51
|
Caves EM, Stevens M, Spottiswoode CN. Does coevolution with a shared parasite drive hosts to partition their defences among species? Proc Biol Sci 2018; 284:rspb.2017.0272. [PMID: 28515202 PMCID: PMC5443948 DOI: 10.1098/rspb.2017.0272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/19/2017] [Indexed: 11/12/2022] Open
Abstract
When mimicry imposes costs on models, selection may drive the model's phenotype to evolve away from its mimic. For example, brood parasitism often drives hosts to diversify in egg appearance among females within a species, making mimetic parasitic eggs easier to detect. However, when a single parasite species exploits multiple host species, parasitism could also drive host egg evolution away from other co-occurring hosts, to escape susceptibility to their respective mimics. This hypothesis predicts that sympatric hosts of the same parasite should partition egg phenotypic space (defined by egg colour, luminance and pattern) among species to avoid one another. We show that eggs of warbler species parasitized by the cuckoo finch Anomalospiza imberbis in Zambia partition phenotypic space much more distinctly than do eggs of sympatric but unparasitized warblers. Correspondingly, cuckoo finch host-races better match their own specialist host than other local host species. In the weaver family, parasitized by the diederik cuckoo Chrysococcyx caprius, by contrast, parasitized species were more closely related and overlapped extensively in phenotypic space; correspondingly, cuckoos did not match their own host better than others. These results suggest that coevolutionary arms races between hosts and parasites may be shaped by the wider community context in which they unfold.
Collapse
Affiliation(s)
- Eleanor M Caves
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Martin Stevens
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Claire N Spottiswoode
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK .,DST-NRF Centre of Excellence at the FitzPatrick Institute, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
52
|
Liu J, Sharma A, Niewiara MJ, Singh R, Ming R, Yu Q. Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion. BMC Genomics 2018; 19:26. [PMID: 29306330 PMCID: PMC5756445 DOI: 10.1186/s12864-017-4394-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/15/2017] [Indexed: 11/30/2022] Open
Abstract
Background Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases structurally related to papain, play important roles in plant development, senescence, and defense responses. Papain, the first cysteine protease whose structure was determined by X-ray crystallography, plays a crucial role in protecting papaya from herbivorous insects. Except the four major PLCPs purified and characterized in papaya latex, the rest of the PLCPs in papaya genome are largely unknown. Results We identified 33 PLCP genes in papaya genome. Phylogenetic analysis clearly separated plant PLCP genes into nine subfamilies. PLCP genes are not equally distributed among the nine subfamilies and the number of PLCPs in each subfamily does not increase or decrease proportionally among the seven selected plant species. Papaya showed clear lineage-specific gene expansion in the subfamily III. Interestingly, all four major PLCPs purified from papaya latex, including papain, chymopapain, glycyl endopeptidase and caricain, were grouped into the lineage-specific expansion branch in the subfamily III. Mapping PLCP genes on chromosomes of five plant species revealed that lineage-specific expansions of PLCP genes were mostly derived from tandem duplications. We estimated divergence time of papaya PLCP genes of subfamily III. The major duplication events leading to lineage-specific expansion of papaya PLCP genes in subfamily III were estimated at 48 MYA, 34 MYA, and 16 MYA. The gene expression patterns of the papaya PLCP genes in different tissues were assessed by transcriptome sequencing and qRT-PCR. Most of the papaya PLCP genes of subfamily III expressed at high levels in leaf and green fruit tissues. Conclusions Tandem duplications played the dominant role in affecting copy number of PLCPs in plants. Significant variations in size of the PLCP subfamilies among species may reflect genetic adaptation of plant species to different environments. The lineage-specific expansion of papaya PLCPs of subfamily III might have been promoted by the continuous reciprocal selective effects of herbivore attack and plant defense. Electronic supplementary material The online version of this article (10.1186/s12864-017-4394-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Liu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Anupma Sharma
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Marie Jamille Niewiara
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ratnesh Singh
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Qingyi Yu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA. .,Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
55
|
How Herbivore Browsing Strategy Affects Whole-Plant Photosynthetic Capacity. Bull Math Biol 2017; 79:772-787. [PMID: 28194619 DOI: 10.1007/s11538-017-0253-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
If a browse damage index indicates that a tree has been 50% browsed by herbivores, does this mean half the leaves are entirely eaten or are all the leaves half eaten? Were the affected leaves old or young? Large or small? In sunshine or shade? Understanding what effect browsing will have on the photosynthetic capacity and the plant's survival ability clearly requires a greater understanding of browsing strategy across the canopy than can be given by a single index value. We developed stochastic models of leaf production, growth and consumption using data from kamahi (Weinmannia racemosa) trees in New Zealand which have been browsed by possums (Trichosurus vulpecula), to ascertain which of six feasible browsing strategies possums are most likely to be employing. We compared the area distribution of real fallen leaves to model output in order to select the best model, and used the model to predict the age distribution of leaves on the tree and thus infer its photosynthetic capability. The most likely browsing strategy that possums employ on kamahi trees is a preference for virgin (i.e. previously unbrowsed) leaves, consistent with the idea that browsing increases the production of chemical plant defences. More generally, our results show that herbivore browsing strategy can significantly change the whole-plant photosynthetic capability of any plant and hence its ability to survive, and therefore, herbivore damage indices should be used in conjunction with more detailed information about herbivore browsing strategy.
Collapse
|
57
|
Zhou Y, Ma Y, Zeng J, Duan L, Xue X, Wang H, Lin T, Liu Z, Zeng K, Zhong Y, Zhang S, Hu Q, Liu M, Zhang H, Reed J, Moses T, Liu X, Huang P, Qing Z, Liu X, Tu P, Kuang H, Zhang Z, Osbourn A, Ro DK, Shang Y, Huang S. Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. NATURE PLANTS 2016; 2:16183. [PMID: 27892922 PMCID: PMC5449191 DOI: 10.1038/nplants.2016.183] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/26/2016] [Indexed: 05/17/2023]
Abstract
Differentiation of secondary metabolite profiles in closely related plant species provides clues for unravelling biosynthetic pathways and regulatory circuits, an area that is still underinvestigated. Cucurbitacins, a group of bitter and highly oxygenated tetracyclic triterpenes, are mainly produced by the plant family Cucurbitaceae. These compounds have similar structures, but differ in their antitumour activities and ecophysiological roles. By comparative analyses of the genomes of cucumber, melon and watermelon, we uncovered conserved syntenic loci encoding metabolic genes for distinct cucurbitacins. Characterization of the cytochrome P450s (CYPs) identified from these loci enabled us to unveil a novel multi-oxidation CYP for the tailoring of the cucurbitacin core skeleton as well as two other CYPs responsible for the key structural variations among cucurbitacins C, B and E. We also discovered a syntenic gene cluster of transcription factors that regulates the tissue-specific biosynthesis of cucurbitacins and may confer the loss of bitterness phenotypes associated with convergent domestication of wild cucurbits. This study illustrates the potential to exploit comparative genomics to identify enzymes and transcription factors that control the biosynthesis of structurally related yet unique natural products.
Collapse
Affiliation(s)
- Yuan Zhou
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Science, Shenzhen 518124, China
- Horticulture and Landscape College, Hunan Agricultural University, National Chinese Medicinal Herbs (Hunan) Technology Center, Changsha 410000, China
| | - Yongshuo Ma
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Jianguo Zeng
- Horticulture and Landscape College, Hunan Agricultural University, National Chinese Medicinal Herbs (Hunan) Technology Center, Changsha 410000, China
| | - Lixin Duan
- Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Xiaofeng Xue
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Huaisong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Tao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Science, Shenzhen 518124, China
| | - Zhiqiang Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Kewu Zeng
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Zhong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Shu Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Qun Hu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Huimin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - James Reed
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Tessa Moses
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xinyan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Peng Huang
- Horticulture and Landscape College, Hunan Agricultural University, National Chinese Medicinal Herbs (Hunan) Technology Center, Changsha 410000, China
| | - Zhixing Qing
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiubin Liu
- Horticulture and Landscape College, Hunan Agricultural University, National Chinese Medicinal Herbs (Hunan) Technology Center, Changsha 410000, China
| | - Pengfei Tu
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hanhui Kuang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhonghua Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
| | - Anne Osbourn
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary T2N 1N4, Canada
| | - Yi Shang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Science, Shenzhen 518124, China
| | - Sanwen Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Science, Shenzhen 518124, China
| |
Collapse
|
59
|
Martos S, Gallego B, Cabot C, Llugany M, Barceló J, Poschenrieder C. Zinc triggers signaling mechanisms and defense responses promoting resistance to Alternaria brassicicola in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:13-24. [PMID: 27297986 DOI: 10.1016/j.plantsci.2016.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 05/24/2023]
Abstract
According to the elemental defense hypothesis the accumulation of trace elements by plants may substitute for organic defenses, while the joint effects hypothesis proposes that trace elements and organic defenses can have additive or synergistic effects against pathogens or herbivores. To evaluate these hypotheses the response of the pathosystem Alternaria brassicicola-Arabidopsis thaliana to control (2μM) and surplus (12μM) Zn was evaluated using the camalexin deficient mutant pad3-1 and mtp1-1, a mutant with impaired Zn vacuolar storage, along with the corresponding wildtypes. In vitro, a 50% inhibition of fungal growth was achieved by 440μM Zn. A. thaliana leaves could accumulate equivalent concentrations without harm. In fact, surplus Zn enhanced the resistance of A. thaliana to fungal attack in Columbia (Col-0), Wassilewskija (WS), and mtp1-1. However, surplus Zn was unable to protect pad3-1 demonstrating that Zn cannot substitute for camalexin, the main organic defense in A. thaliana. High, non phytotoxic leaf Zn concentrations enhanced the resistance to A. brassicicola of A. thaliana genotypes able to produce camalexin. This was mainly due to Zn-induced enhancement of the JA/ETH signaling pathway leading to enhanced PAD3 expression. These results support the joint effects hypothesis and highlight the importance of adequate Zn supply for reinforced pathogen resistance.
Collapse
Affiliation(s)
- Soledad Martos
- Plant Physiology Laboratory, Bioscience Faculty, C/de la Vall Moronta s.n., Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | - Berta Gallego
- Plant Physiology Laboratory, Bioscience Faculty, C/de la Vall Moronta s.n., Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | - Catalina Cabot
- Biology Department, Universitat de les Illes Balears, Carretera Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain.
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience Faculty, C/de la Vall Moronta s.n., Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | - Juan Barceló
- Plant Physiology Laboratory, Bioscience Faculty, C/de la Vall Moronta s.n., Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, C/de la Vall Moronta s.n., Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| |
Collapse
|