51
|
Li Q, Wang C, Mou Z. Perception of Damaged Self in Plants. PLANT PHYSIOLOGY 2020; 182:1545-1565. [PMID: 31907298 PMCID: PMC7140957 DOI: 10.1104/pp.19.01242] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/16/2019] [Indexed: 05/04/2023]
Abstract
Plants use specific receptor proteins on the cell surface to detect host-derived danger signals released in response to attacks by pathogens or herbivores and activate immune responses against them.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
52
|
Blackburn MR, Haruta M, Moura DS. Twenty Years of Progress in Physiological and Biochemical Investigation of RALF Peptides. PLANT PHYSIOLOGY 2020; 182:1657-1666. [PMID: 32071151 PMCID: PMC7140910 DOI: 10.1104/pp.19.01310] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/16/2020] [Indexed: 05/20/2023]
Abstract
RALF isoforms play many biological roles, and their specific functions are defined by combinatorial interactions with dynamic receptor complexes that vary more than initially thought.
Collapse
Affiliation(s)
- Matthew R Blackburn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Miyoshi Haruta
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Daniel S Moura
- Laboratório de Bioquímica de Proteínas, Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (ESALQ/USP), Piracicaba, SP 13418-900, Brazil
| |
Collapse
|
53
|
Negrini F, O’Grady K, Hyvönen M, Folta KM, Baraldi E. Genomic structure and transcript analysis of the Rapid Alkalinization Factor (RALF) gene family during host-pathogen crosstalk in Fragaria vesca and Fragaria x ananassa strawberry. PLoS One 2020; 15:e0226448. [PMID: 32214345 PMCID: PMC7098601 DOI: 10.1371/journal.pone.0226448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/01/2020] [Indexed: 11/19/2022] Open
Abstract
Rapid Alkalinization Factors (RALFs) are cysteine-rich peptides ubiquitous within plant kingdom. They play multiple roles as hormonal signals in diverse processes, including root elongation, cell growth, pollen tube development, and fertilization. Their involvement in host-pathogen crosstalk as negative regulators of immunity in Arabidopsis has also been recognized. In addition, peptides homologous to RALF are secreted by different fungal pathogens as effectors during early stages of infection. Previous studies have identified nine RALF genes in the diploid strawberry (Fragaria vesca) genome. This work describes the genomic organization of the RALF gene families in commercial octoploid strawberry (Fragaria × ananassa) and the re-annotated genome of F. vesca, and then compares findings with orthologs in Arabidopsis thaliana. We reveal the presence of 15 RALF genes in F. vesca genotype Hawaii 4 and 50 in Fragaria x ananassa cv. Camarosa, showing a non-homogenous localization of genes among the different Fragaria x ananassa subgenomes. Expression analysis of Fragaria x ananassa RALF genes upon infection with Colletotrichum acutatum or Botrytis cinerea showed that FanRALF3-1 was the only fruit RALF gene upregulated after fungal infection. In silico analysis was used to identify distinct pathogen inducible elements upstream of the FanRALF3-1 gene. Agroinfiltration of strawberry fruit with deletion constructs of the FanRALF3-1 promoter identified a 5' region required for FanRALF3-1 expression in fruit, but failed to identify a region responsible for fungal induced expression.
Collapse
Affiliation(s)
- Francesca Negrini
- Laboratory of Plant Pathology and Biotechnology, DISTAL, University of Bologna, Bologna Italy
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Kevin O’Grady
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kevin M. Folta
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Elena Baraldi
- Laboratory of Plant Pathology and Biotechnology, DISTAL, University of Bologna, Bologna Italy
| |
Collapse
|
54
|
Yang Z, Xing J, Wang L, Liu Y, Qu J, Tan Y, Fu X, Lin Q, Deng H, Yu F. Mutations of two FERONIA-like receptor genes enhance rice blast resistance without growth penalty. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2112-2126. [PMID: 31986202 PMCID: PMC7242082 DOI: 10.1093/jxb/erz541] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/03/2019] [Indexed: 05/20/2023]
Abstract
Genes that provide resistance to fungi and/or bacteria usually reduce plant growth and ultimately affect grain yield. Thus, crop breeding programs need to find genetic resources that balance disease resistance with growth. The receptor kinase FERONIA regulates cell growth and survival in Arabidopsis. Here, we investigate, in rice, the role of members of the FERONIA-like receptor (FLR) gene family in the balance between growth and the response to the fungal pathogen Magnaporthe oryzae (Pyricularia oryzae), which causes the most devastating disease in rice. We carried out genome-wide gene expression and functional screenings in rice via a gene knockout strategy, and we successfully knocked out 14 FLR genes in rice. Using these genetic resources, we found that mutations in the FLR2 and FLR11 genes provide resistance to rice blast without a profound growth penalty. Detailed analyses revealed that FLR2 mutation increased both defense-related gene expression and M. oryzae-triggered production of reactive oxygen species. Thus, our results highlight novel genetic tools for studying the underlying molecular mechanisms of enhancing disease resistance without growth penalty.
Collapse
Affiliation(s)
- Zhuhong Yang
- College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, PR China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, PR China
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, PR China
- Correspondence: , , or
| | - Long Wang
- College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, PR China
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, PR China
| | - Yue Liu
- College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, PR China
| | - Jianing Qu
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, PR China
| | - Yang Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, PR China
| | - Xiqin Fu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, PR China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha, PR China
| | - Huafeng Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, PR China
- Correspondence: , , or
| | - Feng Yu
- College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, PR China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, PR China
- Correspondence: , , or
| |
Collapse
|
55
|
Chang W, Li H, Chen H, Qiao F, Zeng H. Identification of mimp-associated effector genes in Fusarium oxysporum f. sp. cubense race 1 and race 4 and virulence confirmation of a candidate effector gene. Microbiol Res 2019; 232:126375. [PMID: 31783262 DOI: 10.1016/j.micres.2019.126375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022]
Abstract
Effectors secreted by microbes contribute to pathogen virulence and/or avirulence on host plants in the interaction of plants and microbes. Also, the effector repertoire determines the host specificity of a pathogen. Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of banana wilt; however, knowledge about Foc effector genes is very limited. In this study, genome-wide effector gene identification was performed in Foc race 1 (Foc 1) and Foc race 4 (Foc 4) based on the context association between the effector genes and the transposable element mimp. A total of 20 candidate effector genes were identified, of which 3 were Foc 1-specific, 6 were Foc 4-specific, and 11 were present in both Foc 1 and Foc 4. Most genes (14 out of 20) showed a significant transcriptional burst in planta compared with in-culture conditions, from more than 10-fold to 1,617-fold, and at the highest 32,725-fold. In addition to Foc 1- and Foc 4-specific genes, the genes Foc 283, Foc 495, and Foc 594 also exhibited transcriptional race specificity. Sixteen of the twenty genes were predicted to have a signal peptide, nine genes might encode real effectors predicted by EffectorP 2.0, and eight genes had predicted motifs. To validate the pathogenicity of the candidate effector genes, we generated knockout mutant and complementants of the gene Foc 1324 and tested their virulence on banana plants. The results showed that Foc 1324 was a virulent factor and required for the pathogenicity of Foc 4.
Collapse
Affiliation(s)
- Wenjun Chang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China.
| | - Heng Li
- College of Tropical Agriculture and Forestry, Hainan University, Renmin Avenue 58, Haikou 570208, China
| | - Hanqing Chen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Fan Qiao
- College of Tropical Agriculture and Forestry, Hainan University, Renmin Avenue 58, Haikou 570208, China
| | - Huicai Zeng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| |
Collapse
|
56
|
Xu G, Chen W, Song L, Chen Q, Zhang H, Liao H, Zhao G, Lin F, Zhou H, Yu F. FERONIA phosphorylates E3 ubiquitin ligase ATL6 to modulate the stability of 14-3-3 proteins in response to the carbon/nitrogen ratio. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6375-6388. [PMID: 31433471 PMCID: PMC6859809 DOI: 10.1093/jxb/erz378] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/13/2019] [Indexed: 05/06/2023]
Abstract
The ratio between carbon (C) and nitrogen (N) utilization must be precisely coordinated to enable plant growth. Although numerous physiological studies have examined carbon/nitrogen (C/N) ratios, the mechanisms of sensing the C/N balance and C/N signaling remain elusive. Here, we report that a mutation of FERONIA (FER), a receptor kinase that plays versatile roles in plant cell growth and stress responses, caused hypersensitivity to a high C/N ratio in Arabidopsis. In contrast, FER-overexpressing plants displayed more resistant phenotypes. FER can interact with and phosphorylate ATL6, an E3 ubiquitin ligase that has been shown to regulate plant C/N responses. FER-mediated ATL6 phosphorylation enhanced the interaction between ATL6 and its previously identified target 14-3-3 proteins, thus decreasing 14-3-3 protein levels, leading to an increased insensitivity to high C/N ratios. Further analyses showed that the rapid alkalinization factor peptide (RALF1), which is a ligand of FER, also influenced the stability of 14-3-3 proteins via a FER-ATL6-mediated pathway. These findings reveal a novel regulatory mechanism that links the RALF1/FER-ATL6 pathway to whole-plant C/N responses and growth.
Collapse
Affiliation(s)
- Guoyun Xu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, PR China
| | - Weijun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, PR China
| | - Limei Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, PR China
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, PR China
| | - Hui Zhang
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, PR China
| | - Hongdong Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, PR China
| | - Guoqiang Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, PR China
| | - Huina Zhou
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, PR China
- Correspondence: or
| | - Feng Yu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation Hunan University, Changsha, PR China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, PR China
- Correspondence: or
| |
Collapse
|
57
|
Segonzac C, Monaghan J. Modulation of plant innate immune signaling by small peptides. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:22-28. [PMID: 31026543 DOI: 10.1016/j.pbi.2019.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
Small peptides regulate the cellular coordination of growth, development, and stress tolerance in plants. In addition to direct antimicrobial activities, small secreted peptides have emerged as key signaling molecules in the plant immune response. Here, we highlight recent discoveries of several small peptides that amplify and fine-tune immune signaling.
Collapse
Affiliation(s)
- Cécile Segonzac
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| | | |
Collapse
|
58
|
Olsson V, Joos L, Zhu S, Gevaert K, Butenko MA, De Smet I. Look Closely, the Beautiful May Be Small: Precursor-Derived Peptides in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:153-186. [PMID: 30525926 DOI: 10.1146/annurev-arplant-042817-040413] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During the past decade, a flurry of research focusing on the role of peptides as short- and long-distance signaling molecules in plant cell communication has been undertaken. Here, we focus on peptides derived from nonfunctional precursors, and we address several key questions regarding peptide signaling. We provide an overview of the regulatory steps involved in producing a biologically active peptide ligand that can bind its corresponding receptor(s) and discuss how this binding and subsequent activation lead to specific cellular outputs. We discuss different experimental approaches that can be used to match peptide ligands with their receptors. Lastly, we explore how peptides evolved from basic signaling units regulating essential processes in plants to more complex signaling systems as new adaptive traits developed and how nonplant organisms exploit this signaling machinery by producing peptide mimics.
Collapse
Affiliation(s)
- Vilde Olsson
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Lisa Joos
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Shanshuo Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
59
|
Petrasch S, Silva CJ, Mesquida-Pesci SD, Gallegos K, van den Abeele C, Papin V, Fernandez-Acero FJ, Knapp SJ, Blanco-Ulate B. Infection Strategies Deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a Function of Tomato Fruit Ripening Stage. FRONTIERS IN PLANT SCIENCE 2019; 10:223. [PMID: 30881367 PMCID: PMC6405687 DOI: 10.3389/fpls.2019.00223] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/08/2019] [Indexed: 05/12/2023]
Abstract
Worldwide, 20-25% of all harvested fruit and vegetables are lost annually in the field and throughout the postharvest supply chain due to rotting by fungal pathogens. Most postharvest pathogens exhibit necrotrophic or saprotrophic lifestyles, resulting in decomposition of the host tissues and loss of marketable commodities. Necrotrophic fungi can readily infect ripe fruit leading to the rapid establishment of disease symptoms. However, these pathogens generally fail to infect unripe fruit or remain quiescent until host conditions stimulate a successful infection. Previous research on infections of fruit has mainly been focused on the host's genetic and physicochemical factors that inhibit or promote disease. Here, we investigated if fruit pathogens can modify their own infection strategies in response to the ripening stage of the host. To test this hypothesis, we profiled global gene expression of three fungal pathogens that display necrotrophic behavior-Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer-during interactions with unripe and ripe tomato fruit. We assembled and functionally annotated the transcriptomes of F. acuminatum and R. stolonifer as no genomic resources were available. Then, we conducted differential gene expression analysis to compare each pathogen during inoculations versus in vitro conditions. Through characterizing patterns of overrepresented pathogenicity and virulence functions (e.g., phytotoxin production, cell wall degradation, and proteolysis) among the differentially expressed genes, we were able to determine shared strategies among the three fungi during infections of compatible (ripe) and incompatible (unripe) fruit tissues. Though each pathogen's strategy differed in the details, interactions with unripe fruit were commonly characterized by an emphasis on the degradation of cell wall components, particularly pectin, while colonization of ripe fruit featured more heavily redox processes, proteolysis, metabolism of simple sugars, and chitin biosynthesis. Furthermore, we determined that the three fungi were unable to infect fruit from the non-ripening (nor) tomato mutant, confirming that to cause disease, these pathogens require the host tissues to undergo specific ripening processes. By enabling a better understanding of fungal necrotrophic infection strategies, we move closer to generating accurate models of fruit diseases and the development of early detection tools and effective management strategies.
Collapse
Affiliation(s)
- Stefan Petrasch
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Christian J. Silva
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Saskia D. Mesquida-Pesci
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Karina Gallegos
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Casper van den Abeele
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Victor Papin
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Ecole Nationale Supérieure Agronomique de Toulouse, Toulouse, France
| | - Francisco J. Fernandez-Acero
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Microbiology Laboratory, Institute of Viticulture and Agri-Food Research, Marine and Environmental Sciences Faculty, University of Cádiz, Cádiz, Spain
| | - Steven J. Knapp
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Barbara Blanco-Ulate
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
60
|
Dong Q, Zhang Z, Liu Y, Tao LZ, Liu H. FERONIA regulates auxin-mediated lateral root development and primary root gravitropism. FEBS Lett 2018; 593:97-106. [PMID: 30417333 DOI: 10.1002/1873-3468.13292] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022]
Abstract
The Arabidopsis FERONIA (FER) receptor kinase is a key hub of cell signaling networks mediating various hormone, stress, and immune responses. Previous studies have shown that FER functions correlate with auxin responses, but the underlying molecular mechanism is unknown. Here, we demonstrate that the primary root of the fer-4 mutant displays increased lateral root branching and a delayed gravitropic response, which are associated with polar auxin transport (PAT). Our data suggest that aberrant PIN2 polarity is responsible for the delayed gravitropic response in fer-4. Furthermore, the diminished F-actin cytoskeleton in fer-4 implies that FER modulates F-actin-mediated PIN2 polar localization. Our findings provide new insights into the function of FER in PAT.
Collapse
Affiliation(s)
- QingKun Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - ZhiWei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - YuTing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - HuiLi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
61
|
Li C, Liu X, Qiang X, Li X, Li X, Zhu S, Wang L, Wang Y, Liao H, Luan S, Yu F. EBP1 nuclear accumulation negatively feeds back on FERONIA-mediated RALF1 signaling. PLoS Biol 2018; 16:e2006340. [PMID: 30339663 PMCID: PMC6195255 DOI: 10.1371/journal.pbio.2006340] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
FERONIA (FER), a plasma membrane receptor-like kinase, is a central regulator of cell growth that integrates environmental and endogenous signals. A peptide ligand rapid alkalinization factor 1 (RALF1) binds to FER and triggers a series of downstream events, including inhibition of Arabidopsis H+-ATPase 2 activity at the cell surface and regulation of gene expression in the nucleus. We report here that, upon RALF1 binding, FER first promotes ErbB3-binding protein 1 (EBP1) mRNA translation and then interacts with and phosphorylates the EBP1 protein, leading to EBP1 accumulation in the nucleus. There, EBP1 associates with the promoters of previously identified RALF1-regulated genes, such as CML38, and regulates gene transcription in response to RALF1 signaling. EBP1 appears to inhibit the RALF1 peptide response, thus forming a transcription-translation feedback loop (TTFL) similar to that found in circadian rhythm control. The plant RALF1-FER-EBP1 axis is reminiscent of animal epidermal growth factor receptor (EGFR) signaling, in which EGF peptide induces EGFR to interact with and phosphorylate EBP1, promoting EBP1 nuclear accumulation to control cell growth. Thus, we suggest that in response to peptide signals, plant FER and animal EGFR use the conserved key regulator EBP1 to control cell growth in the nucleus.
Collapse
Affiliation(s)
- Chiyu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xuanming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xiaonan Qiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xiaoyan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xiushan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Yuan Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Hongdong Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- * E-mail:
| |
Collapse
|
62
|
Liu P, Haruta M, Minkoff BB, Sussman MR. Probing a Plant Plasma Membrane Receptor Kinase’s Three-Dimensional Structure Using Mass Spectrometry-Based Protein Footprinting. Biochemistry 2018; 57:5159-5168. [DOI: 10.1021/acs.biochem.8b00471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pei Liu
- Department of Biochemistry, Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Miyoshi Haruta
- Department of Biochemistry, Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Benjamin B. Minkoff
- Department of Biochemistry, Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Michael R. Sussman
- Department of Biochemistry, Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
63
|
The cloak, dagger, and shield: proteases in plant-pathogen interactions. Biochem J 2018; 475:2491-2509. [PMID: 30115747 DOI: 10.1042/bcj20170781] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Plants sense the presence of pathogens or pests through the recognition of evolutionarily conserved microbe- or herbivore-associated molecular patterns or specific pathogen effectors, as well as plant endogenous danger-associated molecular patterns. This sensory capacity is largely mediated through plasma membrane and cytosol-localized receptors which trigger complex downstream immune signaling cascades. As immune signaling outputs are often associated with a high fitness cost, precise regulation of this signaling is critical. Protease-mediated proteolysis represents an important form of pathway regulation in this context. Proteases have been widely implicated in plant-pathogen interactions, and their biochemical mechanisms and targets continue to be elucidated. During the plant and pathogen arms race, specific proteases are employed from both the plant and the pathogen sides to contribute to either defend or invade. Several pathogen effectors have been identified as proteases or protease inhibitors which act to functionally defend or camouflage the pathogens from plant proteases and immune receptors. In this review, we discuss known protease functions and protease-regulated signaling processes involved in both sides of plant-pathogen interactions.
Collapse
|
64
|
Franck CM, Westermann J, Boisson-Dernier A. Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:301-328. [PMID: 29539271 DOI: 10.1146/annurev-arplant-042817-040557] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cells are surrounded by cell walls protecting them from a myriad of environmental challenges. For successful habitat adaptation, extracellular cues are perceived at the cell wall and relayed to downstream signaling constituents to mediate dynamic cell wall remodeling and adapted intracellular responses. Plant malectin-like receptor kinases, also known as Catharanthus roseus receptor-like kinase 1-like proteins (CrRLK1Ls), take part in these perception and relay processes. CrRLK1Ls are involved in many different plant functions. Their ligands, interactors, and downstream signaling partners are being unraveled, and studies about CrRLK1Ls' roles in plant species other than the plant model Arabidopsis thaliana are beginning to flourish. This review focuses on recent CrRLK1L-related advances in cell growth, reproduction, hormone signaling, abiotic stress responses, and, particularly, immunity. We also give an overview of the comparative genomics and evolution of CrRLK1Ls, and present a brief outlook for future research.
Collapse
|
65
|
Rodriguez-Moreno L, Ebert MK, Bolton MD, Thomma BPHJ. Tools of the crook- infection strategies of fungal plant pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:664-674. [PMID: 29277938 DOI: 10.1111/tpj.13810] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 05/14/2023]
Abstract
Fungi represent an ecologically diverse group of microorganisms that includes plant pathogenic species able to cause considerable yield loses in crop production systems worldwide. In order to establish compatible interactions with their hosts, pathogenic fungi rely on the secretion of molecules of diverse nature during host colonization to modulate host physiology, manipulate other environmental factors or provide self-defence. These molecules, collectively known as effectors, are typically small secreted cysteine-rich proteins, but may also comprise secondary metabolites and sRNAs. Here, we discuss the most common strategies that fungal plant pathogens employ to subvert their host plants in order to successfully complete their life cycle and secure the release of abundant viable progeny.
Collapse
Affiliation(s)
- Luis Rodriguez-Moreno
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Malaika K Ebert
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Melvin D Bolton
- USDA - Agricultural Research Service, Red River Valley Agricultural Research Center, Fargo, ND, USA
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
66
|
Saijo Y, Loo EPI, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:592-613. [PMID: 29266555 DOI: 10.1111/tpj.13808] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Shigetaka Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
67
|
|
68
|
Boutrot F, Zipfel C. Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:257-286. [PMID: 28617654 DOI: 10.1146/annurev-phyto-080614-120106] [Citation(s) in RCA: 398] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to would-be pathogens and pests, and thus have a sophisticated immune system to ward off these threats, which otherwise can have devastating ecological and economic consequences on ecosystems and agriculture. Plants employ receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to monitor their apoplastic environment and detect non-self and damaged-self patterns as signs of potential danger. Plant PRRs contribute to both basal and non-host resistances, and treatment with pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) or damage-associated molecular patterns (DAMPs) recognized by plant PRRs induces both local and systemic immunity. Here, we comprehensively review known PAMPs/DAMPs recognized by plants as well as the plant PRRs described to date. In particular, we describe the different methods that can be used to identify PAMPs/DAMPs and PRRs. Finally, we emphasize the emerging biotechnological potential use of PRRs to improve broad-spectrum, and potentially durable, disease resistance in crops.
Collapse
Affiliation(s)
- Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
69
|
Hirakawa Y, Torii KU, Uchida N. Mechanisms and Strategies Shaping Plant Peptide Hormones. PLANT & CELL PHYSIOLOGY 2017; 58:1313-1318. [PMID: 28961990 PMCID: PMC5914377 DOI: 10.1093/pcp/pcx069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/30/2017] [Indexed: 05/09/2023]
Abstract
Plant genomes encode a variety of short peptides acting as signaling molecules. Since the discovery of tomato systemin, a myriad of peptide signals, ranging in size, structure and modifications, have been found in plants. Moreover, new peptides are still being identified. Surprisingly, non-plant organisms, especially pathogens, also produce peptides which exert hormonal activities against host plants by hijacking their endogenous reception systems. In this review, we focus on short secretory peptides ranging from five to 20 amino acids. We first summarize recent advances in understanding relationships between the bioactivities and structures of plant peptide hormones. Subsequently, we introduce the topic of peptides produced by non-plant organisms. Lastly, we describe artificial peptides synthesized in laboratories, which possess intriguing bioactive properties beyond those of natural peptide hormones.
Collapse
Affiliation(s)
- Yuki Hirakawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
- Corresponding authors: Yuki Hirakawa, E-mail, ; Keiko U. Torii, E-mail, ; Naoyuki Uchida, E-mail,
| | - Keiko U. Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Corresponding authors: Yuki Hirakawa, E-mail, ; Keiko U. Torii, E-mail, ; Naoyuki Uchida, E-mail,
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
- Corresponding authors: Yuki Hirakawa, E-mail, ; Keiko U. Torii, E-mail, ; Naoyuki Uchida, E-mail,
| |
Collapse
|
70
|
Tang D, Wang G, Zhou JM. Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. THE PLANT CELL 2017; 29:618-637. [PMID: 28302675 PMCID: PMC5435430 DOI: 10.1105/tpc.16.00891] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 03/16/2017] [Indexed: 05/18/2023]
Abstract
Receptor-like kinases (RLKs) and Receptor-like proteins (RLPs) play crucial roles in plant immunity, growth, and development. Plants deploy a large number of RLKs and RLPs as pattern recognition receptors (PRRs) that detect microbe- and host-derived molecular patterns as the first layer of inducible defense. Recent advances have uncovered novel PRRs, their corresponding ligands, and mechanisms underlying PRR activation and signaling. In general, PRRs associate with other RLKs and function as part of multiprotein immune complexes at the cell surface. Innovative strategies have emerged for the rapid identification of microbial patterns and their cognate PRRs. Successful pathogens can evade or block host recognition by secreting effector proteins to "hide" microbial patterns or inhibit PRR-mediated signaling. Furthermore, newly identified pathogen effectors have been shown to manipulate RLKs controlling growth and development by mimicking peptide hormones of host plants. The ongoing studies illustrate the importance of diverse plant RLKs in plant disease resistance and microbial pathogenesis.
Collapse
Affiliation(s)
- Dingzhong Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoxun Wang
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
71
|
Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, Holton N, Belkhadir Y, Zipfel C. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 2017; 355:287-289. [DOI: 10.1126/science.aal2541] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
|
72
|
Abstract
Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase family (approximately 5% of the protein coding genes), although the specific function for only a few dozen of these kinases is clearly established. Recent comparative genomics studies have revealed that parasitic nematodes and pathogenic microbes produce plant peptide hormone mimics that target specific plant plasma membrane receptor-like protein kinases, thus usurping endogenous signaling pathways for their own pathogenic purposes. With biochemical, genetic, and physiological analyses of the regulation of hormone receptor signal pathways, we are thus just now beginning to understand how plants optimize the development of their body shape and cope with constantly changing environmental conditions.
Collapse
Affiliation(s)
- Miyoshi Haruta
- University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
73
|
Campbell L, Turner SR. A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups. FRONTIERS IN PLANT SCIENCE 2017; 8:37. [PMID: 28174582 PMCID: PMC5258720 DOI: 10.3389/fpls.2017.00037] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Rapid Alkalinization Factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth. Although RALF peptides have been identified within many species, a single wide-ranging phylogenetic analysis of the family across the plant kingdom has not yet been undertaken. Here, we identified RALF proteins from 51 plant species that represent a variety of land plant lineages. The inferred evolutionary history of the 795 identified RALFs suggests that the family has diverged into four major clades. We found that much of the variation across the family exists within the mature peptide region, suggesting clade-specific functional diversification. Clades I, II, and III contain the features that have been identified as important for RALF activity, including the RRXL cleavage site and the YISY motif required for receptor binding. In contrast, members of clades IV that represent a third of the total dataset, is highly diverged and lacks these features that are typical of RALFs. Members of clade IV also exhibit distinct expression patterns and physico-chemical properties. These differences suggest a functional divergence of clades and consequently, we propose that the peptides within clade IV are not true RALFs, but are more accurately described as RALF-related peptides. Expansion of this RALF-related clade in the Brassicaceae is responsible for the large number of RALF genes that have been previously described in Arabidopsis thaliana. Future experimental work will help to establish the nature of the relationship between the true RALFs and the RALF-related peptides, and whether they function in a similar manner.
Collapse
|
74
|
Li C, Wu HM, Cheung AY. FERONIA and Her Pals: Functions and Mechanisms. PLANT PHYSIOLOGY 2016; 171:2379-92. [PMID: 27342308 PMCID: PMC4972288 DOI: 10.1104/pp.16.00667] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/21/2016] [Indexed: 05/18/2023]
Abstract
Current research into the FERONIA family of receptor kinases highlights both questions and opportunities for understanding signaling strategies in plant growth and survival.
Collapse
Affiliation(s)
- Chao Li
- Department of Biochemistry and Molecular Biology (C.L., H.-M.W., A.Y.C.);Molecular and Cell Biology Program (H.-M.W., A.Y.C.); and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003 (A.Y.C.)
| | - H-M Wu
- Department of Biochemistry and Molecular Biology (C.L., H.-M.W., A.Y.C.);Molecular and Cell Biology Program (H.-M.W., A.Y.C.); and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003 (A.Y.C.)
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology (C.L., H.-M.W., A.Y.C.);Molecular and Cell Biology Program (H.-M.W., A.Y.C.); and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003 (A.Y.C.)
| |
Collapse
|
75
|
De Coninck B, De Smet I. Plant peptides - taking them to the next level. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4791-5. [PMID: 27521600 PMCID: PMC5854176 DOI: 10.1093/jxb/erw309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Barbara De Coninck
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Department of Plant Systems Biology, VIB, Ghent, Belgium
- Correspondence: and
| | - Ive De Smet
- Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Correspondence: and
| |
Collapse
|