51
|
Gheysen G, Mitchum MG. Phytoparasitic Nematode Control of Plant Hormone Pathways. PLANT PHYSIOLOGY 2019; 179:1212-1226. [PMID: 30397024 PMCID: PMC6446774 DOI: 10.1104/pp.18.01067] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/24/2018] [Indexed: 05/17/2023]
Abstract
Phytoparasitic nematodes use multiple tactics to influence phytohormone physiology and alter plant developmental programs to establish feeding sites.
Collapse
Affiliation(s)
- Godelieve Gheysen
- Ghent University, Department of Biotechnology, Coupure Links 653, 9000 Ghent, Belgium
| | - Melissa G Mitchum
- University of Missouri, Division of Plant Sciences and Bond Life Sciences Center, Columbia, Missouri 65211
| |
Collapse
|
52
|
Abdelsamad N, Regmi H, Desaeger J, DiGennaro P. Nicotinamide adenine dinucleotide induced resistance against root-knot nematode Meloidogyne hapla is based on increased tomato basal defense. J Nematol 2019; 51:1-10. [PMID: 31088034 PMCID: PMC6930958 DOI: 10.21307/jofnem-2019-022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 11/11/2022] Open
Abstract
Root-knot nematodes (RKN; Meloidogyne spp.) are among the most damaging pests to tomato production in the USA and worldwide, with yield losses ranging from 25 to 100%. Host resistance conferred by the Mi gene in tomato is effective against some species of RKN (e.g. M. incognita, M. javanica, and M. arenaria); however, there are virulent species and lines including M. hapla and M. eterolobii that break Mi-mediated resistance. Plant innate immunity is another possible form of defense against pathogen attack and is known to be induced by chemical elicitors. Nicotinamide adenine dinucleotide (NAD) is one such chemical elicitor that regulates plant defense responses to multiple biotic stresses. In this study, we investigated the role of NAD in the context of induced tomato innate immunity and RKN pathogenicity in two tomato cultivars; VFN and Rutgers, with and without Mi, respectively. Single soil drench application of NAD 24 hr before nematode inoculation significantly induced defense response pathways, reduced infective-juveniles penetration, number of galls, and increased plant mass in both cultivars. Importantly, we observed no direct toxic effects of NAD on nematode viability and infectivity. The results presented here suggest that NAD induces resistance against RKN pathogenicity likely through the accumulation of tomato basal defense responses rather than the direct effect on the infective-juveniles behavior.
Collapse
Affiliation(s)
- Noor Abdelsamad
- Department of Entomology and Nematology, College of Agriculture and Animal Science, University of Florida , Gainesville
| | - H Regmi
- Department of Entomology and Nematology, College of Agriculture and Animal Science, University of Florida , Gainesville ; Gulf Coast Research and Education Center, University of Florida , Wimauma
| | - J Desaeger
- Gulf Coast Research and Education Center, University of Florida , Wimauma
| | - P DiGennaro
- Department of Entomology and Nematology, College of Agriculture and Animal Science, University of Florida , Gainesville
| |
Collapse
|
53
|
Enebe MC, Babalola OO. The impact of microbes in the orchestration of plants' resistance to biotic stress: a disease management approach. Appl Microbiol Biotechnol 2019; 103:9-25. [PMID: 30315353 PMCID: PMC6311197 DOI: 10.1007/s00253-018-9433-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
The struggle for survival is a natural and a continuous process. Microbes are struggling to survive by depending on plants for their nutrition while plants on the other hand are resisting the attack of microbes in order to survive. This interaction is a tug of war and the knowledge of microbe-plant relationship will enable farmers/agriculturists improve crop health, yield, sustain regular food supply, and minimize the use of agrochemicals such as fungicides and pesticides in the fight against plant pathogens. Although, these chemicals are capable of inhibiting pathogens, they also constitute an environmental hazard. However, certain microbes known as plant growth-promoting microbes (PGPM) aid in the sensitization and priming of the plant immune defense arsenal for it to conquer invading pathogens. PGPM perform this function by the production of elicitors such as volatile organic compounds, antimicrobials, and/or through competition. These elicitors are capable of inducing the expression of pathogenesis-related genes in plants through induced systemic resistance or acquired systemic resistance channels. This review discusses the current findings on the influence and participation of microbes in plants' resistance to biotic stress and to suggest integrative approach as a better practice in disease management and control for the achievement of sustainable environment, agriculture, and increasing food production.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
54
|
Shang Y, Wang K, Sun S, Zhou J, Yu JQ. COP9 Signalosome CSN4 and CSN5 Subunits Are Involved in Jasmonate-Dependent Defense Against Root-Knot Nematode in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:1223. [PMID: 31649695 PMCID: PMC6794412 DOI: 10.3389/fpls.2019.01223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/04/2019] [Indexed: 05/03/2023]
Abstract
COP9 signalosome (CSN) is an evolutionarily conserved regulatory component of the ubiquitin/proteasome system that plays crucial roles in plant growth and stress tolerance; however, the mechanism of COP9-mediated resistance to root-knot nematodes (RKNs, e.g. Meloidogyne incognita) is not fully understood in plants. In the present study, we found that RKN infection in the roots rapidly increases the transcript levels of CSN subunits 4 and 5 (CSN4 and CSN5) and their protein accumulation in tomato (Solanum lycopersicum) plants. Suppression of CSN4 or CSN5 expression resulted in significantly increased number of egg masses and aggravated RKN-induced lipid peroxidation of cellular membrane but inhibited RKN-induced accumulation of CSN4 or CSN5 protein in tomato roots. Importantly, the RKN-induced accumulation of jasmonic acid (JA) and JA-isoleucine (JA-Ile), as well as the transcript levels of JA-related biosynthetic and signaling genes were compromised by CSN4 or CSN5 gene silencing. Moreover, protein-protein interaction assays demonstrated that CSN4 and CSN5B interact with the jasmonate ZIM domain 2 (JAZ2), which is the signaling component of the JA pathway. Silencing of CSN4 or CSN5 also compromises RKN-induced JAZ2 expression. Together, our findings indicate that CSN4 and CSN5 play critical roles in JA-dependent basal defense against RKN.
Collapse
Affiliation(s)
- Yifen Shang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kaixin Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Shuchang Sun
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- *Correspondence: Jie Zhou,
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development, and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
55
|
Hu Y, You J, Li J, Wang C. Loss of cytosolic glucose-6-phosphate dehydrogenase increases the susceptibility of Arabidopsis thaliana to root-knot nematode infection. ANNALS OF BOTANY 2019; 123:37-46. [PMID: 29992234 PMCID: PMC6344109 DOI: 10.1093/aob/mcy124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Root knot nematodes (RKNs, Meloidogyne spp.) are microscopic roundworms with a wide host range causing great economic losses worldwide. Understanding how metabolic pathways function within the plant upon RKN infection will provide insight into the molecular aspects of plant-RKN interactions. Glucose-6-phosphate dehydrogenase (G6PDH), the key regulatory enzyme of the oxidative pentose phosphate pathway (OPPP), is involved in plant responses to abiotic stresses and pathogenesis. In this study, the roles of Arabidopsis cytosolic G6PDH in plant-RKN interactions were investigated. METHODS Enzyme assays and western blotting were used to characterize changes in total G6PDH activity and protein abundance in wild-type Arabidopsis in response to RKN infection. The susceptibility of wild-type plants and the double mutant g6pd5/6 to RKNs was analysed and the expression of genes associated with the basal defence response was tested after RKN infection using quantitative reverse transcription PCR. KEY RESULTS RKN infection caused a marked increase in total G6PDH activity and protein abundance in wild-type Arabidopsis roots. However, the transcript levels of G6PDH genes except G6PD6 were not significantly induced following RKN infection, suggesting that the increase in G6PDH activity may occur at the post-transcriptional level. The double mutant g6pd5/6 with loss-of-function of the two cytosolic isoforms G6PD5 and G6PD6 displayed enhanced susceptibility to RKNs. Moreover, reactive oxygen species (ROS) production and gene expression involved in the defence response including jasmonic acid and salicylic acid pathways were suppressed in the g6pd5/6 mutant at the early stage of RKN infection when compared to the wild-type plants. CONCLUSIONS The results demonstrated that the G6PDH-mediated OPPP plays an important role in the plant-RKN interaction. In addition, a new aspect of G6PDH activity involving NADPH production by the OPPP in plant basal defence against RKNs is defined, which may be involved in ROS signalling.
Collapse
Affiliation(s)
- Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jia You
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi, China
| | - Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- For correspondence. E-mail
| |
Collapse
|
56
|
Li X, Xing X, Tian P, Zhang M, Huo Z, Zhao K, Liu C, Duan D, He W, Yang T. Comparative Transcriptome Profiling Reveals Defense-Related Genes against Meloidogyne incognita Invasion in Tobacco. Molecules 2018; 23:E2081. [PMID: 30127271 PMCID: PMC6222693 DOI: 10.3390/molecules23082081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/20/2023] Open
Abstract
Root-knot nematodes Meloidogyne incognita are one of the most destructive pathogens, causing severe losses to tobacco productivity and quality. However, the underlying resistance mechanism of tobacco to M. incognita is not clear. In this study, two tobacco genotypes, K326 and Changbohuang, which are resistant and susceptible to M. incognita, respectively, were used for RNA-sequencing analysis. An average of 35 million clean reads were obtained. Compared with their expression levels in non-infected plants of the same genotype, 4354 and 545 differentially expressed genes (DEGs) were detected in the resistant and susceptible genotype, respectively, after M. incognita invasion. Overall, 291 DEGs, involved in diverse biological processes, were common between the two genotypes. Genes encoding toxic compound synthesis, cell wall modification, reactive oxygen species and the oxidative burst, salicylic acid signal transduction, and production of some other metabolites were putatively associated with tobacco resistance to M. incognita. In particular, the complex resistance response needed to overcome M. incognita invasion may be regulated by several transcription factors, such as the ethylene response factor, MYB, basic helix⁻loop⁻helix transcription factor, and indole acetic acid⁻leucine-resistant transcription factor. These results may aid in the identification of potential genes of resistance to M. incognita for tobacco cultivar improvement.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Xuexia Xing
- Nanyang Branch of Henan Province Tobacco Company, Nanyang 473003, Henan, China.
| | - Pei Tian
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Mingzhen Zhang
- Xiaogan Agricultural Technical Extension Station, Xiaogan 432000, Hubei, China.
| | - Zhaoguang Huo
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Ke Zhao
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Chao Liu
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Duwei Duan
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Wenjun He
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Tiezhao Yang
- Department of Tobacco, College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
57
|
Lawaju BR, Lawrence KS, Lawrence GW, Klink VP. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:331-348. [PMID: 29936240 DOI: 10.1016/j.plaphy.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max) infection by the charcoal rot (CR) ascomycete Macrophomina phaseolina is enhanced by the soybean cyst nematode (SCN) Heterodera glycines. We hypothesized that G. max genetic lines impairing infection by M. phaseolina would also limit H. glycines parasitism, leading to resistance. As a part of this M. phaseolina resistance process, the genetic line would express defense genes already proven to impair nematode parasitism. Using G. max[DT97-4290/PI 642055], exhibiting partial resistance to M. phaseolina, experiments show the genetic line also impairs H. glycines parasitism. Furthermore, comparative studies show G. max[DT97-4290/PI 642055] exhibits induced expression of the effector triggered immunity (ETI) gene NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) that functions in defense to H. glycines as compared to the H. glycines and M. phaseolina susceptible line G. max[Williams 82/PI 518671]. Other defense genes that are induced in G. max[DT97-4290/PI 642055] include the pathogen associated molecular pattern (PAMP) triggered immunity (PTI) genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), NONEXPRESSOR OF PR1 (NPR1) and TGA2. These observations link G. max defense processes that impede H. glycines parasitism to also potentially function toward impairing M. phaseolina pathogenicity. Testing this hypothesis, G. max[Williams 82/PI 518671] genetically engineered to experimentally induce GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 expression leads to impaired M. phaseolina pathogenicity. In contrast, G. max[DT97-4290/PI 642055] engineered to experimentally suppress the expression of GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 by RNA interference (RNAi) enhances M. phaseolina pathogenicity. The results show components of PTI and ETI impair both nematode and M. phaseolina pathogenicity.
Collapse
Affiliation(s)
- Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, College of Agriculture and Life Sciences, Mississippi State, MS, 39762, USA.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Vincent P Klink
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
58
|
Jiang N, Cui J, Meng J, Luan Y. A Tomato Nucleotide Binding Sites-Leucine-Rich Repeat Gene Is Positively Involved in Plant Resistance to Phytophthora infestans. PHYTOPATHOLOGY 2018; 108:980-987. [PMID: 29595084 DOI: 10.1094/phyto-12-17-0389-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The nucleotide binding sites-leucine-rich repeat (NBS-LRR) genes are key regulatory components of plant to pathogens. Phytophthora infestans-inducible coding sequence encoding an NBS-LRR (SpNBS-LRR) protein in tomato (Solanum pimpinellifolium L3708) was cloned and characterized based on our RNA-Seq data and tomato genome. After sequence analysis, SpNBS-LRR was identified as a hydrophilic protein with no transmembrane topological structure and no signal peptide. SpNBS-LRR had a close genetic relationship to RPS2 of Arabidopsis thaliana by phylogenetic analysis. In addition, SpNBS-LRR gene was mainly expressed in root, with low expression observed in leaf and stem. To further investigate the role of SpNBS-LRR in tomato-P. infestans interaction, SpNBS-LRR was introduced in susceptible tomatoes and three transgenic lines with higher expression level of SpNBS-LRR were selected. These transgenic tomato plants that overexpressed SpNBS-LRR displayed greater resistance than wild-type tomato plants after infection with P. infestans, as shown by decreased disease index, lesion diameters, number of necrotic cells, P. infestans abundance, and higher expression levels of the defense-related genes. This information provides insight into SpNBS-LRR involved in the resistance of tomato to P. infestans infection and candidate for breeding to enhance biotic stress-resistance in tomato.
Collapse
Affiliation(s)
- Ning Jiang
- First, second, and fourth authors: School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China; and third author: School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jun Cui
- First, second, and fourth authors: School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China; and third author: School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jun Meng
- First, second, and fourth authors: School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China; and third author: School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yushi Luan
- First, second, and fourth authors: School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China; and third author: School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
59
|
Deenamo N, Kuyyogsuy A, Khompatara K, Chanwun T, Ekchaweng K, Churngchow N. Salicylic Acid Induces Resistance in Rubber Tree against Phytophthora palmivora. Int J Mol Sci 2018; 19:E1883. [PMID: 29949940 PMCID: PMC6073688 DOI: 10.3390/ijms19071883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022] Open
Abstract
Induced resistance by elicitors is considered to be an eco-friendly strategy to stimulate plant defense against pathogen attack. In this study, we elucidated the effect of salicylic acid (SA) on induced resistance in rubber tree against Phytophthora palmivora and evaluated the possible defense mechanisms that were involved. For SA pretreatment, rubber tree exhibited a significant reduction in disease severity by 41%. Consistent with the occurrence of induced resistance, the pronounced increase in H₂O₂ level, catalase (CAT) and peroxidase (POD) activities were observed. For defense reactions, exogenous SA promoted the increases of H₂O₂, CAT, POD and phenylalanine ammonia lyase (PAL) activities, including lignin, endogenous SA and scopoletin (Scp) contents. However, SA had different effects on the activity of each CAT isoform in the particular rubber tree organs. Besides, three partial cDNAs encoding CAT (HbCAT1, HbCAT2 and HbCAT3) and a partial cDNA encoding PAL (HbPAL) were isolated from rubber tree. Moreover, the expressions of HbCAT1, HbPAL and HbPR1 were induced by SA. Our findings suggested that, upon SA priming, the elevated H₂O₂, CAT, POD and PAL activities, lignin, endogenous SA and Scp contents, including the up-regulated HbCAT1, HbPAL and HbPR1 expressions could potentiate the resistance in rubber tree against P. palmivora.
Collapse
Affiliation(s)
- Nuramalee Deenamo
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| | - Arnannit Kuyyogsuy
- Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand.
| | - Khemmikar Khompatara
- Office of Agricultural Research and Development Region 8, Department of Agriculture, Ministry of Agriculture and Cooperatives, Hat-Yai, Songkhla 90110, Thailand.
| | - Thitikorn Chanwun
- Faculty of Science and Technology, Rajamangala University of Technology Srivijaya Nakhon Si Thammarat Saiyai Campus, Thungsong, Nakhon Si Thammarat 80110, Thailand.
| | - Kitiya Ekchaweng
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| | - Nunta Churngchow
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| |
Collapse
|
60
|
Monazzah M, Tahmasebi Enferadi S, Rabiei Z. Enzymatic activities and pathogenesis-related genes expression in sunflower inbred lines affected by Sclerotinia sclerotiorum culture filtrate. J Appl Microbiol 2018; 125:227-242. [PMID: 29569305 DOI: 10.1111/jam.13766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022]
Abstract
AIMS Studying biochemical responses and pathogenesis-related gene expression in sunflower-Sclerotinia interaction can shed light on factors participating to disease resistance. METHODS AND RESULTS Partially resistant and susceptible lines were exposed to pathogen culture filtrate. The activity of antioxidant enzymes and proline was much more pronounced in partially resistant line. The more resistant to Sclerotinia sclerotiorum, the less (1,4)-β-glucanase activity was observed. PDF 1.2 and PR5-1 exhibited higher transcript abundance in the partially resistant line than in the susceptible line. CONCLUSIONS Considering the dual roles of oxalic acid, activation of the antioxidant system in partially resistant line might lead to suppression of oxidative burst which is beneficial for the growth of fungus at later stages of infection. The ability of the partially resistant line in balancing antioxidant enzymes could reserve H2 O2 as a substrate for peroxidase that might lead to lignification. The contribution of (1,4)-β-glucanase defence responses against Sclerotinia was observed. The roles of SA and JA marker genes were demonstrated in sunflower defence responses. SIGNIFICANCE AND IMPACT OF THE STUDY The time of antioxidant system activation in host is important in order to contribute to defence responses. To date, the changes in the expression of PR1 and PDF 1.2 and contribution of (1,4)-β-glucanase enzyme in sunflower defence responses were not reported in previous studies.
Collapse
Affiliation(s)
- M Monazzah
- Department of Plant Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - S Tahmasebi Enferadi
- Department of Plant Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Z Rabiei
- Department of Plant Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
61
|
Song LX, Xu XC, Wang FN, Wang Y, Xia XJ, Shi K, Zhou YH, Zhou J, Yu JQ. Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG-dependent activation of MAPKs in tomato. PLANT, CELL & ENVIRONMENT 2018; 41:1113-1125. [PMID: 28370079 DOI: 10.1111/pce.12952] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 05/03/2023]
Abstract
Interplay of hormones with reactive oxygen species (ROS) fine-tunes the response of plants to stress; however, the crosstalk between brassinosteroids (BRs) and ROS in nematode resistance is unclear. In this study, we found that low BR biosynthesis or lack of BR receptor increased, whilst exogenous BR decreased the susceptibility of tomato plants to Meloidogyne incognita. Hormone quantification coupled with hormone mutant complementation experiments revealed that BR did not induce the defence response by triggering salicylic acid (SA), jasmonic acid/ethylene (JA/ET) or abscisic acid (ABA) signalling pathway. Notably, roots of BR-deficient plants had decreased apoplastic ROS accumulation, transcript of RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1) and WHITEFLY INDUCED1 (WFI1), and reduced activation of mitogen-activated protein kinase 1/2 (MPK1/2) and MPK3. Silencing of RBOH1, WFI1, MPK1, MPK2 and MPK3 all increased the root susceptibility to nematode and attenuated BR-induced resistance against the nematode. Significantly, suppressed transcript of RBOH1 compromised BR-induced activation of MPK1/2 and MPK3. These results strongly suggest that RBOH-dependent MPK activation is involved in the BR-induced systemic resistance against the nematode.
Collapse
Affiliation(s)
- Liu-Xia Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xue-Chen Xu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Fa-Nan Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yu Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
62
|
Shukla N, Yadav R, Kaur P, Rasmussen S, Goel S, Agarwal M, Jagannath A, Gupta R, Kumar A. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. MOLECULAR PLANT PATHOLOGY 2018; 19:615-633. [PMID: 28220591 PMCID: PMC6638136 DOI: 10.1111/mpp.12547] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/19/2017] [Accepted: 02/17/2017] [Indexed: 05/10/2023]
Abstract
Root-knot nematodes (RKNs, Meloidogyne incognita) are economically important endoparasites with a wide host range. We used a comprehensive transcriptomic approach to investigate the expression of both tomato and RKN genes in tomato roots at five infection time intervals from susceptible plants and two infection time intervals from resistant plants, grown under soil conditions. Differentially expressed genes during susceptible (1827, tomato; 462, RKN) and resistance (25, tomato; 160, RKN) interactions were identified. In susceptible responses, tomato genes involved in cell wall structure, development, primary and secondary metabolite, and defence signalling pathways, together with RKN genes involved in host parasitism, development and defence, are discussed. In resistance responses, tomato genes involved in secondary metabolite and hormone-mediated defence responses, together with RKN genes involved in starvation stress-induced apoptosis, are discussed. In addition, 40 novel differentially expressed RKN genes encoding secretory proteins were identified. Our findings provide novel insights into the temporal regulation of genes involved in various biological processes from tomato and RKN simultaneously during susceptible and resistance responses, and reveal the involvement of a complex network of biosynthetic pathways during disease development.
Collapse
Affiliation(s)
- Neha Shukla
- Department of BotanyUniversity of DelhiDelhi110007India
| | - Rachita Yadav
- Department of Bio and Health InformaticsTechnical University of Denmark, Kemitorvet 208Lyngby2800Denmark
| | - Pritam Kaur
- Department of BotanyUniversity of DelhiDelhi110007India
| | - Simon Rasmussen
- Department of Bio and Health InformaticsTechnical University of Denmark, Kemitorvet 208Lyngby2800Denmark
| | | | - Manu Agarwal
- Department of BotanyUniversity of DelhiDelhi110007India
| | | | - Ramneek Gupta
- Department of Bio and Health InformaticsTechnical University of Denmark, Kemitorvet 208Lyngby2800Denmark
| | - Amar Kumar
- Department of BotanyUniversity of DelhiDelhi110007India
| |
Collapse
|
63
|
Zhao W, Zhou X, Lei H, Fan J, Yang R, Li Z, Hu C, Li M, Zhao F, Wang S. Transcriptional evidence for cross talk between JA and ET or SA during root-knot nematode invasion in tomato. Physiol Genomics 2018; 50:197-207. [PMID: 29341868 DOI: 10.1152/physiolgenomics.00079.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
studies have demonstrated that jasmonic acid (JA) reduces root-knot nematode (RKN) infections in tomato plants. RKN invasion is sensed by roots, and root-derived JA signaling activates systemic defense responses, though this is poorly understood. Here, we investigate variations in the RKN-induced transcriptome in scion phloem between two tomato plant grafts: CM/CM ( Lycopersicum esculentum Mill. cv. Castlemart) and CM/ spr2 (a JA-deficient mutant). A total of 8,716 genes were differentially expressed in the scion phloem of the plants with JA-deficient rootstock via RNA sequencing. Among these genes, 535 upregulated and 153 downregulated genes with high copy numbers were identified as significantly differentially expressed. Among them, 34 predicted transcription factor genes were identified. Additionally, we used real-time quantitative PCR to analyze the expression patterns of 42 genes involved in the JA, ethylene, or salicylic acid pathway in phloem under RKN infection. The results suggested that in the absence of JA signaling, the ET signaling pathway is enhanced after RKN infection; however, alterations in the SA signaling pathway were not observed.
Collapse
Affiliation(s)
- Wenchao Zhao
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaoxuan Zhou
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Hui Lei
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jingwei Fan
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zilong Li
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Canli Hu
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Mengyan Li
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Fukuan Zhao
- College of Biotechnology, Beijing University of Agriculture, Beijing, China
| | - Shaohui Wang
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
64
|
ROS and Cell Death in Tomato Roots Infected by Meloidogyne Incognita. Methods Mol Biol 2018. [PMID: 29332288 DOI: 10.1007/978-1-4939-7668-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Phytoparasitic nematodes are plant pests causing serious problems to a broad range of hosts, and Meloidogyne species are widely recognized as the most damaging among the root knot nematode groups. During the incompatible interaction between avirulent pathogens and resistant tomato cultivars, juvenile nematode invasions provoke a defense cascade, culminating in hypersensitive responses. Methods to detect the key molecules involved in oxidative metabolism of the infected tomato roots are described here.
Collapse
|
65
|
Yang YX, Wu C, Ahammed GJ, Wu C, Yang Z, Wan C, Chen J. Red Light-Induced Systemic Resistance Against Root-Knot Nematode Is Mediated by a Coordinated Regulation of Salicylic Acid, Jasmonic Acid and Redox Signaling in Watermelon. FRONTIERS IN PLANT SCIENCE 2018; 9:899. [PMID: 30042771 PMCID: PMC6048386 DOI: 10.3389/fpls.2018.00899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/07/2018] [Indexed: 02/05/2023]
Abstract
Red light (RL) can stimulate plant defense against foliar diseases; however, its role in activation of systemic defense against root diseases remains unclear. Here, the effect of RL on root knot nematode Meloidogyne incognita (RKN) infestation was investigated in watermelon plants (Citrullus lanatus L.). Plants were exposed to 200 μmol m-2 s-1 photosynthetic photon flux density RL at the canopy level for 21 days using light-emitting photodiodes. The results showed that RL significantly suppressed gall formation and nematode development, which was closely associated with the RL-induced attenuation of oxidative stress in roots. Gene expression analysis showed that RL caused a transient upregulation of PR1 and WRKY70 transcripts at 7 days post inoculation in RKN-infected plants. Further investigation revealed that RL-induced systemic defense against RKN was attributed to increased jasmonic acid (JA) and salicylic acid (SA) content, and transcript levels of their biosynthetic genes in roots. Interestingly, while malondialdehyde content decreased, H2O2 accumulation increased in RL-treated RKN-plants, indicating a potential signaling role of H2O2 in mediating RL-induced systemic defense. Furthermore, analysis of enzymatic and non-enzymatic antidoxidants revealed that RL-induced enhanced defense agaist RKN was also attributed to increased activities of antioxidant enzymes as well as redox homeostasis. Taken together, these findings suggest that RL could enhance systemic resistance against RKN, which is mediated by a coordinated regulation of JA- and SA-dependent signaling, antioxidants, and redox homeostasis in watermelon plants.
Collapse
Affiliation(s)
- You-xin Yang
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chaoqun Wu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Golam J. Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Caijun Wu
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Zemao Yang
- Germplasm Lab, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Pingxiang University, Pingxiang, China
- *Correspondence: Jinyin Chen,
| |
Collapse
|
66
|
Lavrova VV, Matveeva EM, Zinovieva SV. Activity of components of the antioxidant system in the roots of potato plants at short-term temperature drop and invasion with parasitic nematodes. DOKL BIOCHEM BIOPHYS 2017; 476:329-332. [PMID: 29101748 DOI: 10.1134/s1607672917050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 11/23/2022]
Abstract
The activity of catalase and superoxide dismutase in the roots of susceptible plants and plants exposed to alternating temperatures, which were infected with the phytoparasitic nematode G. rostochiensis, was studied. It was found that, throughout the invasion period, the plants susceptible to invasion exhibited a high activity of these enzymes, which allowed them to maintain an active defense against the oxidative stress caused by the invasion and subsequent life activity of larvae. For the plants exposed to alternating temperatures, a decrease in the activity of catalase and superoxide dismutase at the early stages of invasion and an increase in the activity of these enzymes at the later stages was detected.
Collapse
Affiliation(s)
- V V Lavrova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Karelia, 185910, Russia
| | - E M Matveeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Karelia, 185910, Russia
| | - S V Zinovieva
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
67
|
Li J, Pang Z, Trivedi P, Zhou X, Ying X, Jia H, Wang N. 'Candidatus Liberibacter asiaticus' Encodes a Functional Salicylic Acid (SA) Hydroxylase That Degrades SA to Suppress Plant Defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:620-630. [PMID: 28488467 DOI: 10.1094/mpmi-12-16-0257-r] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pathogens from the fastidious, phloem-restricted 'Candidatus Liberibacter' species cause the devastating Huanglongbing (HLB) disease in citrus worldwide and cause diseases on many solanaceous crops and plants in the Apiaceae family. However, little is known about the pathogenic mechanisms due to the difficulty in culturing the corresponding 'Ca. Liberibacter' species. Here, we report that the citrus HLB pathogen 'Ca. L. asiaticus' uses an active salicylate hydroxylase SahA to degrade salicylic acid (SA) and suppress plant defenses. Purified SahA protein displays strong enzymatic activity to degrade SA and its derivatives. Overexpression of SahA in transgenic tobacco plants abolishes SA accumulation and hypersensitive response (HR) induced by nonhost pathogen infection. By degrading SA, 'Ca. L. asiaticus' not only enhances the susceptibility of citrus plants to both nonpathogenic and pathogenic Xanthomonas citri but also attenuates the responses of citrus plants to exogenous SA. In addition, foliar spraying of 2,1,3-benzothiadiazole and 2,6-dichloroisonicotinic acid, SA functional analogs not degradable by SahA, displays comparable (and even better) effectiveness with SA in suppressing 'Ca. L. asiaticus' population growth and HLB disease progression in infected citrus trees under field conditions. This study demonstrates one or more pathogens suppress plant defenses by degrading SA and establish clues for developing novel SA derivatives-based management approaches to control the associated plant diseases.
Collapse
Affiliation(s)
- Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Zhiqian Pang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Pankaj Trivedi
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Xiaofeng Zhou
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Xiaobao Ying
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
68
|
Leonetti P, Zonno MC, Molinari S, Altomare C. Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita. PLANT CELL REPORTS 2017; 36:621-631. [PMID: 28239746 DOI: 10.1007/s00299-017-2109-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/20/2017] [Indexed: 05/10/2023]
Abstract
Salicylic acid-signaling pathway and ethylene biosynthesis were induced in tomato treated with Trichoderma harzianum when infected by root-knot nematodes and limited the infection by activation of SAR and ethylene production. Soil pre-treatment with Trichoderma harzianum (Th) strains ITEM 908 (T908) and T908-5 decreased susceptibility of tomato to Meloidogyne incognita, as assessed by restriction in nematode reproduction and development. The effect of T. harzianum treatments on plant defense was detected by monitoring the expression of the genes PR-1/PR-5 and JERF3/ACO, markers of the SA- and JA/ET-dependent signaling pathways, respectively. The compatible nematode-plant interaction in absence of fungi caused a marked suppression of PR-1, PR-5, and ACO gene expressions, either locally or systemically, whilst expression of JERF3 gene resulted unaffected. Conversely, when plants were pre-treated with Th-strains, over-expression of PR-1, PR-5, and ACO genes was observed in roots 5 days after nematode inoculation. JERF3 gene expression did not change in Th-colonized plants challenged with nematodes. In the absence of nematodes, Trichoderma-root interaction was characterized by the inhibition of both SA-dependent signaling pathway and ET biosynthesis, and, in the case of PR-1 and ACO genes, this inhibition was systemic. JERF3 gene expression was systemically restricted only at the very early stages of plant-fungi interaction. Data presented indicate that Th-colonization primed roots for Systemic Acquired Resistance (SAR) against root-knot nematodes and reacted to nematode infection more efficiently than untreated plants. Such a response probably involves also activation of ET production, through an augmented transcription of the ACO gene, which encodes for the enzyme catalyzing the last step of ET biosynthesis. JA signaling and Induced Systemic Resistance (ISR) do not seem to be involved in the biocontrol action of the tested Th-strains against RKNs.
Collapse
Affiliation(s)
- Paola Leonetti
- Institute of Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 70126, Bari, Italy.
| | - Maria Chiara Zonno
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126, Bari, Italy
| | - Sergio Molinari
- Institute of Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 70126, Bari, Italy
| | - Claudio Altomare
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), 70126, Bari, Italy
| |
Collapse
|
69
|
Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CMJ, Van Wees SCM. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. THE NEW PHYTOLOGIST 2017; 213:1363-1377. [PMID: 27801946 DOI: 10.1111/nph.14251] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/02/2016] [Indexed: 05/18/2023]
Abstract
Beneficial root endophytes such as Trichoderma spp. can reduce infections by parasitic nematodes through triggering host defences. Little is currently known about the complex hormone signalling underlying the induction of resistance. In this study, we investigated whether Trichoderma modulates the hormone signalling network in the host to induce resistance to nematodes. We investigated the role and the timing of the jasmonic acid (JA)- and salicylic acid (SA)-regulated defensive pathways in Trichoderma-induced resistance to the root knot nematode Meloidogyne incognita. A split-root system of tomato (Solanum lycopersicum) was used to study local and systemic induced defences by analysing nematode performance, defence gene expression, responsiveness to exogenous hormone application, and dependence on SA and JA signalling of Trichoderma-induced resistance. Root colonization by Trichoderma impeded nematode performance both locally and systemically at multiple stages of the parasitism, that is, invasion, galling and reproduction. First, Trichoderma primed SA-regulated defences, which limited nematode root invasion. Then, Trichoderma enhanced JA-regulated defences, thereby antagonizing the deregulation of JA-dependent immunity by the nematodes, which compromised galling and fecundity. Our results show that Trichoderma primes SA- and JA-dependent defences in roots, and that the priming of responsiveness to these hormones upon nematode attack is plastic and adaptive to the parasitism stage.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Ivan Fernandez
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Gerrit B Lok
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - María J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| |
Collapse
|
70
|
Medeiros HAD, Araújo Filho JVD, Freitas LGD, Castillo P, Rubio MB, Hermosa R, Monte E. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Sci Rep 2017; 7:40216. [PMID: 28071749 PMCID: PMC5223212 DOI: 10.1038/srep40216] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022] Open
Abstract
Root-knot nematodes (RKN) are major crop pathogens worldwide. Trichoderma genus fungi are recognized biocontrol agents and a direct activity of Trichoderma atroviride (Ta) against the RKN Meloidogyne javanica (Mj), in terms of 42% reduction of number of galls (NG), 60% of number of egg masses and 90% of number of adult nematodes inside the roots, has been observed in tomato grown under greenhouse conditions. An in vivo split-root designed experiment served to demonstrate that Ta induces systemic resistance towards Mj, without the need for the organisms to be in direct contact, and significantly reduces NG (20%) and adult nematodes inside tomato roots (87%). The first generation (F1) of Ta-primed tomato plants inherited resistance to RKN; although, the induction of defenses occurred through different mechanisms, and in varying degrees, depending on the Ta-Mj interaction. Plant growth promotion induced by Ta was inherited without compromising the level of resistance to Mj, as the progeny of Ta-primed plants displayed increased size and resistance to Mj without fitness costs. Gene expression results from the defense inductions in the offspring of Ta-primed plants, suggested that an auxin-induced reactive oxygen species production promoted by Ta may act as a major defense strategy during plant growth.
Collapse
Affiliation(s)
- Hugo Agripino de Medeiros
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
- Department of Phytopathology, Federal University of Viçosa, Viçosa Minas Gerais, Brazil
| | | | | | - Pablo Castillo
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - María Belén Rubio
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
71
|
Lavrova VV, Udalova ZV, Matveeva EM, Khasanov FK, Zinovieva SV. Mi-1 gene expression in tomato plants under root-knot nematode invasion and treatment with salicylic acid. DOKL BIOCHEM BIOPHYS 2017; 471:413-416. [PMID: 28058682 DOI: 10.1134/s1607672916060107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 11/23/2022]
Abstract
The dynamics of expression of two homologous genes Mi-1.1 and Mi-1.2 in the roots of resistant and susceptible tomato plants in non-invasion conditions and during invasion with the root-knot nematode M. incognita was studied. Nematode invasion was accompanied by a significant increase in the expression level of both genes; however, the accumulation of transcripts at the early stages of nematode invasion in the penetration of nematode juveniles to the roots was observed only in plants that contained the Mi-1.2 gene, which explains the resistance of tomatoes to this root-knot nematode, caused by only this gene. We reveal a change in the Mi-1 gene activity under exogenous salicylic acid treatment, which contributed to the formation of induced resistance to root-knot nematode in the susceptible plants.
Collapse
Affiliation(s)
- V V Lavrova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, st. Pushkinskaya 11, Petrozavodsk, Republic of Karelia, 185910, Russia
| | - Zh V Udalova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - E M Matveeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, st. Pushkinskaya 11, Petrozavodsk, Republic of Karelia, 185910, Russia
| | - F K Khasanov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia.,Institute of Gene Biology, Russian Academy of Sciences, st. Vavilova 34/5, Moscow, 119334, Russia
| | - S V Zinovieva
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia.
| |
Collapse
|
72
|
Ramirez-Estrada K, Castillo N, Lara JA, Arró M, Boronat A, Ferrer A, Altabella T. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28649260 PMCID: PMC5465953 DOI: 10.3389/fpls.2017.00984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sterol glycosyltransferases (SGTs) catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom) SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic acid and methyl jasmonate. Stress-induced SlSGT2 expression largely parallels that of SlSGT4. On the contrary, SlSGT1 and SlSGT3 expression remains almost unaltered under the tested stress conditions. Overall, this study contributes to broaden the current knowledge on plant SGTs and provides support to the view that tomato SGTs play overlapping but not completely redundant biological functions involved in mediating developmental and stress responses.
Collapse
Affiliation(s)
- Karla Ramirez-Estrada
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Nídia Castillo
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Juan A. Lara
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Monserrat Arró
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Albert Boronat
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of BarcelonaBarcelona, Spain
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| | - Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| |
Collapse
|
73
|
Hu Y, You J, Li C, Hua C, Wang C. Exogenous application of methyl jasmonate induces defence against Meloidogyne hapla in soybean. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phytohormones play important roles in plant defence against plant-parasitic nematodes, although the role of jasmonate (JA) in defence against root-knot nematodes (RKN, Meloidogyne spp.) in soybean (Glycine max) was unknown. In this study, two commercial soybean cultivars, cvs DongSheng1 (DS1) and SuiNong14 (SN14), were identified as susceptible and resistant, respectively, to M. hapla. Quantitative reverse transcription (qRT)-PCR analysis showed that the expression of genes involved in JA synthesis or signalling was significantly induced in both susceptible and resistant roots at 24 and 48 h after inoculation. Exogenous application of methyl jasmonate induced defence against RKN in susceptible cv. DS1, which might be involved in altered activities of defence-related enzymes (chitinase and β-1,3 glucanase) and pathogenesis-related gene PR5 expression. The results indicate that exogenous application of JA might be an alternative strategy to induce soybean resistance against RKN.
Collapse
Affiliation(s)
- Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| | - Jia You
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| | - Chunjie Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| | - Cui Hua
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| | - Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R. China
| |
Collapse
|
74
|
Zhao D, Qin LJ, Zhao DG. RNA interference of the nicotine demethylase gene CYP82E4v1 reduces nornicotine content and enhances Myzus persicae resistance in Nicotiana tabacum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:214-221. [PMID: 27314515 DOI: 10.1016/j.plaphy.2016.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 06/06/2023]
Abstract
The CYP82E4v1 gene was identified to encode nicotine demethylase, which catalyzed the conversion of nicotine to nornicotine. In this study, we constructed CYP82E4v1-RNAi vector and genetically transformed tobacco variety K326. The determination results of nicotine and nornicotine content via HPLC demonstrated that there was significant increase of nicotine content and reduction of nornicotine content in transgenic plants compared with those in wild-type plants. Exogenous application of IAA or GA3 could reduce the nicotine content in tobaccos, while ABA or 6-BA could increase the content of nicotine. And the more significant difference of nicotine content change in transgenic plants. Aphid-inoculation experiment demonstrated the number of aphid population in transgenic plants was significantly lower than wild-type plants at 12 d after aphid-inoculation. Meanwhile, the activity of AOEs and PAL in transgenic and wild-type tobacco plants after aphid-inoculation was measured. At 3 d after aphid-inoculation, both AOEs and PAL activity were significantly higher than controls, including wild-type plants with aphid-inoculation and transgenic plants with mock-inoculation. Also, the relative expression of these genes involved in salicylic acid/jasmonic acid (SA/JA) signaling pathways was analyzed at different stages after aphid-inoculation and the results demonstrated that there was significantly higher expression of JA-induced LOX gene in both transgenic and wild-type plants inoculated by aphid than the non-inoculated ones while no significant difference in the expression of SA-induced PR-1a gene among them was found, which indicated the JA-mediated resistance response was activated during aphid infestation. Moreover, although the expression level of BGL (another JA-induced gene) was less significant between the two inoculated tobaccos, it was significantly higher than the plant without inoculation, which was 1.4 and 2.2 folds higher than the non-inoculated controls respectively. To sum up, the improvement of aphid-resistance in transgenic tobaccos was based on nicotine accumulation which might cause nerve and antifeed toxicity and JA-mediated resistance response by enhancing the activities of AOEs and PAL.
Collapse
Affiliation(s)
- Dan Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province, PR China; Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, PR China
| | - Li-Jun Qin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province, PR China; Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, PR China
| | - De-Gang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province, PR China; Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, PR China.
| |
Collapse
|
75
|
Liu B, Liu X, Liu Y, Xue S, Cai Y, Yang S, Dong M, Zhang Y, Liu H, Zhao B, Qi C, Zhu N, Ren H. The Infection of Cucumber ( Cucumis sativus L.) Roots by Meloidogyne incognita Alters the Expression of Actin-Depolymerizing Factor ( ADF) Genes, Particularly in Association with Giant Cell Formation. FRONTIERS IN PLANT SCIENCE 2016; 7:1393. [PMID: 27695469 PMCID: PMC5025442 DOI: 10.3389/fpls.2016.01393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/01/2016] [Indexed: 05/27/2023]
Abstract
Cucumber (Cucumis sativus L.) is threatened by substantial yield losses due to the south root-knot nematode (Meloidogyne incognita). However, understanding of the molecular mechanisms underlying the process of nematode infection is still limited. In this study, we found that M. incognita infection affected the structure of cells in cucumber roots and treatment of the cytoskeleton inhibitor (cytochalasin D) reduced root-knot nematode (RKN) parasitism. It is known that Actin-Depolymerizing Factor (ADF) affects cell structure, as well as the organization of the cytoskeleton. To address the hypothesis that nematode-induced abnormal cell structures and cytoskeletal rearrangements might be mediated by the ADF genes, we identified and characterized eight cucumber ADF (CsADF) genes. Phylogenetic analysis showed that the cucumber ADF gene family is grouped into four ancient subclasses. Expression analysis revealed that CsADF1, CsADF2-1, CsADF2-2, CsADF2-3 (Subclass I), and CsADF6 (Subclass III) have higher transcript levels than CsADF7-1, CsADF7-2 (Subclass II genes), and CsADF5 (Subclass IV) in roots. Members of subclass I genes (CsADF1, CsADF2-1, CsADF2-2, and CsADF2-3), with the exception of CsADF2-1, exhibited a induction of expression in roots 14 days after their inoculation (DAI) with nematodes. However, the expression of subclass II genes (CsADF7-1 and CsADF7-2) showed no significant change after inoculation. The transcript levels of CsADF6 (Subclass III) showed a specific induction at 21 DAI, while CsADF5 (Subclass IV) was weakly expressed in roots, but was strongly up-regulated as early as 7 DAI. In addition, treatment of roots with cytochalasin D caused an approximately 2-fold down-regulation of the CsADF genes in the treated plants. These results suggest that CsADF gene mediated actin dynamics are associated with structural changes in roots as a consequence of M. incognita infection.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, Department of Vegetable Science, College of Horticulture, China Agricultural UniversityBeijing, China
| | - Xingwang Liu
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, Department of Vegetable Science, College of Horticulture, China Agricultural UniversityBeijing, China
| | - Ying Liu
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, Department of Vegetable Science, College of Horticulture, China Agricultural UniversityBeijing, China
| | - Shudan Xue
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, Department of Vegetable Science, College of Horticulture, China Agricultural UniversityBeijing, China
| | - Yanling Cai
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, Department of Vegetable Science, College of Horticulture, China Agricultural UniversityBeijing, China
| | - Sen Yang
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, Department of Vegetable Science, College of Horticulture, China Agricultural UniversityBeijing, China
| | - Mingming Dong
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, Department of Vegetable Science, College of Horticulture, China Agricultural UniversityBeijing, China
| | - Yaqi Zhang
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, Department of Vegetable Science, College of Horticulture, China Agricultural UniversityBeijing, China
| | - Huiling Liu
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, Department of Vegetable Science, College of Horticulture, China Agricultural UniversityBeijing, China
| | - Binyu Zhao
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, Department of Vegetable Science, College of Horticulture, China Agricultural UniversityBeijing, China
| | - Changhong Qi
- Changping Agricultural Technology Service CenterBeijing, China
| | - Ning Zhu
- Changping Agricultural Technology Service CenterBeijing, China
| | - Huazhong Ren
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, Department of Vegetable Science, College of Horticulture, China Agricultural UniversityBeijing, China
| |
Collapse
|
76
|
Jain S, Chittem K, Brueggeman R, Osorno JM, Richards J, Nelson BD. Comparative Transcriptome Analysis of Resistant and Susceptible Common Bean Genotypes in Response to Soybean Cyst Nematode Infection. PLoS One 2016; 11:e0159338. [PMID: 27441552 PMCID: PMC4956322 DOI: 10.1371/journal.pone.0159338] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/30/2016] [Indexed: 12/21/2022] Open
Abstract
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) reproduces on the roots of common bean (Phaseolus vulgaris L.) and can cause reductions in plant growth and seed yield. The molecular changes in common bean roots caused by SCN infection are unknown. Identification of genetic factors associated with SCN resistance could help in development of improved bean varieties with high SCN resistance. Gene expression profiling was conducted on common bean roots infected by SCN HG type 0 using next generation RNA sequencing technology. Two pinto bean genotypes, PI533561 and GTS-900, resistant and susceptible to SCN infection, respectively, were used as RNA sources eight days post inoculation. Total reads generated ranged between ~ 3.2 and 5.7 million per library and were mapped to the common bean reference genome. Approximately 70-90% of filtered RNA-seq reads uniquely mapped to the reference genome. In the inoculated roots of resistant genotype PI533561, a total of 353 genes were differentially expressed with 154 up-regulated genes and 199 down-regulated genes when compared to the transcriptome of non- inoculated roots. On the other hand, 990 genes were differentially expressed in SCN-inoculated roots of susceptible genotype GTS-900 with 406 up-regulated and 584 down-regulated genes when compared to non-inoculated roots. Genes encoding nucleotide-binding site leucine-rich repeat resistance (NLR) proteins, WRKY transcription factors, pathogenesis-related (PR) proteins and heat shock proteins involved in diverse biological processes were differentially expressed in both resistant and susceptible genotypes. Overall, suppression of the photosystem was observed in both the responses. Furthermore, RNA-seq results were validated through quantitative real time PCR. This is the first report describing genes/transcripts involved in SCN-common bean interaction and the results will have important implications for further characterization of SCN resistance genes in common bean.
Collapse
Affiliation(s)
- Shalu Jain
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, 58108, United States of America
| | - Kishore Chittem
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, 58108, United States of America
| | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, 58108, United States of America
| | - Juan M. Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, 58108, United States of America
| | - Jonathan Richards
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, 58108, United States of America
| | - Berlin D. Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, 58108, United States of America
| |
Collapse
|
77
|
Xie J, Li S, Mo C, Wang G, Xiao X, Xiao Y. A Novel Meloidogyne incognita Effector Misp12 Suppresses Plant Defense Response at Latter Stages of Nematode Parasitism. FRONTIERS IN PLANT SCIENCE 2016; 7:964. [PMID: 27446188 PMCID: PMC4927581 DOI: 10.3389/fpls.2016.00964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/16/2016] [Indexed: 05/19/2023]
Abstract
Secreted effectors in plant root-knot nematodes (RKNs, or Meloidogyne spp.) play key roles in their parasite processes. Currently identified effectors mainly focus on the early stage of the nematode parasitism. There are only a few reports describing effectors that function in the latter stage. In this study, we identified a potential RKN effector gene, Misp12, that functioned during the latter stage of parasitism. Misp12 was unique in the Meloidogyne spp., and highly conserved in Meloidogyne incognita. It encoded a secretory protein that specifically expressed in the dorsal esophageal gland, and highly up-regulated during the female stages. Transient expression of Misp12-GUS-GFP in onion epidermal cell showed that Misp12 was localized in cytoplast. In addition, in planta RNA interference targeting Misp12 suppressed the expression of Misp12 in nematodes and attenuated parasitic ability of M. incognita. Furthermore, up-regulation of jasmonic acid (JA) and salicylic acid (SA) pathway defense-related genes in the virus-induced silencing of Misp12 plants, and down-regulation of SA pathway defense-related genes in Misp12-expressing plants indicated the gene might be associated with the suppression of the plant defense response. These results demonstrated that the novel nematode effector Misp12 played a critical role at latter parasitism of M. incognita.
Collapse
Affiliation(s)
| | | | | | | | - Xueqiong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yannong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
78
|
Şestacova T, Giscă I, Cucereavîi A, Port A, Duca M. Expression of defence-related genes in sunflower infected with broomrape. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1179591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Tatiana Şestacova
- Laboratory of Genomics, University Center of Molecular Biology, University of the Academy of Sciences of Moldova, Chisinau, Republic of Moldova
| | - Ion Giscă
- Research Department, AMG-Agroselect Comerţ Company, Soroca, Republic of Moldova
| | - Aliona Cucereavîi
- Research Department, AMG-Agroselect Comerţ Company, Soroca, Republic of Moldova
| | - Angela Port
- Laboratory of Genomics, University Center of Molecular Biology, University of the Academy of Sciences of Moldova, Chisinau, Republic of Moldova
| | - Maria Duca
- Laboratory of Genomics, University Center of Molecular Biology, University of the Academy of Sciences of Moldova, Chisinau, Republic of Moldova
| |
Collapse
|
79
|
Molinari S. Systemic acquired resistance activation in solanaceous crops as a management strategy against root-knot nematodes. PEST MANAGEMENT SCIENCE 2016; 72:888-96. [PMID: 26085141 DOI: 10.1002/ps.4063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 06/13/2015] [Accepted: 06/15/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Activators of systemic acquired resistance (SAR), such as salicylic acid (SA) and its synthetic functional analogues benzo(1,2,3)thiadiazole-7-carbothionic acid-S-methyl ester (BTH) and 2,6-dichloroisonicotinic acid (INA), were tested on tomato, eggplant and pepper for the control of the root-knot nematode Meloidogyne incognita. Effects on plant fitness, nematode reproduction and root galling were screened in relation to different methods of application, to different applied dosages of chemicals and to different plant growth stages. Dosages applied to plants were in relation to plant weights. These chemicals were also tested for their possible nematotoxic activity in vitro. RESULTS Soil drenches of SA and INA and root dip application of SA and BTH inhibited nematode reproduction, at specific dosage ranges, without affecting plant growth. SA and INA were able to reduce root galling as well. Foliar sprays of both SA and BTH were ineffective against nematode attacks. Plants tolerated SA more than the other chemicals tested. BTH at elevated concentrations increased the mortality of nematode juveniles and reduced egg hatching in vitro. CONCLUSIONS SAR activators at concentrations suitable for different plant growth stages and applied by the proper method can possibly be included in IPM programmes for nematode management.
Collapse
Affiliation(s)
- Sergio Molinari
- Institute for Sustainable Plant Protection, National Research Council of Italy, Bari, Italy
| |
Collapse
|
80
|
Kumari C, Dutta TK, Banakar P, Rao U. Comparing the defence-related gene expression changes upon root-knot nematode attack in susceptible versus resistant cultivars of rice. Sci Rep 2016; 6:22846. [PMID: 26961568 PMCID: PMC4785349 DOI: 10.1038/srep22846] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/22/2016] [Indexed: 02/01/2023] Open
Abstract
Rice is one of the major staple food crops in the world and an excellent model system for studying monocotyledonous plants. Diseases caused by nematodes in rice are well documented and among them, root-knot nematode (RKN), Meloidogyne graminicola, causes extensive yield decline. It is therefore necessary to identify novel sources of natural resistance to RKN in rice and to investigate the rice-RKN interaction in detail to understand the basal plant defence mechanisms and nematode manipulation of the host physiology. To this end, six different cultivars of rice were initially screened for RKN infection and development; Pusa 1121 and Vandana were found to be most susceptible and resistant to RKN infection, respectively. In order to investigate the role of major hormone-regulated plant defence pathways in compatible/incompatible rice-RKN interaction, some well-identified marker genes involved in salicylate/jasmonate/ethylene pathway were evaluated for their differential expression through qRT-PCR. In general, our study shows a remarkable discrepancy in the expression pattern of those genes between compatible and incompatible rice-RKN interaction. As most information on the molecular interplay between plants and nematodes were generated on dicotyledonous plants, the current study will strengthen our basic understanding of plant-nematode interaction in the monocot crops, which will aid in defining future strategies for best plant health measures.
Collapse
Affiliation(s)
- Chanchal Kumari
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
81
|
Zhu H, Zhang R, Chen W, Gu Z, Xie X, Zhao H, Yao Q. The possible involvement of salicylic acid and hydrogen peroxide in the systemic promotion of phenolic biosynthesis in clover roots colonized by arbuscular mycorrhizal fungus. JOURNAL OF PLANT PHYSIOLOGY 2015; 178:27-34. [PMID: 25765360 DOI: 10.1016/j.jplph.2015.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/29/2014] [Accepted: 01/20/2015] [Indexed: 05/10/2023]
Abstract
Arbuscular mycorrhizal fungal (AMF) colonization can induce both the local and the systemic increase in phenolic accumulation in hosts. However, the signaling molecules responsible for the systemic induction is still unclear. In this study, a split-root rhizobox system was designed to explore these molecules, with one half of clover (Trifolium repense) roots colonized by AMF, Funneliformis mosseae (formerly known as Glomus mosseae), and the other not (NM/M). Plants with two halves both (M/M) or neither (NM/NM) inoculated were also established for comparison. The contents of phenols and the accumulation of salicylic acid (SA), hydrogen peroxide (H2O2) and nitric oxide (NO) in roots were monitored, the activities of L-phenylalanine ammonia-lyase (PAL) and nitric oxide synthase (NOS) in roots were assayed, and the expressions of pal and chs (gene encoding chalcone synthase) genes in roots were also quantified using qRT-PCR. Results indicated that when phenolic content in NM/NM plants was lower than that in M/M plants, AMF colonization systemically induced the increase in phenolic content in NM/M plants. Similarly, the accumulations of SA and H2O2 were increased by AMF both locally and systemically, while that of NO was only increased locally. Moreover, enzyme assay and qRT-PCR were in accordance with these results. These data suggest that AMF colonization can systemically increase the phenolic biosynthesis, and SA and H2O2 are possibly the signaling molecules involved. The role of MeSA, a signaling molecule capable of long distance transport in this process, is also discussed.
Collapse
Affiliation(s)
- Honghui Zhu
- Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base) South China, Guangzhou, China
| | - Ruiqin Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China; College of Life Science, Anhui Agricultural University, Hefei, China
| | - Weili Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhenhong Gu
- Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base) South China, Guangzhou, China; College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaolin Xie
- Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base) South China, Guangzhou, China; College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Haiquan Zhao
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Qing Yao
- Guangdong Institute of Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base) South China, Guangzhou, China; College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
82
|
Zhou J, Jia F, Shao S, Zhang H, Li G, Xia X, Zhou Y, Yu J, Shi K. Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants. FRONTIERS IN PLANT SCIENCE 2015; 6:193. [PMID: 25914698 PMCID: PMC4392611 DOI: 10.3389/fpls.2015.00193] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 05/20/2023]
Abstract
Jasmonic acid (JA) and nitric oxide (NO) are well-characterized signaling molecules in plant defense responses. However, their roles in plant defense against root-knot nematode (RKN, Meloidogyne incognita) infection are largely unknown. In this study, we found that the transcript levels of the JA- and NO-related biosynthetic and signaling component genes were induced after RKN infection. Application of exogenous JA and sodium nitroprusside (SNP; a NO donor) significantly decreased the number of egg masses in tomato roots after RKN infection and partially alleviated RKN-induced decreases in plant fresh weight and net photosynthetic rate. These molecules also alleviated RKN-induced increases in root electrolyte leakage and membrane peroxidation. Importantly, NO scavenger partially inhibited JA-induced RKN defense. The pharmacological inhibition of JA biosynthesis significantly increased the plants' susceptibility to RKNs, which was effectively alleviated by SNP application, showing that NO may be involved in the JA-dependent RKN defense pathway. Furthermore, both JA and SNP induced increases in protease inhibitor 2 (PI2) gene expression after RKN infestation. Silencing of PI2 compromised both JA- and SNP-induced RKN defense responses, suggesting that the PI2 gene mediates JA- and NO-induced defense against RKNs. This work will be important for deepening the understanding of the mechanisms involved in basal defense against RKN attack in plants.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Horticulture, Zhejiang University, HangzhouChina
| | - Feifei Jia
- Department of Horticulture, Zhejiang University, HangzhouChina
| | - Shujun Shao
- Department of Horticulture, Zhejiang University, HangzhouChina
| | - Huan Zhang
- Department of Horticulture, Zhejiang University, HangzhouChina
| | - Guiping Li
- Department of Horticulture, Zhejiang University, HangzhouChina
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, HangzhouChina
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, HangzhouChina
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, HangzhouChina
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture, HangzhouChina
| | - Kai Shi
- Department of Horticulture, Zhejiang University, HangzhouChina
| |
Collapse
|
83
|
Davies LJ, Brown CR, Elling AA. Calcium is involved in the R Mc1 (blb)-mediated hypersensitive response against Meloidogyne chitwoodi in potato. PLANT CELL REPORTS 2015; 34:167-77. [PMID: 25315813 DOI: 10.1007/s00299-014-1697-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 05/08/2023]
Abstract
Functional characterization of the Columbia root-knot nematode resistance gene R Mc1 ( blb ) in potato revealed the R gene-mediated resistance is dependent on a hypersensitive response and involves calcium. The resistance (R) gene R Mc1(blb) confers resistance against the plant-parasitic nematode, Meloidogyne chitwoodi. Avirulent and virulent nematodes were used to functionally characterize the R Mc1(blb)-mediated resistance mechanism in potato (Solanum tuberosum). Histological observations indicated a hypersensitive response (HR) occurred during avirulent nematode infection. This was confirmed by quantifying reactive oxygen species activity in response to avirulent and virulent M. chitwoodi. To gain an insight into the signal transduction pathways mediating the R Mc1(blb)-induced HR, chemical inhibitors were utilized. Inhibiting Ca(2+) channels caused a significant reduction in electrolyte leakage, an indicator of cell death. Labeling with a Ca(2+)-sensitive dye revealed high Ca(2+) levels in the root cells surrounding avirulent nematodes. Furthermore, the calcium-dependent protein kinase (CDPK), StCDPK4 had a higher transcript level in R Mc1(blb) potato roots infected with avirulent nematodes in comparison to roots infected with virulent M. chitwoodi. The results of this study indicate Ca(2+) plays a role in the R Mc1(blb)-mediated resistance against M. chitwoodi in potato.
Collapse
Affiliation(s)
- Laura J Davies
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | | |
Collapse
|
84
|
Li R, Rashotte AM, Singh NK, Weaver DB, Lawrence KS, Locy RD. Integrated signaling networks in plant responses to sedentary endoparasitic nematodes: a perspective. PLANT CELL REPORTS 2015; 34:5-22. [PMID: 25208657 DOI: 10.1007/s00299-014-1676-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 05/24/2023]
Abstract
Sedentary plant endoparasitic nematodes can cause detrimental yield losses in crop plants making the study of detailed cellular, molecular, and whole plant responses to them a subject of importance. In response to invading nematodes and nematode-secreted effectors, plant susceptibility/resistance is mainly determined by the coordination of different signaling pathways including specific plant resistance genes or proteins, plant hormone synthesis and signaling pathways, as well as reactive oxygen signals that are generated in response to nematode attack. Crosstalk between various nematode resistance-related elements can be seen as an integrated signaling network regulated by transcription factors and small RNAs at the transcriptional, posttranscriptional, and/or translational levels. Ultimately, the outcome of this highly controlled signaling network determines the host plant susceptibility/resistance to nematodes.
Collapse
Affiliation(s)
- Ruijuan Li
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA
| | | | | | | | | | | |
Collapse
|
85
|
Nguyễn PV, Bellafiore S, Petitot AS, Haidar R, Bak A, Abed A, Gantet P, Mezzalira I, de Almeida Engler J, Fernandez D. Meloidogyne incognita - rice (Oryza sativa) interaction: a new model system to study plant-root-knot nematode interactions in monocotyledons. RICE (NEW YORK, N.Y.) 2014; 7:23. [PMID: 26224554 PMCID: PMC4884005 DOI: 10.1186/s12284-014-0023-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 08/28/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant-parasitic nematodes developed strategies to invade and colonize their host plants, including expression of immune suppressors to overcome host defenses. Meloidogyne graminicola and M. incognita are root-knot nematode (RKN) species reported to damage rice (Oryza sativa L.) cultivated in upland and irrigated systems. Despite M. incognita wide host range, study of the molecular plant - RKN interaction has been so far limited to a few dicotyledonous model plants. The aim of this study was to investigate if the rice cv. Nipponbare widely used in rice genomic studies could be used as a suitable monocotyledon host plant for studying M. incognita pathogenicity mechanisms. Here we compared the ability of M. graminicola and M. incognita to develop and reproduce in Nipponbare roots. Next, we tested if RKNs modulates rice immunity-related genes expression in galls during infection and express the Mi-crt gene encoding an immune suppressor. RESULTS Root galling, mature females, eggs and newly formed J2s nematodes were obtained for both species in rice cultivated in hydroponic culture system after 4-5 weeks. Meloidogyne graminicola reproduced at higher rates than M. incognita on Nipponbare and the timing of infection was shorter. In contrast, the infection characteristics compared by histological analysis were similar for both nematode species. Giant cells formed from 2 days after infection (DAI) with M. graminicola and from 6 DAI with M. incognita. Real-time PCR (qRT-PCR) data indicated that RKNs are able to suppress transcription of immune regulators genes, such as OsEDS1, OsPAD4 and OsWRKY13 in young galls. Four M. incognita reference genes (Mi-eif-3, Mi-GDP-2, Mi-Y45F10D.4, and Mi-actin) were selected for normalizing nematode gene expression studies in planta and in pre-parasitic J2s. Meloidogyne incognita expressed the immune suppressor calreticulin gene (Mi-crt) in rice roots all along its infection cycle. CONCLUSION RKNs repress the transcription of key immune regulators in rice, likely in order to lower basal defence in newly-formed galls. The calreticulin Mi-CRT can be one of the immune-modulator effectors secreted by M. incognita in rice root tissues. Together, these data show that rice is a well suited model system to study host- M. incognita molecular interactions in monocotyledons.
Collapse
Affiliation(s)
- Phong Vũ Nguyễn
- />Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux Bioagresseurs, 911 avenue Agropolis, Montpellier, 34394 Cedex 5 France
- />Nông Lâm University, Linh Trung, Thủ Đức, Hồ Chí Minh city, Việt Nam
| | - Stéphane Bellafiore
- />Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux Bioagresseurs, 911 avenue Agropolis, Montpellier, 34394 Cedex 5 France
- />Institut de Recherche pour le Développement, LMI RICE, University of Science and Technology of Hanoi, Agricultural Genetics Institute, Hanoi, Vietnam
| | - Anne-Sophie Petitot
- />Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux Bioagresseurs, 911 avenue Agropolis, Montpellier, 34394 Cedex 5 France
| | - Rana Haidar
- />Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux Bioagresseurs, 911 avenue Agropolis, Montpellier, 34394 Cedex 5 France
- />INRA, UMR1065 Santé et Agroécologie du Vignoble (SAVE), ISVV, CS, 20032, 33882 Villenave d'Ornon, France
| | - Aurélie Bak
- />Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux Bioagresseurs, 911 avenue Agropolis, Montpellier, 34394 Cedex 5 France
| | - Amina Abed
- />Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux Bioagresseurs, 911 avenue Agropolis, Montpellier, 34394 Cedex 5 France
- />INRAA- CRP, BP 37 Mehdi Boualem, Baraki, Algiers Algeria
| | - Pascal Gantet
- />Université Montpellier 2, UMR IRD-UM2 DIADE, 911 avenue Agropolis, Montpellier, 34394 Cedex 5 France
- />Institut de Recherche pour le Développement, LMI RICE, University of Science and Technology of Hanoi, Agricultural Genetics Institute, Hanoi, Vietnam
| | - Itamara Mezzalira
- />Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux Bioagresseurs, 911 avenue Agropolis, Montpellier, 34394 Cedex 5 France
- />Embrapa - Recursos Genéticos e Biotecnologia, Brasília, DF 70849-970 Brazil
| | - Janice de Almeida Engler
- />UMR IBSV INRA/CNRS/UNS, 400, Route de Chappes, Sophia Antipolis, F-06903 CEDEX France
- />Embrapa - Recursos Genéticos e Biotecnologia, Brasília, DF 70849-970 Brazil
| | - Diana Fernandez
- />Institut de Recherche pour le Développement, UMR 186 IRD-Cirad-UM2 Résistance des Plantes aux Bioagresseurs, 911 avenue Agropolis, Montpellier, 34394 Cedex 5 France
| |
Collapse
|