51
|
Kalia VC, Patel SKS, Kang YC, Lee JK. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 2018; 37:68-90. [PMID: 30471318 DOI: 10.1016/j.biotechadv.2018.11.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/19/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
The mechanisms through which microbes communicate using signal molecules has inspired a great deal of research. Microbes use this exchange of information, known as quorum sensing (QS), to initiate and perpetuate infectious diseases in eukaryotic organisms, evading the eukaryotic defense system by multiplying and expressing their pathogenicity through QS regulation. The major issue to arise from such networks is increased bacterial resistance to antibiotics, resulting from QS-dependent mediation of the formation of biofilm, the induction of efflux pumps, and the production of antibiotics. QS inhibitors (QSIs) of diverse origins have been shown to act as potential antipathogens. In this review, we focus on the use of QSIs to counter diseases in humans as well as plants and animals of economic importance. We also discuss the challenges encountered in the potential applications of QSIs.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
52
|
Barbey C, Chane A, Burini JF, Maillot O, Merieau A, Gallique M, Beury-Cirou A, Konto-Ghiorghi Y, Feuilloley M, Gobert V, Latour X. A Rhodococcal Transcriptional Regulatory Mechanism Detects the Common Lactone Ring of AHL Quorum-Sensing Signals and Triggers the Quorum-Quenching Response. Front Microbiol 2018; 9:2800. [PMID: 30524404 PMCID: PMC6262395 DOI: 10.3389/fmicb.2018.02800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023] Open
Abstract
The biocontrol agent Rhodococcus erythropolis disrupts virulence of plant and human Gram-negative pathogens by catabolizing their N-acyl-homoserine lactones. This quorum-quenching activity requires the expression of the qsd (quorum-sensing signal degradation) operon, which encodes the lactonase QsdA and the fatty acyl-CoA ligase QsdC, involved in the catabolism of lactone ring and acyl chain moieties of signaling molecules, respectively. Here, we demonstrate the regulation of qsd operon expression by a TetR-like family repressor, QsdR. This repression was lifted by adding the pathogen quorum signal or by deleting the qsdR gene, resulting in enhanced lactone degrading activity. Using interactomic approaches and transcriptional fusion strategy, the qsd operon derepression was elucidated: it is operated by the binding of the common part of signaling molecules, the homoserine lactone ring, to the effector-receiving domain of QsdR, preventing a physical binding of QsdR to the qsd promoter region. To our knowledge, this is the first evidence revealing quorum signals as inducers of the suitable quorum-quenching pathway, confirming this TetR-like protein as a lactone sensor. This regulatory mechanism designates the qsd operon as encoding a global disrupting pathway for degrading a wide range of signal substrates, allowing a broad spectrum anti-virulence activity mediated by the rhodococcal biocontrol agent. Understanding the regulation mechanisms of qsd operon expression led also to the development of biosensors useful to monitor in situ the presence of exogenous signals and quorum-quenching activity.
Collapse
Affiliation(s)
- Corinne Barbey
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France.,Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville du Grand-Caux, France
| | - Andrea Chane
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Jean-François Burini
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Annabelle Merieau
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Mathias Gallique
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Amélie Beury-Cirou
- Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville du Grand-Caux, France.,French Federation of Seed Potato Growers (FN3PT/RD3PT), Paris, France
| | - Yoan Konto-Ghiorghi
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| | - Virginie Gobert
- Seeds Innovation Protection Research and Environment, Achicourt, France.,Seeds Innovation Protection Research and Environment, Bretteville du Grand-Caux, France.,French Federation of Seed Potato Growers (FN3PT/RD3PT), Paris, France
| | - Xavier Latour
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM EA 4312) - Normandie Université - LMSM, Évreux, France.,Structure Fédérative de Recherche Normandie Végétal 4277 (NORVEGE), Mont-Saint-Aignan, France
| |
Collapse
|
53
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
54
|
Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The Chemistry of Plant-Microbe Interactions in the Rhizosphere and the Potential for Metabolomics to Reveal Signaling Related to Defense Priming and Induced Systemic Resistance. FRONTIERS IN PLANT SCIENCE 2018; 9:112. [PMID: 29479360 PMCID: PMC5811519 DOI: 10.3389/fpls.2018.00112] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/22/2018] [Indexed: 05/21/2023]
Abstract
Plant roots communicate with microbes in a sophisticated manner through chemical communication within the rhizosphere, thereby leading to biofilm formation of beneficial microbes and, in the case of plant growth-promoting rhizomicrobes/-bacteria (PGPR), resulting in priming of defense, or induced resistance in the plant host. The knowledge of plant-plant and plant-microbe interactions have been greatly extended over recent years; however, the chemical communication leading to priming is far from being well understood. Furthermore, linkage between below- and above-ground plant physiological processes adds to the complexity. In metabolomics studies, the main aim is to profile and annotate all exo- and endo-metabolites in a biological system that drive and participate in physiological processes. Recent advances in this field has enabled researchers to analyze 100s of compounds in one sample over a short time period. Here, from a metabolomics viewpoint, we review the interactions within the rhizosphere and subsequent above-ground 'signalomics', and emphasize the contributions that mass spectrometric-based metabolomic approaches can bring to the study of plant-beneficial - and priming events.
Collapse
Affiliation(s)
- Msizi I. Mhlongo
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Ntakadzeni E. Madala
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Nico Labuschagne
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
55
|
Nature to the natural rescue: Silencing microbial chats. Chem Biol Interact 2017; 280:86-98. [PMID: 29247642 DOI: 10.1016/j.cbi.2017.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
Communication is the sole means by which effective networking and co-existence is accomplished amongst living beings. Microbes have their own chit-chats. Science has overheard these microbial gossips and have concluded that these aren't just informal communications, but carefully coordinated signals that plan their effective strategies. Tracking one such signal molecule, N-acyl homoserine lactone (AHL), led to a fundamental understanding to microbial quorum sensing (QS). Furtherance of research sought for ways to cut off communication between these virulent forms, so as to hinder their combinatorial attacks through quorum sensing inhibitors (QSIs). A clear understanding of the inhibitors of these microbial communication systems is vital to destroy their networking and co-working. The current review, consolidates the solutions for QSIs offered from natural sources against these micro components, that are capable of slaughtering even nature's most fit entity-man. The applications of effective out sourcing of this QSI technologies and the need for development are discussed. The importance of silencing this microbial chatter to various aspects of human life and their implications are discussed and elaborated.
Collapse
|
56
|
Quorum-Sensing Systems as Targets for Antivirulence Therapy. Trends Microbiol 2017; 26:313-328. [PMID: 29132819 DOI: 10.1016/j.tim.2017.10.005] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
The development of novel therapies to control diseases caused by antibiotic-resistant pathogens is one of the major challenges we are currently facing. Many important plant, animal, and human pathogens regulate virulence by quorum sensing, bacterial cell-to-cell communication with small signal molecules. Consequently, a significant research effort is being undertaken to identify and use quorum-sensing-interfering agents in order to control diseases caused by these pathogens. In this review, an overview of our current knowledge of quorum-sensing systems of Gram-negative model pathogens is presented as well as the link with virulence of these pathogens, and recent advances and challenges in the development of quorum-sensing-interfering therapies are discussed.
Collapse
|
57
|
Caserta R, Souza-Neto RR, Takita MA, Lindow SE, De Souza AA. Ectopic Expression of Xylella fastidiosa rpfF Conferring Production of Diffusible Signal Factor in Transgenic Tobacco and Citrus Alters Pathogen Behavior and Reduces Disease Severity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:866-875. [PMID: 28777044 DOI: 10.1094/mpmi-07-17-0167-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.
Collapse
Affiliation(s)
- R Caserta
- 1 Centro de Citricultura Sylvio Moreira/IAC, Corderiópolis, SP, Brazil
| | - R R Souza-Neto
- 1 Centro de Citricultura Sylvio Moreira/IAC, Corderiópolis, SP, Brazil
- 2 Universidade Estadual de Campinas-UNICAMP, Campinas, SP, Brazil; and
| | - M A Takita
- 1 Centro de Citricultura Sylvio Moreira/IAC, Corderiópolis, SP, Brazil
| | - S E Lindow
- 3 University of California, Berkeley, CA, U.S.A
| | - A A De Souza
- 1 Centro de Citricultura Sylvio Moreira/IAC, Corderiópolis, SP, Brazil
| |
Collapse
|
58
|
Abstract
Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal-response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host-microbial associations and antibacterial therapy.
Collapse
|
59
|
Alagarasan G, Aswathy KS, Madhaiyan M. Shoot the Message, Not the Messenger-Combating Pathogenic Virulence in Plants by Inhibiting Quorum Sensing Mediated Signaling Molecules. FRONTIERS IN PLANT SCIENCE 2017; 8:556. [PMID: 28446917 PMCID: PMC5388769 DOI: 10.3389/fpls.2017.00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Immunity, virulence, biofilm formation, and survival in the host environment are regulated by the versatile nature of density dependent microbial cell signaling, also called quorum sensing (QS). The QS molecules can associate with host plant tissues and, at times, cause a change in its gene expression at the downstream level through inter-kingdom cross talking. Progress in controlling QS through fungicide/bactericide in pathogenic microscopic organisms has lead to a rise of antibiotic resistance pathogens. Here, we review the application of selective quorum quenching (QQ) endophytes to control phytopathogens that are shared by most, if not all, terrestrial plant species as well as aquatic plants. Allowing the plants to posses endophytic colonies through biotization will be an additional and a sustainable encompassing methodology resulting in attenuated virulence rather than killing the pathogens. Furthermore, the introduced endophytes could serve as a potential biofertilizer and bioprotection agent, which in turn increases the PAMP- triggered immunity and hormonal systemic acquired resistance (SAR) in plants through SA-JA-ET signaling systems. This paper discusses major challenges imposed by QS and QQ application in biotechnology.
Collapse
Affiliation(s)
- Ganesh Alagarasan
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi VishwavidyalayaRaipur, India
| | - Kumar S. Aswathy
- Department of Agricultural Microbiology, Tamilnadu Agricultural UniversityCoimbatore, India
| | - Munusamy Madhaiyan
- Biomaterials and Biocatalyst, Temasek Lifesciences Laboratory, National University of SingaporeSingapore, Singapore
| |
Collapse
|
60
|
Betancur LA, Naranjo-Gaybor SJ, Vinchira-Villarraga DM, Moreno-Sarmiento NC, Maldonado LA, Suarez-Moreno ZR, Acosta-González A, Padilla-Gonzalez GF, Puyana M, Castellanos L, Ramos FA. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach. PLoS One 2017; 12:e0170148. [PMID: 28225766 PMCID: PMC5321270 DOI: 10.1371/journal.pone.0170148] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022] Open
Abstract
Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities.
Collapse
Affiliation(s)
- Luz A. Betancur
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
- Universidad de Caldas. Departamento de Química. Edificio Orlando Sierra, Bloque B, Sede Palogrande Calle. Manizales, Caldas, Colombia
| | - Sandra J. Naranjo-Gaybor
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
- Universidad de las Fuerzas Armadas, ESPE Carrera de Ingeniería Agropecuaria IASA II Av. General Rumiñahui s/n, Sangolquí- Ecuador
| | - Diana M. Vinchira-Villarraga
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Nubia C. Moreno-Sarmiento
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Luis A. Maldonado
- Universidad Autónoma Metropolitana Rectoría—Secretaría General, Prolongación Canal de Miramontes, Col. Ex-hacienda San Juan de Dios, Tlalpan, México DF
| | - Zulma R. Suarez-Moreno
- Investigación y Desarrollo, Empresa Colombiana de Productos Veterinarios VECOL S.A., Bogotá D.C
| | | | - Gillermo F. Padilla-Gonzalez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do de Sao Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, Ribeirão Preto–SP, Brazil
| | - Mónica Puyana
- Departamento de Ciencias Biológicas y Ambientales, Programa de Biología Marina, Universidad Jorge Tadeo Lozano, Carrera, Modulo, Oficina, Bogotá, Colombia
| | - Leonardo Castellanos
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Freddy A. Ramos
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| |
Collapse
|
61
|
Sundin GW, Castiblanco LF, Yuan X, Zeng Q, Yang C. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2016; 17:1506-1518. [PMID: 27238249 PMCID: PMC6638406 DOI: 10.1111/mpp.12436] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not only identify optimal targets in the pathogens, but also optimal seasonal timings for deployment. Host resistance to effectors must be exploited, carefully and correctly. Are there other candidate genes that could be targeted in transgenic approaches? How can new technologies (CRISPR, TALEN, etc.) be most effectively used to add sustainable disease resistance to existing commercially desirable plant cultivars? We need an insider's perspective on the management of systemic pathogens. In addition to host resistance or reduced sensitivity, are there other methods that can be used to target these pathogen groups? Biological systems are variable. Can biological control strategies be improved for bacterial disease management and be made more predictable in function? The answers to the research foci outlined above are not all available, as will become apparent in this article, but we are heading in the right direction. In this article, we summarize the contributions from past experiences in bacterial disease management, and also describe how advances in bacterial genetics, genomics and host-pathogen interactions are informing novel strategies in virulence inhibition and in host resistance. We also outline potential innovations that could be exploited as the pressures to maximize a safe and productive food supply continue to become more numerous and more complex.
Collapse
Affiliation(s)
- George W. Sundin
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Luisa F. Castiblanco
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Xiaochen Yuan
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI53211USA
| | - Quan Zeng
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment StationNew HavenCT06504USA
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI53211USA
| |
Collapse
|
62
|
Fast, Continuous, and High-Throughput (Bio)Chemical Activity Assay for N-Acyl-l-Homoserine Lactone Quorum-Quenching Enzymes. Appl Environ Microbiol 2016; 82:4145-54. [PMID: 27208131 DOI: 10.1128/aem.00830-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Quorum sensing, the bacterial cell-cell communication by small molecules, controls important processes such as infection and biofilm formation. Therefore, it is a promising target with several therapeutic and technical applications besides its significant ecological relevance. Enzymes inactivating N-acyl-l-homoserine lactones, the most common class of communication molecules among Gram-negative proteobacteria, mainly belong to the groups of quorum-quenching lactonases or quorum-quenching acylases. However, identification, characterization, and optimization of these valuable biocatalysts are based on a very limited number of fundamentally different methods with their respective strengths and weaknesses. Here, a (bio)chemical activity assay is described, which perfectly complements the other methods in this field. It enables continuous and high-throughput activity measurements of purified and unpurified quorum-quenching enzymes within several minutes. For this, the reaction products released by quorum-quenching lactonases and quorum-quenching acylases are converted either by a secondary enzyme or by autohydrolysis to l-homoserine. In turn, l-homoserine is detected by the previously described calcein assay, which is sensitive to α-amino acids with free N and C termini. Besides its establishment, the method was applied to the characterization of three previously undescribed quorum-quenching lactonases and variants thereof and to the identification of quorum-quenching acylase-expressing Escherichia coli clones in an artificial library. Furthermore, this study indicates that porcine aminoacylase 1 is not active toward N-acyl-l-homoserine lactones as published previously but instead converts the autohydrolysis product N-acyl-l-homoserine. IMPORTANCE In this study, a novel method is presented for the identification, characterization, and optimization of quorum-quenching enzymes that are active toward N-acyl-l-homoserine lactones. These are the most common communication molecules among Gram-negative proteobacteria. The activity assay is a highly valuable complement to the available analytical tools in this field. It will facilitate studies on the environmental impact of quorum-quenching enzymes and contribute to the development of therapeutic and technical applications of this promising enzyme class.
Collapse
|
63
|
Plyuta V, Lipasova V, Popova A, Koksharova O, Kuznetsov A, Szegedi E, Chernin L, Khmel I. Influence of volatile organic compounds emitted byPseudomonasandSerratiastrains onAgrobacterium tumefaciensbiofilms. APMIS 2016; 124:586-94. [DOI: 10.1111/apm.12547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 03/30/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Vladimir Plyuta
- Institute of Molecular Genetics; Russian Academy of Sciences; Moscow Russia
| | - Valentina Lipasova
- Institute of Molecular Genetics; Russian Academy of Sciences; Moscow Russia
| | - Alexandra Popova
- Institute of Molecular Genetics; Russian Academy of Sciences; Moscow Russia
| | - Olga Koksharova
- Institute of Molecular Genetics; Russian Academy of Sciences; Moscow Russia
- M.V. Lomonosov Moscow State University; A.N. Belozersky Institute of Physico-Chemical Biology; Moscow Russia
| | | | - Erno Szegedi
- National Agricultural Research and Innovation Centre; Research Institute for Viticulture and Enology; Experimental Station of Kecskemét; Kecskemét Hungary
| | - Leonid Chernin
- Department of Plant Pathology and Microbiology; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - Inessa Khmel
- Institute of Molecular Genetics; Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
64
|
Joshi JR, Burdman S, Lipsky A, Yariv S, Yedidia I. Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation. MOLECULAR PLANT PATHOLOGY 2016; 17:487-500. [PMID: 26177258 PMCID: PMC6638513 DOI: 10.1111/mpp.12295] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several studies have reported effects of the plant phenolic acids cinnamic acid (CA) and salicylic acid (SA) on the virulence of soft rot enterobacteria. However, the mechanisms involved in these processes are not yet fully understood. Here, we investigated whether CA and SA interfere with the quorum sensing (QS) system of two Pectobacterium species, P. aroidearum and P. carotovorum ssp. brasiliense, which are known to produce N-acyl-homoserine lactone (AHL) QS signals. Our results clearly indicate that both phenolic compounds affect the QS machinery of the two species, consequently altering the expression of bacterial virulence factors. Although, in control treatments, the expression of QS-related genes increased over time, the exposure of bacteria to non-lethal concentrations of CA or SA inhibited the expression of QS genes, including expI, expR, PC1_1442 (luxR transcriptional regulator) and luxS (a component of the AI-2 system). Other virulence genes known to be regulated by the QS system, such as pecS, pel, peh and yheO, were also down-regulated relative to the control. In agreement with the low levels of expression of expI and expR, CA and SA also reduced the level of the AHL signal. The effects of CA and SA on AHL signalling were confirmed in compensation assays, in which exogenous application of N-(β-ketocaproyl)-l-homoserine lactone (eAHL) led to the recovery of the reduction in virulence caused by the two phenolic acids. Collectively, the results of gene expression studies, bioluminescence assays, virulence assays and compensation assays with eAHL clearly support a mechanism by which CA and SA interfere with Pectobacterium virulence via the QS machinery.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Alexander Lipsky
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| | - Shaked Yariv
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| |
Collapse
|
65
|
Rosier A, Bishnoi U, Lakshmanan V, Sherrier DJ, Bais HP. A perspective on inter-kingdom signaling in plant-beneficial microbe interactions. PLANT MOLECULAR BIOLOGY 2016; 90:537-48. [PMID: 26792782 DOI: 10.1007/s11103-016-0433-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 01/06/2016] [Indexed: 05/14/2023]
Abstract
Recent work has shown that the rhizospheric and phyllospheric microbiomes of plants are composed of highly diverse microbial species. Though the information pertaining to the diversity of the aboveground and belowground microbes associated with plants is known, an understanding of the mechanisms by which these diverse microbes function is still in its infancy. Plants are sessile organisms, that depend upon chemical signals to interact with the microbiota. Of late, the studies related to the impact of microbes on plants have gained much traction in the research literature, supporting diverse functional roles of microbes on plant health. However, how these microbes interact as a community to confer beneficial traits to plants is still poorly understood. Recent advances in the use of "biologicals" as bio-fertilizers and biocontrol agents for sustainable agricultural practices is promising, and a fundamental understanding of how microbes in community work on plants could help this approach be more successful. This review attempts to highlight the importance of different signaling events that mediate a beneficial plant microbe interaction. Fundamental research is needed to understand how plants react to different benign microbes and how these microbes are interacting with each other. This review highlights the importance of chemical signaling, and biochemical and genetic events which determine the efficacy of benign microbes to promote the development of beneficial traits in plants.
Collapse
Affiliation(s)
- Amanda Rosier
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - Usha Bishnoi
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - Venkatachalam Lakshmanan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - D Janine Sherrier
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Newark, DE, 19711, USA
| | - Harsh P Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA.
- Delaware Biotechnology Institute, Newark, DE, 19711, USA.
| |
Collapse
|
66
|
Fatima U, Senthil-Kumar M. Plant and pathogen nutrient acquisition strategies. FRONTIERS IN PLANT SCIENCE 2015; 6:750. [PMID: 26442063 PMCID: PMC4585253 DOI: 10.3389/fpls.2015.00750] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/02/2015] [Indexed: 05/20/2023]
Abstract
Nutrients are indispensable elements required for the growth of all living organisms including plants and pathogens. Phyllosphere, rhizosphere, apoplast, phloem, xylem, and cell organelles are the nutrient niches in plants that are the target of bacterial pathogens. Depending upon nutrients availability, the pathogen adapts various acquisition strategies and inhabits the specific niche. In this review, we discuss the nutrient composition of different niches in plants, the mechanisms involved in the recognition of nutrient niche and the sophisticated strategies used by the bacterial pathogens for acquiring nutrients. We provide insight into various nutrient acquisition strategies used by necrotrophic, biotrophic, and hemibiotrophic bacteria. Specifically we discuss both modulation of bacterial machinery and manipulation of host machinery. In addition, we highlight the current status of our understanding about the nutrient acquisition strategies used by bacterial pathogens, namely targeting the sugar transporters that are dedicated for the plant's growth and development. Bacterial strategies for altering the plant cell membrane permeability to enhance the release of nutrients are also enumerated along with in-depth analysis of molecular mechanisms behind these strategies. The information presented in this review will be useful to understand the plant-pathogen interaction in nutrient perspective.
Collapse
|
67
|
Artificial cell-cell communication as an emerging tool in synthetic biology applications. J Biol Eng 2015; 9:13. [PMID: 26265937 PMCID: PMC4531478 DOI: 10.1186/s13036-015-0011-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/25/2015] [Indexed: 01/14/2023] Open
Abstract
Cell-cell communication is a widespread phenomenon in nature, ranging from bacterial quorum sensing and fungal pheromone communication to cellular crosstalk in multicellular eukaryotes. These communication modes offer the possibility to control the behavior of an entire community by modifying the performance of individual cells in specific ways. Synthetic biology, i.e., the implementation of artificial functions within biological systems, is a promising approach towards the engineering of sophisticated, autonomous devices based on specifically functionalized cells. With the growing complexity of the functions performed by such systems, both the risk of circuit crosstalk and the metabolic burden resulting from the expression of numerous foreign genes are increasing. Therefore, systems based on a single type of cells are no longer feasible. Synthetic biology approaches with multiple subpopulations of specifically functionalized cells, wired by artificial cell-cell communication systems, provide an attractive and powerful alternative. Here we review recent applications of synthetic cell-cell communication systems with a specific focus on recent advances with fungal hosts.
Collapse
|