represent and understand evolutionary relationships. Mathematical models, computational methods, and software tools for inferring phylogenetic trees and studying their mathematical properties are currently the norm in biology. The availability of genomic data from closely related species, as well as from multiple individuals within species, have brought the two fields of phylogenetics and population genetics closer than ever. In particular, the last two decades have witnessed a great flourish in the development and implementation of phylogenetic methods based on the multispecies coalescent model to capture the intricate relationship between gene and genome evolution. However, when reticulation processes such as hybridization occur, the phylogenetic history is best represented by a network. In this work, we demonstrate how the multispecies coalescent model can be adapted to reticulate evolutionary histories and report on a Bayesian method for inference of such histories under this extended model. As networks subsume trees, the model and method provide a principled and unified statistical framework for inferring treelike and non-treelike evolutionary relationships.
Collapse
|
66
|
Rosenzweig BK, Pease JB, Besansky NJ, Hahn MW. Powerful methods for detecting introgressed regions from population genomic data. Mol Ecol 2016; 25:2387-97. [PMID: 26945783 DOI: 10.1111/mec.13610] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
Abstract
Understanding the types and functions of genes that are able to cross species boundaries-and those that are not-is an important step in understanding the forces maintaining species as largely independent lineages across the remainder of the genome. With large next-generation sequencing data sets we are now able to ask whether introgression has occurred across the genome, and multiple methods have been proposed to detect the signature of such events. Here, we introduce a new summary statistic that can be used to test for introgression, RNDmin , that makes use of the minimum pairwise sequence distance between two population samples relative to divergence to an outgroup. We find that our method offers a modest increase in power over other, related tests, but that all such tests have high power to detect introgressed loci when migration is recent and strong. RNDmin is robust to variation in the mutation rate, and remains reliable even when estimates of the divergence time between sister species are inaccurate. We apply RNDmin to population genomic data from the African mosquitoes Anopheles quadriannulatus and A. arabiensis, identifying three novel candidate regions for introgression. Interestingly, one of the introgressed loci is on the X chromosome, but outside of an inversion separating these two species. Our results suggest that significant, but rare, sharing of alleles is occurring between species that diverged more than 1 million years ago, and that application of these methods to additional systems are likely to reveal similar results.
Collapse
Affiliation(s)
- Benjamin K Rosenzweig
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47405, USA
| | - James B Pease
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47405, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nora J Besansky
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew W Hahn
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47405, USA.,Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|