51
|
Josling G, Petter M, Oehring S, Gupta A, Dietz O, Wilson D, Schubert T, Längst G, Gilson P, Crabb B, Moes S, Jenoe P, Lim S, Brown G, Bozdech Z, Voss T, Duffy M. A Plasmodium Falciparum Bromodomain Protein Regulates Invasion Gene Expression. Cell Host Microbe 2015; 17:741-51. [DOI: 10.1016/j.chom.2015.05.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/30/2015] [Accepted: 05/14/2015] [Indexed: 11/27/2022]
|
52
|
Hviid L, Jensen ATR. PfEMP1 - A Parasite Protein Family of Key Importance in Plasmodium falciparum Malaria Immunity and Pathogenesis. ADVANCES IN PARASITOLOGY 2015; 88:51-84. [PMID: 25911365 DOI: 10.1016/bs.apar.2015.02.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plasmodium falciparum causes the most severe form of malaria and is responsible for essentially all malaria-related deaths. The accumulation in various tissues of erythrocytes infected by mature P. falciparum parasites can lead to circulatory disturbances and inflammation, and is thought to be a central element in the pathogenesis of the disease. It is mediated by the interaction of parasite ligands on the erythrocyte surface and a range of host receptor molecules in many organs and tissues. Among several proteins and protein families implicated in this process, the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of high-molecular weight and highly variable antigens appears to be the most prominent. In this chapter, we aim to provide a systematic overview of the current knowledge about these proteins, their structure, their function, how they are presented on the erythrocyte surface, and how the var genes encoding them are regulated. The role of PfEMP1 in the pathogenesis of malaria, PfEMP1-specific immune responses, and the prospect of PfEMP1-specific vaccination against malaria are also covered briefly.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Anja T R Jensen
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
53
|
Nützmann HW, Osbourn A. Regulation of metabolic gene clusters in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 205:503-10. [PMID: 25417931 PMCID: PMC4301183 DOI: 10.1111/nph.13189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/23/2014] [Indexed: 05/04/2023]
Abstract
Recent discoveries have revealed that the genes for the biosynthesis of a variety of plant specialized metabolites are organized in operon-like clusters within plant genomes. Here we identify a regulatory process that is required for normal expression of metabolic gene clusters in Arabidopsis thaliana. Comparative gene expression analysis of a representative clustered gene was performed in a set of chromatin mutant lines. Subsequently, metabolite levels were analysed by GC-MS and the local chromatin structure was investigated by chromatin immunoprecipitation and nucleosome positioning. We show that the transcript levels of genes within two metabolic clusters are coordinately reduced in an arp6 and h2a.z background. We demonstrate that H2A.Z enrichment in the clusters is positively correlated with active cluster expression. We further show that nucleosome stability within the cluster regions is higher in the arp6 background compared with the wild-type. These results implicate ARP6 and H2A.Z in the regulation of metabolic clusters in Arabidopsis thaliana through localized chromatin modifications that enable the coordinate expression of groups of contiguous genes. These findings shed light on the complex process of cluster regulation, an area that could in the future open up new opportunities for the discovery and manipulation of specialized metabolic pathways in plants.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich Research ParkNorwich, NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research ParkNorwich, NR4 7UH, UK
| |
Collapse
|
54
|
Ay F, Bunnik EM, Varoquaux N, Vert JP, Noble WS, Le Roch KG. Multiple dimensions of epigenetic gene regulation in the malaria parasite Plasmodium falciparum: gene regulation via histone modifications, nucleosome positioning and nuclear architecture in P. falciparum. Bioessays 2014; 37:182-94. [PMID: 25394267 DOI: 10.1002/bies.201400145] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasmodium falciparum is the most deadly human malarial parasite, responsible for an estimated 207 million cases of disease and 627,000 deaths in 2012. Recent studies reveal that the parasite actively regulates a large fraction of its genes throughout its replicative cycle inside human red blood cells and that epigenetics plays an important role in this precise gene regulation. Here, we discuss recent advances in our understanding of three aspects of epigenetic regulation in P. falciparum: changes in histone modifications, nucleosome occupancy and the three-dimensional genome structure. We compare these three aspects of the P. falciparum epigenome to those of other eukaryotes, and show that large-scale compartmentalization is particularly important in determining histone decomposition and gene regulation in P. falciparum. We conclude by presenting a gene regulation model for P. falciparum that combines the described epigenetic factors, and by discussing the implications of this model for the future of malaria research.
Collapse
Affiliation(s)
- Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
55
|
Rai R, Zhu L, Chen H, Gupta AP, Sze SK, Zheng J, Ruedl C, Bozdech Z, Featherstone M. Genome-wide analysis in Plasmodium falciparum reveals early and late phases of RNA polymerase II occupancy during the infectious cycle. BMC Genomics 2014; 15:959. [PMID: 25373614 PMCID: PMC4232647 DOI: 10.1186/1471-2164-15-959] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/23/2014] [Indexed: 01/06/2023] Open
Abstract
Background Over the course of its intraerythrocytic developmental cycle (IDC), the malaria parasite Plasmodium falciparum tightly orchestrates the rise and fall of transcript levels for hundreds of genes. Considerable debate has focused on the relative importance of transcriptional versus post-transcriptional processes in the regulation of transcript levels. Enzymatically active forms of RNAPII in other organisms have been associated with phosphorylation on the serines at positions 2 and 5 of the heptad repeats within the C-terminal domain (CTD) of RNAPII. We reasoned that insight into the contribution of transcriptional mechanisms to gene expression in P. falciparum could be obtained by comparing the presence of enzymatically active forms of RNAPII at multiple genes with the abundance of their associated transcripts. Results We exploited the phosphorylation state of the CTD to detect enzymatically active forms of RNAPII at most P. falciparum genes across the IDC. We raised highly specific monoclonal antibodies against three forms of the parasite CTD, namely unphosphorylated, Ser5-P and Ser2/5-P, and used these in ChIP-on-chip type experiments to map the genome-wide occupancy of RNAPII. Our data reveal that the IDC is divided into early and late phases of RNAPII occupancy evident from simple bi-phasic RNAPII binding profiles. By comparison to mRNA abundance, we identified sub-sets of genes with high occupancy by enzymatically active forms of RNAPII and relatively low transcript levels and vice versa. We further show that the presence of active and repressive histone modifications correlates with RNAPII occupancy over the IDC. Conclusions The simple early/late occupancy by RNAPII cannot account for the complex dynamics of mRNA accumulation over the IDC, suggesting a major role for mechanisms acting downstream of RNAPII occupancy in the control of gene expression in this parasite. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-959) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | |
Collapse
|
56
|
Bogado SS, Dalmasso MC, Ganuza A, Kim K, Sullivan WJ, Angel SO, Vanagas L. Canonical histone H2Ba and H2A.X dimerize in an opposite genomic localization to H2A.Z/H2B.Z dimers in Toxoplasma gondii. Mol Biochem Parasitol 2014; 197:36-42. [PMID: 25286383 DOI: 10.1016/j.molbiopara.2014.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 02/01/2023]
Abstract
Histone H2Ba of Toxoplasma gondii was expressed as recombinant protein (rH2Ba) and used to generate antibody in mouse that is highly specific. Antibody recognizing rH2Ba detects a single band in tachyzoite lysate of the expected molecular weight (12kDa). By indirect immunofluorescence (IFA) in in vitro grown tachyzoites and bradyzoites, the signal was detected only in the parasite nucleus. The nucleosome composition of H2Ba was determined through co-immunoprecipitation assays. H2Ba was detected in the same immunocomplex as H2A.X, but not with H2A.Z. Through chromatin immunoprecipitation (ChIP) assays and qPCR, it was observed that H2Ba is preferentially located at promoters of inactive genes and silent regions, accompanying H2A.X and opposed to H2A.Z/H2B.Z dimers.
Collapse
Affiliation(s)
- Silvina S Bogado
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - María C Dalmasso
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Agustina Ganuza
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina; Scientific Research Commission (CIC, Buenos Aires), Argentina
| | - Kami Kim
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - William J Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, (B7130IIWA), Chascomús, Prov. Buenos Aires, Argentina.
| |
Collapse
|
57
|
Brancucci NMB, Witmer K, Schmid C, Voss TS. A var gene upstream element controls protein synthesis at the level of translation initiation in Plasmodium falciparum. PLoS One 2014; 9:e100183. [PMID: 24937593 PMCID: PMC4061111 DOI: 10.1371/journal.pone.0100183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/23/2014] [Indexed: 01/14/2023] Open
Abstract
Clonally variant protein expression in the malaria parasite Plasmodium falciparum generates phenotypic variability and allows isogenic populations to adapt to environmental changes encountered during blood stage infection. The underlying regulatory mechanisms are best studied for the major virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 is encoded by the multicopy var gene family and only a single variant is expressed in individual parasites, a concept known as mutual exclusion or singular gene choice. var gene activation occurs in situ and is achieved through the escape of one locus from epigenetic silencing. Singular gene choice is controlled at the level of transcription initiation and var 5' upstream (ups) sequences harbour regulatory information essential for mutually exclusive transcription as well as for the trans-generational inheritance of the var activity profile. An additional level of control has recently been identified for the var2csa gene, where an mRNA element in the 5' untranslated region (5' UTR) is involved in the reversible inhibition of translation of var2csa transcripts. Here, we extend the knowledge on post-transcriptional var gene regulation to the common upsC type. We identified a 5' UTR sequence that inhibits translation of upsC-derived mRNAs. Importantly, this 5' UTR element efficiently inhibits translation even in the context of a heterologous upstream region. Further, we found var 5' UTRs to be significantly enriched in uAUGs which are known to impair the efficiency of protein translation in other eukaryotes. Our findings suggest that regulation at the post-transcriptional level is a common feature in the control of PfEMP1 expression in P. falciparum.
Collapse
Affiliation(s)
- Nicolas M. B. Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Kathrin Witmer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christoph Schmid
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
58
|
Voss TS, Bozdech Z, Bártfai R. Epigenetic memory takes center stage in the survival strategy of malaria parasites. Curr Opin Microbiol 2014; 20:88-95. [PMID: 24945736 DOI: 10.1016/j.mib.2014.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/13/2014] [Indexed: 11/19/2022]
Abstract
Malaria parasites run through a complex life cycle in the vertebrate host and mosquito vector. This not only requires tightly controlled mechanisms to govern stage-specific gene expression but also necessitates effective strategies for survival under changing environmental conditions. In recent years, the combination of different -omics approaches and targeted functional studies highlighted that Plasmodium falciparum blood stage parasites use heterochromatin-based gene silencing as a unifying strategy for clonally variant expression of hundreds of genes. In this article, we describe the epigenetic control mechanisms that mediate alternative expression states of genes involved in antigenic variation, nutrient uptake and sexual conversion and discuss the relevance of this strategy for the survival and transmission of malaria parasites.
Collapse
Affiliation(s)
- Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
59
|
Bunnik EM, Polishko A, Prudhomme J, Ponts N, Gill SS, Lonardi S, Le Roch KG. DNA-encoded nucleosome occupancy is associated with transcription levels in the human malaria parasite Plasmodium falciparum. BMC Genomics 2014; 15:347. [PMID: 24885191 PMCID: PMC4035074 DOI: 10.1186/1471-2164-15-347] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
Background In eukaryotic organisms, packaging of DNA into nucleosomes controls gene expression by regulating access of the promoter to transcription factors. The human malaria parasite Plasmodium falciparum encodes relatively few transcription factors, while extensive nucleosome remodeling occurs during its replicative cycle in red blood cells. These observations point towards an important role of the nucleosome landscape in regulating gene expression. However, the relation between nucleosome positioning and transcriptional activity has thus far not been explored in detail in the parasite. Results Here, we analyzed nucleosome positioning in the asexual and sexual stages of the parasite’s erythrocytic cycle using chromatin immunoprecipitation of MNase-digested chromatin, followed by next-generation sequencing. We observed a relatively open chromatin structure at the trophozoite and gametocyte stages, consistent with high levels of transcriptional activity in these stages. Nucleosome occupancy of genes and promoter regions were subsequently compared to steady-state mRNA expression levels. Transcript abundance showed a strong inverse correlation with nucleosome occupancy levels in promoter regions. In addition, AT-repeat sequences were strongly unfavorable for nucleosome binding in P. falciparum, and were overrepresented in promoters of highly expressed genes. Conclusions The connection between chromatin structure and gene expression in P. falciparum shares similarities with other eukaryotes. However, the remarkable nucleosome dynamics during the erythrocytic stages and the absence of a large variety of transcription factors may indicate that nucleosome binding and remodeling are critical regulators of transcript levels. Moreover, the strong dependency between chromatin structure and DNA sequence suggests that the P. falciparum genome may have been shaped by nucleosome binding preferences. Nucleosome remodeling mechanisms in this deadly parasite could thus provide potent novel anti-malarial targets. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-347) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karine G Le Roch
- Department of Cell Biology and Neuroscience, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| |
Collapse
|
60
|
Abstract
Toxoplasma gondii and Plasmodium falciparum are important human pathogens. These parasites and many of their apicomplexan relatives undergo a complex developmental process in the cells of their hosts, which includes genome replication, cell division and the assembly of new invasive stages. Apicomplexan cell cycle progression is both globally and locally regulated. Global regulation is carried out throughout the cytoplasm by diffusible factors that include cell cycle-specific kinases, cyclins and transcription factors. Local regulation acts on individual nuclei and daughter cells that are developing inside the mother cell. We propose that the centrosome is a master regulator that physically tethers cellular components and that provides spatial and temporal control of apicomplexan cell division.
Collapse
Affiliation(s)
- Maria E Francia
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Boris Striepen
- 1] Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA. [2] Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
61
|
Duffy MF, Selvarajah SA, Josling GA, Petter M. Epigenetic regulation of the Plasmodium falciparum genome. Brief Funct Genomics 2013; 13:203-16. [PMID: 24326119 DOI: 10.1093/bfgp/elt047] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent research has highlighted some unique aspects of chromatin biology in the malaria parasite Plasmodium falciparum. During its erythrocytic lifecycle P. falciparum maintains its genome primarily as unstructured euchromatin. Indeed there is no clear role for chromatin-mediated silencing of the majority of the developmentally expressed genes in P. falciparum. However discontinuous stretches of heterochromatin are critical for variegated expression of contingency genes that mediate key pathogenic processes in malaria. These range from invasion of erythrocytes and antigenic variation to solute transport and growth adaptation in response to environmental changes. Despite lack of structure within euchromatin the nucleus maintains functional compartments that regulate expression of many genes at the nuclear periphery, particularly genes with clonally variant expression. The typical components of the chromatin regulatory machinery are present in P. falciparum; however, some of these appear to have evolved novel species-specific functions, e.g. the dynamic regulation of histone variants at virulence gene promoters. The parasite also appears to have repeatedly acquired chromatin regulatory proteins through lateral transfer from endosymbionts and from the host. P. falciparum chromatin regulators have been successfully targeted with multiple drugs in laboratory studies; hopefully their functional divergence from human counterparts will allow the development of parasite-specific inhibitors.
Collapse
|
62
|
Hoeijmakers WAM, Salcedo-Amaya AM, Smits AH, Françoijs KJ, Treeck M, Gilberger TW, Stunnenberg HG, Bártfai R. H2A.Z/H2B.Z double-variant nucleosomes inhabit the AT-rich promoter regions of the Plasmodium falciparum genome. Mol Microbiol 2013; 87:1061-73. [PMID: 23320541 PMCID: PMC3594968 DOI: 10.1111/mmi.12151] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 02/06/2023]
Abstract
Histone variants are key components of the epigenetic code and evolved to perform specific functions in transcriptional regulation, DNA repair, chromosome segregation and other fundamental processes. Although variants for histone H2A and H3 are found throughout the eukaryotic kingdom, variants of histone H2B and H4 are rarely encountered. H2B.Z is one of those rare H2B variants and is apicomplexan-specific. Here we show that in Plasmodium falciparum H2B.Z localizes to euchromatic intergenic regions throughout intraerythrocytic development and together with H2A.Z forms a double-variant nucleosome subtype. These nucleosomes are enriched in promoters over 3′ intergenic regions and their occupancy generally correlates with the strength of the promoter, but not with its temporal activity. Remarkably, H2B.Z occupancy levels exhibit a clear correlation with the base-composition of the underlying DNA, raising the intriguing possibility that the extreme AT content of the intergenic regions within the Plasmodium genome might be instructive for histone variant deposition. In summary, our data show that the H2A.Z/H2B.Z double-variant nucleosome demarcates putative regulatory regions of the P. falciparum epigenome and likely provides a scaffold for dynamic regulation of gene expression in this deadly human pathogen.
Collapse
Affiliation(s)
- Wieteke A M Hoeijmakers
- Department of Molecular Biology, Radboud University, Nijmegen Centre for Molecular Life Sciences, Nijmegen 6525GA, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|