51
|
Perez‐Lamarque B, Öpik M, Maliet O, Afonso Silva AC, Selosse M, Martos F, Morlon H. Analysing diversification dynamics using barcoding data: The case of an obligate mycorrhizal symbiont. Mol Ecol 2022; 31:3496-3512. [PMID: 35451535 PMCID: PMC9321572 DOI: 10.1111/mec.16478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022]
Abstract
Analysing diversification dynamics is key to understanding the past evolutionary history of clades that led to present-day biodiversity patterns. While such analyses are widespread in well-characterized groups of species, they are much more challenging in groups for which diversity is mostly known through molecular techniques. Here, we use the largest global database on the small subunit (SSU) rRNA gene of Glomeromycotina, a subphylum of microscopic arbuscular mycorrhizal fungi that provide mineral nutrients to most land plants by forming one of the oldest terrestrial symbioses, to analyse the diversification dynamics of this clade in the past 500 million years. We perform a range of sensitivity analyses and simulations to control for potential biases linked to the nature of the data. We find that Glomeromycotina tend to have low speciation rates compared to other eukaryotes. After a peak of speciations between 200 and 100 million years ago, they experienced an important decline in speciation rates toward the present. Such a decline could be at least partially related to a shrinking of their mycorrhizal niches and to their limited ability to colonize new niches. Our analyses identify patterns of diversification in a group of obligate symbionts of major ecological and evolutionary importance and illustrate that short molecular markers combined with intensive sensitivity analyses can be useful for studying diversification dynamics in microbial groups.
Collapse
Affiliation(s)
- Benoît Perez‐Lamarque
- Institut de biologie de l’École normale supérieure (IBENS)École Normale SupérieureCNRSINSERMUniversité PSLParisFrance
- Institut de Systématique, Évolution, Biodiversité (ISYEB)Muséum National d’histoire NaturelleCNRSSorbonne UniversitéEPHE, UA, CP39ParisFrance
| | | | - Odile Maliet
- Institut de biologie de l’École normale supérieure (IBENS)École Normale SupérieureCNRSINSERMUniversité PSLParisFrance
| | - Ana C. Afonso Silva
- Institut de biologie de l’École normale supérieure (IBENS)École Normale SupérieureCNRSINSERMUniversité PSLParisFrance
- University of LilleCNRS, UMR 8198 ‐ Evo‐Eco‐PaleoLilleFrance
| | - Marc‐André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB)Muséum National d’histoire NaturelleCNRSSorbonne UniversitéEPHE, UA, CP39ParisFrance
- Department of Plant Taxonomy and Nature ConservationUniversity of GdanskGdanskPoland
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB)Muséum National d’histoire NaturelleCNRSSorbonne UniversitéEPHE, UA, CP39ParisFrance
| | - Hélène Morlon
- Institut de biologie de l’École normale supérieure (IBENS)École Normale SupérieureCNRSINSERMUniversité PSLParisFrance
| |
Collapse
|
52
|
Bennett AE, Groten K. The Costs and Benefits of Plant-Arbuscular Mycorrhizal Fungal Interactions. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:649-672. [PMID: 35216519 DOI: 10.1146/annurev-arplant-102820-124504] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The symbiotic interaction between plants and arbuscular mycorrhizal (AM) fungi is often perceived as beneficial for both partners, though a large ecological literature highlights the context dependency of this interaction. Changes in abiotic variables, such as nutrient availability, can drive the interaction along the mutualism-parasitism continuum with variable outcomes for plant growth and fitness. However, AM fungi can benefit plants in more ways than improved phosphorus nutrition and plant growth. For example, AM fungi can promote abiotic and biotic stress tolerance even when considered parasitic from a nutrient provision perspective. Other than being obligate biotrophs, very little is known about the benefits AM fungi gain from plants. In this review, we utilize both molecular biology and ecological approaches to expand our understanding of the plant-AM fungal interaction across disciplines.
Collapse
Affiliation(s)
- Alison E Bennett
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, USA;
| | - Karin Groten
- Max Planck Institute for Chemical Ecology, Jena, Germany;
| |
Collapse
|
53
|
Jiang D, Lin R, Tan M, Yan J, Yan S. The mycorrhizal-induced growth promotion and insect resistance reduction in Populus alba × P. berolinensis seedlings: a multi-omics study. TREE PHYSIOLOGY 2022; 42:1059-1069. [PMID: 35022794 DOI: 10.1093/treephys/tpab155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/13/2021] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are an alternative to chemical insecticides or fertilizers, and there is an urgent need to extend the application of AM fungi to woody plants. This study aims to investigate the growth and resistance against the gypsy moth larvae (Lymantria dispar) in Glomus intraradices-colonized Populus alba × P. berolinensis seedlings, and to unravel the transcriptome and metabolome phenotypes recruited by AM fungus colonization that affect plant growth and insect resistance. Our results showed a positive mycorrhizal growth response, i.e., growth and biomass of mycorrhizal seedlings were enhanced. However, AM fungus inoculation reduced the resistance of poplar to gypsy moth larvae, as evidenced by the decreased carbon/nitrogen ratio in leaves, as well as the increased larval growth and shortened larval developmental duration. Transcriptome analysis revealed that in both auxin and gibberellin signaling transductions, all nodes were responsive to AM symbiosis and most differentially expressed genes belonging to effectors were up-regulated in mycorrhizal seedlings. Furthermore, the two key enzymes (4-coumarate-CoA ligase and trans-cinnamate 4-monooxygenase) involved in the synthesis of p-Coumaroyl-CoA, an initial metabolite in flavonoid biosynthesis and the first rate-limiting enzyme (chalcone synthase) in flavonoid biosynthesis, were down-regulated at the transcriptional level. Consistent with the transcriptome results, metabolome analysis found that the amounts of all differentially accumulated flavonoid compounds (e.g., catechin and quercetin) identified in mycorrhizal seedlings were decreased. Taken together, these findings highlight the diverse outcomes of AM fungi-host plant-insect interaction and reveal the regulatory network of the positive mycorrhizal growth response and mycorrhizal-induced reduction of insect resistance in poplar.
Collapse
Affiliation(s)
- Dun Jiang
- Department of Forestry School of Forestry, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
- College of Forestry Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
| | - Ruoxuan Lin
- Department of Economics College of Economics and Management, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R.China
| | - Mingtao Tan
- Department of Forestry School of Forestry, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
- College of Forestry Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
| | - Junxin Yan
- Department of Landscape Architecture College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
| | - Shanchun Yan
- Department of Forestry School of Forestry, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
- College of Forestry Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China
| |
Collapse
|
54
|
Abstract
The liverwort Marchantia polymorpha has been known to man for millennia due to its inclusion Greek herbals. Perhaps due to its familiarity and association with growth in, often, man-made disturbed habitats, it was readily used to address fundamental biological questions of the day, including elucidation of land plant life cycles in the late 18th century, the formulation of cell theory early in the 19th century and the discovery of the alternation of generations in land plants in the mid-19th century. Subsequently, Marchantia was used as model in botany classes. With the arrival of the molecular era, its organellar genomes, the chloroplast and mitochondrial, were some of the first to be sequenced from any plant. In the past two decades, molecular genetic tools have been applied such that genes may be manipulated seemingly at will. Here, are past, present, and some views to the future of Marchantia as a model.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
55
|
Looney B, Miyauchi S, Morin E, Drula E, Courty PE, Kohler A, Kuo A, LaButti K, Pangilinan J, Lipzen A, Riley R, Andreopoulos W, He G, Johnson J, Nolan M, Tritt A, Barry KW, Grigoriev IV, Nagy LG, Hibbett D, Henrissat B, Matheny PB, Labbé J, Martin FM. Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom-forming fungi. THE NEW PHYTOLOGIST 2022; 233:2294-2309. [PMID: 34861049 DOI: 10.1111/nph.17892] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae. We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella convolvens. The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall-degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE 'nests', or dense aggregations of TEs. Some PCWDEs have been retained or even expanded, mostly in a species-specific manner. The genome of G. convolvens possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters). Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.
Collapse
Affiliation(s)
- Brian Looney
- Department of Biology, Clark University, Worcester, MA, 01610, USA
| | - Shingo Miyauchi
- UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France
| | - Emmanuelle Morin
- UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Univ., Marseille, 13009, France
- USC1408 Architecture et Fonction des Macromolécules Biologiques (AFMB), INRAE, Marseille, 13009, France
| | - Pierre Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université de Bourgogne Franche- Comté, Dijon, 25000, France
| | - Annegret Kohler
- UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France
| | - Alan Kuo
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Robert Riley
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - William Andreopoulos
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Guifen He
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Matt Nolan
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Andrew Tritt
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Kerrie W Barry
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1053, Hungary
| | - David Hibbett
- Department of Biology, Clark University, Worcester, MA, 01610, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Univ., Marseille, 13009, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, 37830, USA
| | - Francis M Martin
- UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
56
|
Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S, Wanasinghe DN, Phookamsak R, Kularathnage ND, Gomdola D, Harishchandra D, Dissanayake LS, Xiang MM, Ekanayaka AH, McKenzie EHC, Hyde KD, Zhang HX, Xie N. Predicting global numbers of teleomorphic ascomycetes. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractSexual reproduction is the basic way to form high genetic diversity and it is beneficial in evolution and speciation of fungi. The global diversity of teleomorphic species in Ascomycota has not been estimated. This paper estimates the species number for sexual ascomycetes based on five different estimation approaches, viz. by numbers of described fungi, by fungus:substrate ratio, by ecological distribution, by meta-DNA barcoding or culture-independent studies and by previous estimates of species in Ascomycota. The assumptions were made with the currently most accepted, “2.2–3.8 million” species estimate and results of previous studies concluding that 90% of the described ascomycetes reproduce sexually. The Catalogue of Life, Species Fungorum and published research were used for data procurement. The average value of teleomorphic species in Ascomycota from all methods is 1.86 million, ranging from 1.37 to 2.56 million. However, only around 83,000 teleomorphic species have been described in Ascomycota and deposited in data repositories. The ratio between described teleomorphic ascomycetes to predicted teleomorphic ascomycetes is 1:22. Therefore, where are the undiscovered teleomorphic ascomycetes? The undescribed species are no doubt to be found in biodiversity hot spots, poorly-studied areas and species complexes. Other poorly studied niches include extremophiles, lichenicolous fungi, human pathogens, marine fungi, and fungicolous fungi. Undescribed species are present in unexamined collections in specimen repositories or incompletely described earlier species. Nomenclatural issues, such as the use of separate names for teleomorph and anamorphs, synonyms, conspecific names, illegitimate and invalid names also affect the number of described species. Interspecies introgression results in new species, while species numbers are reduced by extinctions.
Collapse
|
57
|
Selosse MA, Petrolli R, Mujica MI, Laurent L, Perez-Lamarque B, Figura T, Bourceret A, Jacquemyn H, Li T, Gao J, Minasiewicz J, Martos F. The Waiting Room Hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes? ANNALS OF BOTANY 2022; 129:259-270. [PMID: 34718377 PMCID: PMC8835631 DOI: 10.1093/aob/mcab134] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND As in most land plants, the roots of orchids (Orchidaceae) associate with soil fungi. Recent studies have highlighted the diversity of the fungal partners involved, mostly within Basidiomycotas. The association with a polyphyletic group of fungi collectively called rhizoctonias (Ceratobasidiaceae, Tulasnellaceae and Serendipitaceae) is the most frequent. Yet, several orchid species target other fungal taxa that differ from rhizoctonias by their phylogenetic position and/or ecological traits related to their nutrition out of the orchid roots (e.g. soil saprobic or ectomycorrhizal fungi). We offer an evolutionary framework for these symbiotic associations. SCOPE Our view is based on the 'Waiting Room Hypothesis', an evolutionary scenario stating that mycorrhizal fungi of land flora were recruited from ancestors that initially colonized roots as endophytes. Endophytes biotrophically colonize tissues in a diffuse way, contrasting with mycorrhizae by the absence of morphological differentiation and of contribution to the plant's nutrition. The association with rhizoctonias is probably the ancestral symbiosis that persists in most extant orchids, while during orchid evolution numerous secondary transitions occurred to other fungal taxa. We suggest that both the rhizoctonia partners and the secondarily acquired ones are from fungal taxa that have broad endophytic ability, as exemplified in non-orchid roots. We review evidence that endophytism in non-orchid plants is the current ecology of many rhizoctonias, which suggests that their ancestors may have been endophytic in orchid ancestors. This also applies to the non-rhizoctonia fungi that were secondarily recruited by several orchid lineages as mycorrhizal partners. Indeed, from our review of the published literature, they are often detected, probably as endophytes, in extant rhizoctonia-associated orchids. CONCLUSION The orchid family offers one of the best documented examples of the 'Waiting Room Hypothesis': their mycorrhizal symbioses support the idea that extant mycorrhizal fungi have been recruited among endophytic fungi that colonized orchid ancestors.
Collapse
Affiliation(s)
- Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - María Isabel Mujica
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile, & Instituto de Ecología and Biodiversidad (IEB), Alameda 340, Santiago, Chile
| | - Liam Laurent
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - Benoît Perez-Lamarque
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, 75005 Paris, France
| | - Tomáš Figura
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Amelia Bourceret
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Julita Minasiewicz
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
58
|
Policelli N, Vietorisz C, Bhatnagar JM, Nuñez MA. Ectomycorrhizal Fungi Invasions in Southern South America. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
59
|
Lebreton A, Zeng Q, Miyauchi S, Kohler A, Dai YC, Martin FM. Evolution of the Mode of Nutrition in Symbiotic and Saprotrophic Fungi in Forest Ecosystems. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-114902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this review, we highlight the main insights that have been gathered from recent developments using large-scale genomics of fungal saprotrophs and symbiotrophs (including ectomycorrhizal and orchid and ericoid mycorrhizal fungi) inhabiting forest ecosystems. After assessing the goals and motivations underlying our approach, we explore our current understanding of the limits and future potential of using genomics to understand the ecological roles of these forest fungi. Comparative genomics unraveled the molecular machineries involved in lignocellulose decomposition in wood decayers, soil and litter saprotrophs, and mycorrhizal symbionts. They also showed that transitions from saprotrophy to mutualism entailed widespread losses of lignocellulose-degrading enzymes; diversification of novel, lineage-specific symbiosis-induced genes; and convergent evolution of genetic innovations that facilitate the accommodationof mutualistic symbionts within their plant hosts. We also identify the major questions that remain unanswered and propose new avenues of genome-based research to understand the role of soil fungi in sustainable forest ecosystems.
Collapse
Affiliation(s)
- Annie Lebreton
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| | - Qingchao Zeng
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
| | - Shingo Miyauchi
- Max Planck Institute for Plant Breeding Research, Department of Plant–Microbe Interactions, Köln, Germany, D-50829
| | - Annegret Kohler
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
| | - Francis M. Martin
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| |
Collapse
|
60
|
Poudel M, Mendes R, Costa LAS, Bueno CG, Meng Y, Folimonova SY, Garrett KA, Martins SJ. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Front Microbiol 2021; 12:743512. [PMID: 34759901 PMCID: PMC8573356 DOI: 10.3389/fmicb.2021.743512] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Drought stress is an alarming constraint to plant growth, development, and productivity worldwide. However, plant-associated bacteria, fungi, and viruses can enhance stress resistance and cope with the negative impacts of drought through the induction of various mechanisms, which involve plant biochemical and physiological changes. These mechanisms include osmotic adjustment, antioxidant enzyme enhancement, modification in phytohormonal levels, biofilm production, increased water and nutrient uptake as well as increased gas exchange and water use efficiency. Production of microbial volatile organic compounds (mVOCs) and induction of stress-responsive genes by microbes also play a crucial role in the acquisition of drought tolerance. This review offers a unique exploration of the role of plant-associated microorganisms-plant growth promoting rhizobacteria and mycorrhizae, viruses, and their interactions-in the plant microbiome (or phytobiome) as a whole and their modes of action that mitigate plant drought stress.
Collapse
Affiliation(s)
- Mousami Poudel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | - Lilian A. S. Costa
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | - C. Guillermo Bueno
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Yiming Meng
- Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | | | - Karen A. Garrett
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- Food Systems Institute, University of Florida, Gainesville, FL, United States
| | - Samuel J. Martins
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
61
|
Russo G, Genre A. Divide and Be Conquered-Cell Cycle Reactivation in Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:753265. [PMID: 34759945 PMCID: PMC8573090 DOI: 10.3389/fpls.2021.753265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/01/2021] [Indexed: 05/31/2023]
Affiliation(s)
- Giulia Russo
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Turin, Italy
| | - Andrea Genre
- Department of Life Science and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
62
|
Guo X, Ma X, Zhang J, Zhu J, Lu T, Wang Q, Wang X, Hua W, Xu S. Meta-analysis of the role of zinc in coordinating absorption of mineral elements in wheat seedlings. PLANT METHODS 2021; 17:105. [PMID: 34641929 PMCID: PMC8513278 DOI: 10.1186/s13007-021-00805-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/29/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Zinc (Zn) is an important nutrient for human beings, which is also an essential micronutrient for crop growth. This study investigated the role of Zn in coordinating the mineral elements absorption in modern wheat (Triticum aestivum L.) cultivars with a new developed method. RESULTS A method was developed, and showed a robust capability to simultaneously investigate seven mineral elements uptake in wheat seedling. With this method, we found low Zn supply (< 1 μM) promoted the absorption of potassium (K), magnesium (Mg) and manganese (Mn) in wheat seedling, while high Zn supply (> 1 μM) significantly inhibited the absorption of these elements. Cultivars with the green genes (Rht-B1b and Rht-D1b) showed a higher uptake capability on ammonium (NH4+), and cultivars with Rht-B1b allele can uptake more phosphors (P), K, calcium (Ca), Mn and Zn compared to cultivars with Rht-D1b. Further analysis indicated higher uptake capability of NH4+ in cultivars contained Rhts was independent of Zn. CONCLUSION The key role of Zn in coordinating for mineral elements absorption was identified in modern wheat cultivars, providing the reference for Zn application in wheat. Meanwhile, this study provides a robust method for quantifying the absorption of mineral elements, which may be adopted into the broadly investigations on the coordinated nutrients absorption of plant.
Collapse
Affiliation(s)
- Xiaolong Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Xiangyu Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Jialiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Jinghuan Zhu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| | - Tian Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Qifei Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Wei Hua
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| |
Collapse
|
63
|
Khokhani D, Carrera Carriel C, Vayla S, Irving TB, Stonoha-Arther C, Keller NP, Ané JM. Deciphering the Chitin Code in Plant Symbiosis, Defense, and Microbial Networks. Annu Rev Microbiol 2021; 75:583-607. [PMID: 34623896 DOI: 10.1146/annurev-micro-051921-114809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chitin is a structural polymer in many eukaryotes. Many organisms can degrade chitin to defend against chitinous pathogens or use chitin oligomers as food. Beneficial microorganisms like nitrogen-fixing symbiotic rhizobia and mycorrhizal fungi produce chitin-based signal molecules called lipo-chitooligosaccharides (LCOs) and short chitin oligomers to initiate a symbiotic relationship with their compatible hosts and exchange nutrients. A recent study revealed that a broad range of fungi produce LCOs and chitooligosaccharides (COs), suggesting that these signaling molecules are not limited to beneficial microbes. The fungal LCOs also affect fungal growth and development, indicating that the roles of LCOs beyond symbiosis and LCO production may predate mycorrhizal symbiosis. This review describes the diverse structures of chitin; their perception by eukaryotes and prokaryotes; and their roles in symbiotic interactions, defense, and microbe-microbe interactions. We also discuss potential strategies of fungi to synthesize LCOs and their roles in fungi with different lifestyles.
Collapse
Affiliation(s)
- Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Current affiliation: Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota 55108, USA;
| | - Cristobal Carrera Carriel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Shivangi Vayla
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
64
|
Wang Q, Wang Y, Wang J, Gong Z, Han GZ. Plants acquired a major retrotransposon horizontally from fungi during the conquest of land. THE NEW PHYTOLOGIST 2021; 232:11-16. [PMID: 34157135 DOI: 10.1111/nph.17568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Qin Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Yan Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jianhua Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Zhen Gong
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
65
|
Iversen CM, McCormack ML. Filling gaps in our understanding of belowground plant traits across the world: an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2021; 231:2097-2103. [PMID: 34405907 DOI: 10.1111/nph.17326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37830-6301, USA
| | - M Luke McCormack
- Center for Tree Science, The Morton Arboretum, Liesle, IL, 60515, USA
| |
Collapse
|
66
|
Chialva M, Lanfranco L, Bonfante P. The plant microbiota: composition, functions, and engineering. Curr Opin Biotechnol 2021; 73:135-142. [PMID: 34392234 DOI: 10.1016/j.copbio.2021.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/03/2022]
Abstract
Plants growing in nature live in association with beneficial, commensal, and pathogenic microbes, which make up the plant microbiota. The close interaction between plants and their microbiotas has raised fundamental questions about plant responses to these microbes and the identity of the main factors driving microbiota structure, diversity, and function in bulk soil, in the rhizosphere, and in the plant organs. Beneficial microorganisms have long been used as inoculants for crops; the current development of synthetic microbial communities and the identification of plant traits that respond to the microbiota form the basis for rational engineering of the plant microbiota to improve sustainable agriculture.
Collapse
Affiliation(s)
- Matteo Chialva
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy; Department of Agricultural, Forest and Food Sciences, University of Torino, Largo P. Braccini 2, 10095 Grugliasco (TO), Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy.
| |
Collapse
|
67
|
Peng L, Shan X, Yang Y, Wang Y, Druzhinina IS, Pan X, Jin W, He X, Wang X, Zhang X, Martin FM, Yuan Z. Facultative symbiosis with a saprotrophic soil fungus promotes potassium uptake in American sweetgum trees. PLANT, CELL & ENVIRONMENT 2021; 44:2793-2809. [PMID: 33764571 DOI: 10.1111/pce.14053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Several species of soil free-living saprotrophs can sometimes establish biotrophic symbiosis with plants, but the basic biology of this association remains largely unknown. Here, we investigate the symbiotic interaction between a common soil saprotroph, Clitopilus hobsonii (Agaricomycetes), and the American sweetgum (Liquidambar styraciflua). The colonized root cortical cells were found to contain numerous microsclerotia-like structures. Fungal colonization led to increased plant growth and facilitated potassium uptake, particularly under potassium limitation (0.05 mM K+ ). The expression of plant genes related to potassium uptake was not altered by the symbiosis, but colonized roots contained the transcripts of three fungal genes with homology to K+ transporters (ACU and HAK) and channel (SKC). Heterologously expressed ChACU and ChSKC restored the growth of a yeast K+ -uptake-defective mutant. Upregulation of ChACU transcript under low K+ conditions (0 and 0.05 mM K+ ) compared to control (5 mM K+ ) was demonstrated in planta and in vitro. Colonized plants displayed a larger accumulation of soluble sugars under 0.05 mM K+ than non-colonized plants. The present study suggests reciprocal benefits of this novel tree-fungus symbiosis under potassium limitation mainly through an exchange of additional carbon and potassium between both partners.
Collapse
Affiliation(s)
- Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoliang Shan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yuzhan Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Irina S Druzhinina
- Fungal Genomics Group, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xueyu Pan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Wei Jin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinghua He
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinyu Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoguo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Francis M Martin
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, Champenoux, France
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
68
|
Vasan S, Srivastava D, Cahill D, Singh PP, Adholeya A. Important innate differences in determining symbiotic responsiveness in host and non-hosts of arbuscular mycorrhiza. Sci Rep 2021; 11:14444. [PMID: 34262100 PMCID: PMC8280126 DOI: 10.1038/s41598-021-93626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/29/2021] [Indexed: 11/09/2022] Open
Abstract
Genetic components that regulate arbuscular mycorrhizal (AM) interactions in hosts and non-hosts are not completely known. Comparative transcriptomic analysis was combined with phylogenetic studies to identify the factors that distinguish AM host from non-host. Mycorrhized host, non-mycorrhized host and non-host cultivars of tomato (Solanum lycopersicum) were subjected to RNA seq analysis. The top 10 differentially expressed genes were subjected to extensive in silico phylogenetic analysis along with 10 more candidate genes that have been previously reported for AM-plant interactions. Seven distantly related hosts and four non-hosts were selected to identify structural differences in selected gene/protein candidates. The screened genes/proteins were subjected to MEME, CODEML and DIVERGE analysis to identify evolutionary patterns that differentiate hosts from non-hosts. Based on the results, candidate genes were categorized as highly influenced (SYMRK and CCaMK), moderately influenced and minimally influenced by evolutionary constraints. We propose that the amino acid and nucleotide changes specific to non-hosts are likely to correspond to aberrations in functionality towards AM symbiosis. This study paves way for future research aimed at understanding innate differences in genetic make-up of AM hosts and non-hosts, in addition to the theory of gene losses from the "AM-symbiotic toolkit".
Collapse
Affiliation(s)
- Shalini Vasan
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), Gurugram, Haryana, India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - Divya Srivastava
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), Gurugram, Haryana, India
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - Pushplata Prasad Singh
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), Gurugram, Haryana, India.
| | - Alok Adholeya
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), Gurugram, Haryana, India.
| |
Collapse
|
69
|
Ectomycorrhizal fungi and trees: brothers in arms in the face of anthropogenic activities and their consequences. Symbiosis 2021. [DOI: 10.1007/s13199-021-00792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
70
|
R. Cope K, B. Irving T, Chakraborty S, Ané JM. Perception of lipo-chitooligosaccharides by the bioenergy crop Populus. PLANT SIGNALING & BEHAVIOR 2021; 16:1903758. [PMID: 33794743 PMCID: PMC8143229 DOI: 10.1080/15592324.2021.1903758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Populus sp. is a developing feedstock for second-generation biofuel production. To ensure its success as a sustainable biofuel source, it is essential to capitalize on the ability of Populus sp. to associate with beneficial plant-associated microbes (e.g., mycorrhizal fungi) and engineer Populus sp. to associate with non-native symbionts (e.g., rhizobia). Here, we review recent research into the molecular mechanisms that control ectomycorrhizal associations in Populus sp. with particular emphasis on the discovery that ectomycorrhizal fungi produce lipochitooligosaccharides capable of activating the common symbiosis pathway. We also present new evidence that lipo-chitooligosaccharides produced by both ectomycorrhizal fungi and various species of rhizobia that do not associate with Populus sp. can induce nuclear calcium spiking in the roots of Populus sp. Thus, we argue Populus sp. already possesses the molecular machinery necessary for perceiving rhizobia, and the next step in engineering symbiosis with rhizobia should be focused on inducing bacterial accommodation and nodule organogenesis. The gene Nodule INception is central to these processes, and several putative orthologs are present in Populus sp. Manipulating the promoters of these genes to match that of plants in the nitrogen-fixing clade may be sufficient to introduce nodulation in Populus sp.
Collapse
Affiliation(s)
- Kevin R. Cope
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, WI,United States
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, WI,United States
| | - Thomas B. Irving
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, WI,United States
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, WI,United States
| | - Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, WI,United States
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, WI,United States
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, WI,United States
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, WI,United States
| |
Collapse
|
71
|
Yang T, Tedersoo L, Fu X, Zhao C, Liu X, Gao G, Cheng L, Adams JM, Chu H. Saprotrophic fungal diversity predicts ectomycorrhizal fungal diversity along the timberline in the framework of island biogeography theory. ISME COMMUNICATIONS 2021; 1:15. [PMID: 37938216 PMCID: PMC9723781 DOI: 10.1038/s43705-021-00015-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Island biogeography theory (IBT) is one of the most fruitful paradigms in macroecology, positing positive species-area and negative species-isolation relationships for the distribution of organisms. Biotic interactions are also crucial for diversity maintenance on islands. In the context of a timberline tree species (Betula ermanii) as "virtual island", we surveyed ectomycorrhizal (EcM) fungal diversity along a 430-m vertical gradient on the top of Changbai Mountain, China, sampling fine roots and neighboring soils of B. ermanii. Besides elevation, soil properties and plant functional traits, endophytic and saprotrophic fungal diversity were assessed as candidate predictors to construct integrative models. EcM fungal diversity decreased with increasing elevation, and exhibited positive diversity to diameter at breast height and negative diversity to distance from forest edge relationships in both roots and soils. Integrative models further showed that saprotrophic fungal diversity was the strongest predictor of EcM fungal diversity, directly enhancing EcM fungal diversity in roots and soils. Our study supports IBT as a basic framework to explain EcM fungal diversity. The diversity-begets-diversity hypothesis within the fungal kingdom is more predictive for EcM fungal diversity within the IBT framework, which reveals a tight association between saprotrophic and EcM fungal lineages in the timberline ecosystem.
Collapse
Affiliation(s)
- Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Xiao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang Zhao
- School of Geography Sciences, Nanjing Normal University, Nanjing, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guifeng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Liang Cheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jonathan M Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
72
|
Mitchell RL, Strullu-Derrien C, Sykes D, Pressel S, Duckett JG, Kenrick P. Cryptogamic ground covers as analogues for early terrestrial biospheres: Initiation and evolution of biologically mediated proto-soils. GEOBIOLOGY 2021; 19:292-306. [PMID: 33569915 DOI: 10.1111/gbi.12431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 05/29/2023]
Abstract
Modern cryptogamic ground covers (CGCs), comprising assemblages of bryophytes (hornworts, liverworts, mosses), fungi, bacteria, lichens and algae, are thought to resemble early divergent terrestrial communities. However, limited in situ plant and other fossils in the rock record, and a lack of CGC-like soils reported in the pre-Silurian sedimentological record, have hindered understanding of the structure, composition and interactions within the earliest CGCs. A key question is how the earliest CGC-like organisms drove weathering on primordial terrestrial surfaces (regolith), leading to the early stages of soil development as proto-soils, and subsequently contributing to large-scale biogeochemical shifts in the Earth System. Here, we employed a novel qualitative, quantitative and multi-dimensional imaging approach through X-ray micro-computed tomography, scanning electron, and optical microscopy to investigate whether different combinations of modern CGC organisms from primordial-like settings in Iceland develop organism-specific soil forming features at the macro- and micro-scales. Additionally, we analysed CGCs growing on hard rocky substrates to investigate the initiation of weathering processes non-destructively in 3D. We show that thalloid CGC organisms (liverworts, hornworts) develop thin organic layers at the surface (<1 cm) with limited subsurface structural development, whereas leafy mosses and communities of mixed organisms form profiles that are thicker (up to ~ 7 cm), structurally more complex, and more organic-rich. We term these thin layers and profiles proto-soils. Component analyses from X-ray micro-computed tomography data show that thickness and structure of these proto-soils are determined by the type of colonising organism(s), suggesting that the evolution of more complex soils through the Palaeozoic may have been driven by a shift in body plan of CGC-like organisms from flattened and appressed to upright and leafy. Our results provide a framework for identifying CGC-like proto-soils in the rock record and a new proxy for understanding organism-soil interactions in ancient terrestrial biospheres and their contribution to the early stages of soil formation.
Collapse
Affiliation(s)
- Ria L Mitchell
- Earth Sciences Department, The Natural History Museum, London, UK
- Sheffield Tomography Centre (STC), Kroto Research Institute, The University of Sheffield, Sheffield, UK
| | - Christine Strullu-Derrien
- Earth Sciences Department, The Natural History Museum, London, UK
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR7205, Muséum National d'Histoire naturelle, Sorbonne Université, CNRS, Paris, France
| | - Dan Sykes
- Imaging and Analysis Centre (IAC), The Natural History Museum, London, UK
- Henry Moseley X-ray Imaging Facility, School of Materials, The Royce Institute, The University of Manchester, Manchester, UK
| | - Silvia Pressel
- Life Sciences Department, The Natural History Museum, London, UK
| | | | - Paul Kenrick
- Earth Sciences Department, The Natural History Museum, London, UK
| |
Collapse
|
73
|
Albornoz FE, Orchard S, Standish RJ, Dickie IA, Bending GD, Hilton S, Lardner T, Foster KJ, Gleeson DB, Bougoure J, Barbetti MJ, You MP, Ryan MH. Evidence for Niche Differentiation in the Environmental Responses of Co-occurring Mucoromycotinian Fine Root Endophytes and Glomeromycotinian Arbuscular Mycorrhizal Fungi. MICROBIAL ECOLOGY 2021; 81:864-873. [PMID: 33145650 DOI: 10.1007/s00248-020-01628-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/15/2020] [Indexed: 05/21/2023]
Abstract
Fine root endophytes (FRE) were traditionally considered a morphotype of arbuscular mycorrhizal fungi (AMF), but recent genetic studies demonstrate that FRE belong within the subphylum Mucoromycotina, rather than in the subphylum Glomeromycotina with the AMF. These findings prompt enquiry into the fundamental ecology of FRE and AMF. We sampled FRE and AMF in roots of Trifolium subterraneum from 58 sites across temperate southern Australia. We investigated the environmental drivers of composition, richness, and root colonization of FRE and AMF by using structural equation modelling and canonical correspondence analyses. Root colonization by FRE increased with increasing temperature and rainfall but decreased with increasing phosphorus (P). Root colonization by AMF increased with increasing soil organic carbon but decreased with increasing P. Richness of FRE decreased with increasing temperature and soil pH. Richness of AMF increased with increasing temperature and rainfall but decreased with increasing soil aluminium (Al) and pH. Aluminium, soil pH, and rainfall were, in decreasing order, the strongest drivers of community composition of FRE; they were also important drivers of community composition of AMF, along with temperature, in decreasing order: rainfall, Al, temperature, and soil pH. Thus, FRE and AMF showed the same responses to some (e.g. soil P, soil pH) and different responses to other (e.g. temperature) key environmental factors. Overall, our data are evidence for niche differentiation among these co-occurring mycorrhizal associates.
Collapse
Affiliation(s)
- Felipe E Albornoz
- UWA School of Agriculture and Environment, and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia.
| | - Suzanne Orchard
- UWA School of Agriculture and Environment, and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Rachel J Standish
- Environmental and Conservation Sciences, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Ian A Dickie
- School of Biological Science, University of Canterbury, Christchurch, New Zealand
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Tim Lardner
- UWA School of Agriculture and Environment, and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Kevin J Foster
- UWA School of Agriculture and Environment, and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Deirdre B Gleeson
- UWA School of Agriculture and Environment, and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Jeremy Bougoure
- UWA School of Agriculture and Environment, and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Martin J Barbetti
- UWA School of Agriculture and Environment, and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Ming Pei You
- UWA School of Agriculture and Environment, and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| | - Megan H Ryan
- UWA School of Agriculture and Environment, and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Hwy, Crawley (Perth), WA, 6009, Australia
| |
Collapse
|
74
|
Verma SK, Sahu PK, Kumar K, Pal G, Gond SK, Kharwar RN, White JF. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. J Appl Microbiol 2021; 131:2161-2177. [PMID: 33893707 DOI: 10.1111/jam.15111] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
Plants associate with communities of microbes (bacteria and fungi) that play critical roles in plant development, nutrient acquisition and oxidative stress tolerance. The major share of plant microbiota is endophytes which inhabit plant tissues and help them in various capacities. In this article, we have reviewed what is presently known with regard to how endophytic microbes interact with plants to modulate root development, branching, root hair formation and their implications in overall plant development. Endophytic microbes link the interactions of plants, rhizospheric microbes and soil to promote nutrient solubilization and further vectoring these nutrients to the plant roots making the soil-plant-microbe continuum. Further, plant roots internalize microbes and oxidatively extract nutrients from microbes in the rhizophagy cycle. The oxidative interactions between endophytes and plants result in the acquisition of nutrients by plants and are also instrumental in oxidative stress tolerance of plants. It is evident that plants actively cultivate microbes internally, on surfaces and in soils to acquire nutrients, modulate development and improve health. Understanding this continuum could be of greater significance in connecting endophytes with the hidden half of the plant that can also be harnessed in applied terms to enhance nutrient acquisition through the development of favourable root system architecture for sustainable production under stress conditions.
Collapse
Affiliation(s)
- S K Verma
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - P K Sahu
- National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| | - K Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - G Pal
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - S K Gond
- Botany Section, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - R N Kharwar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - J F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
75
|
Mujica MI, Pérez MF, Jakalski M, Martos F, Selosse MA. Soil P reduces mycorrhizal colonization while favors fungal pathogens: observational and experimental evidence in Bipinnula (Orchidaceae). FEMS Microbiol Ecol 2021; 96:5897353. [PMID: 32845297 DOI: 10.1093/femsec/fiaa178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/24/2020] [Indexed: 01/02/2023] Open
Abstract
Little is known about the soil factors influencing root-associated fungal communities in Orchidaceae. Limited evidence suggests that soil nutrients may modulate the association with orchid mycorrhizal fungi (OMF), but their influence on non-mycorrhizal fungi remains unexplored. To study how nutrient availability affects mycorrhizal and non-mycorrhizal fungi associated with the orchid Bipinnula fimbriata, we conducted a metagenomic investigation within a large population with variable soil conditions. Additionally, we tested the effect of phosphorus (P) addition on fungal communities and mycorrhizal colonization. Soil P negatively correlated with the abundance of OMF, but not with the abundance of non-mycorrhizal fungi. After fertilization, increments in soil P negatively affected mycorrhizal colonization; however, they had no effect on OMF richness or composition. The abundance and richness of pathotrophs were negatively related to mycorrhizal colonization and then, after fertilization, the decrease in mycorrhizal colonization correlated with an increase in pathogen richness. Our results suggest that OMF are affected by soil conditions differently from non-mycorrhizal fungi. Bipinnula fimbriata responds to fertilization by altering mycorrhizal colonization rather than by switching OMF partners in the short term, and the influence of nutrients on OMF is coupled with indirect effects on the whole fungal community and potentially on plant's health.
Collapse
Affiliation(s)
- María Isabel Mujica
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.,Instituto de Ecología and Biodiversidad (IEB), Alameda 340, Santiago, Chile
| | - María Fernanda Pérez
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.,Instituto de Ecología and Biodiversidad (IEB), Alameda 340, Santiago, Chile
| | - Marcin Jakalski
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Florent Martos
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Marc André Selosse
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.,Institut de Systématique, Évolution, Biodiversité (UMR 7205-MNHN, CNRS, Sorbonne Université, EPHE, Université des Antilles), 45 rue Buffon, 75005 Paris, France
| |
Collapse
|
76
|
Oh SY, Park KH, Baldrian P, Fong JJ, Kwon HJ, Kim SY, Lim YW. Fungal diversity living in the root and sporophore of the endemic Korean fern Mankyua chejuense. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
77
|
Delaux PM, Schornack S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science 2021; 371:371/6531/eaba6605. [PMID: 33602828 DOI: 10.1126/science.aba6605] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
During 450 million years of diversification on land, plants and microbes have evolved together. This is reflected in today's continuum of associations, ranging from parasitism to mutualism. Through phylogenetics, cell biology, and reverse genetics extending beyond flowering plants into bryophytes, scientists have started to unravel the genetic basis and evolutionary trajectories of plant-microbe associations. Protection against pathogens and support of beneficial, symbiotic, microorganisms are sustained by a blend of conserved and clade-specific plant mechanisms evolving at different speeds. We propose that symbiosis consistently emerges from the co-option of protection mechanisms and general cell biology principles. Exploring and harnessing the diversity of molecular mechanisms used in nonflowering plant-microbe interactions may extend the possibilities for engineering symbiosis-competent and pathogen-resilient crops.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Castanet Tolosan, France.
| | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
78
|
Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P. Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 2021; 44:874-908. [PMID: 32785584 DOI: 10.1093/femsre/fuaa037] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nitrification is the microbial conversion of reduced forms of nitrogen (N) to nitrate (NO3-), and in fertilized soils it can lead to substantial N losses via NO3- leaching or nitrous oxide (N2O) production. To limit such problems, synthetic nitrification inhibitors have been applied but their performance differs between soils. In recent years, there has been an increasing interest in the occurrence of biological nitrification inhibition (BNI), a natural phenomenon according to which certain plants can inhibit nitrification through the release of active compounds in root exudates. Here, we synthesize the current state of research but also unravel knowledge gaps in the field. The nitrification process is discussed considering recent discoveries in genomics, biochemistry and ecology of nitrifiers. Secondly, we focus on the 'where' and 'how' of BNI. The N transformations and their interconnections as they occur in, and are affected by, the rhizosphere, are also discussed. The NH4+ and NO3- retention pathways alternative to BNI are reviewed as well. We also provide hypotheses on how plant compounds with putative BNI ability can reach their targets inside the cell and inhibit ammonia oxidation. Finally, we discuss a set of techniques that can be successfully applied to solve unresearched questions in BNI studies.
Collapse
Affiliation(s)
- Pierfrancesco Nardi
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Graeme W Nicol
- Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, 69134, France
| | - Giancarlo Renella
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Centro Ecotekne - via Provinciale Lecce-Monteroni, I-73100, Lecce, Italy
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Alessandra Trinchera
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Paolo Nannipieri
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| |
Collapse
|
79
|
van't Padje A, Werner GDA, Kiers ET. Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt 'crashes' and 'booms' of resource availability. THE NEW PHYTOLOGIST 2021; 229:2933-2944. [PMID: 33124078 PMCID: PMC7898638 DOI: 10.1111/nph.17055] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 05/06/2023]
Abstract
Biological market theory provides a conceptual framework to analyse trade strategies in symbiotic partnerships. A key prediction of biological market theory is that individuals can influence resource value - meaning the amount a partner is willing to pay for it - by mediating where and when it is traded. The arbuscular mycorrhizal symbiosis, characterised by roots and fungi trading phosphorus and carbon, shows many features of a biological market. However, it is unknown if or how fungi can control phosphorus value when exposed to abrupt changes in their trade environment. We mimicked an economic 'crash', manually severing part of the fungal network (Rhizophagus irregularis) to restrict resource access, and an economic 'boom' through phosphorus additions. We quantified trading strategies over a 3-wk period using a recently developed technique that allowed us to tag rock phosphate with fluorescing quantum dots of three different colours. We found that the fungus: compensated for resource loss in the 'crash' treatment by transferring phosphorus from alternative pools closer to the host root (Daucus carota); and stored the surplus nutrients in the 'boom' treatment until root demand increased. By mediating from where, when and how much phosphorus was transferred to the host, the fungus successfully controlled resource value.
Collapse
Affiliation(s)
- Anouk van't Padje
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Ecological SciencesFaculty of Earth and Life SciencesVrije Universiteitde Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Gijsbert D. A. Werner
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUK
- Netherlands Scientific Council for Government PolicyBuitenhof 34The Hague2513 AHthe Netherlands
| | - E. Toby Kiers
- Department of Ecological SciencesFaculty of Earth and Life SciencesVrije Universiteitde Boelelaan 1085Amsterdam1081 HVthe Netherlands
| |
Collapse
|
80
|
The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis. Curr Biol 2021; 31:1570-1577.e4. [PMID: 33592192 DOI: 10.1016/j.cub.2021.01.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 01/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) (subphylum Glomeromycotina)1 are among the most prominent symbionts and form the Arbuscular Mycorrhizal symbiosis (AMS) with over 70% of known land plants.2,3 AMS allows plants to efficiently acquire poorly soluble soil nutrients4 and AMF to receive photosynthetically fixed carbohydrates. This plant-fungus symbiosis dates back more than 400 million years5 and is thought to be one of the key innovations that allowed the colonization of lands by plants.6 Genomic and genetic analyses of diverse plant species started to reveal the molecular mechanisms that allowed the evolution of this symbiosis on the host side, but how and when AMS abilities emerged in AMF remain elusive. Comparative phylogenomics could be used to understand the evolution of AMS.7,8 However, the availability of genome data covering basal AMF phylogenetic nodes (Archaeosporales, Paraglomerales) is presently based on fragmentary protein coding datasets.9Geosiphon pyriformis (Archaeosporales) is the only fungus known to produce endosymbiosis with nitrogen-fixing cyanobacteria (Nostoc punctiforme) presumably representing the ancestral AMF state.10-12 Unlike other AMF, it forms long fungal cells ("bladders") that enclose cyanobacteria. Once in the bladder, the cyanobacteria are photosynthetically active and fix nitrogen, receiving inorganic nutrients and water from the fungus. Arguably, G. pyriformis represents an ideal candidate to investigate the origin of AMS and the emergence of a unique endosymbiosis. Here, we aimed to advance knowledge in these questions by sequencing the genome of G. pyriformis, using a re-discovered isolate.
Collapse
|
81
|
Paz C, Öpik M, Bulascoschi L, Bueno CG, Galetti M. Dispersal of Arbuscular Mycorrhizal Fungi: Evidence and Insights for Ecological Studies. MICROBIAL ECOLOGY 2021; 81:283-292. [PMID: 32920663 DOI: 10.1007/s00248-020-01582-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Dispersal is a critical ecological process that modulates gene flow and contributes to the maintenance of genetic and taxonomic diversity within ecosystems. Despite an increasing global understanding of the arbuscular mycorrhizal (AM) fungal diversity, distribution and prevalence in different biomes, we have largely ignored the main dispersal mechanisms of these organisms. To provide a geographical and scientific overview of the available data, we systematically searched for the direct evidence on the AM fungal dispersal agents (abiotic and biotic) and different propagule types (i.e. spores, extraradical hyphae or colonized root fragments). We show that the available data (37 articles) on AM fungal dispersal originates mostly from North America, from temperate ecosystems, from biotic dispersal agents (small mammals) and AM fungal spores as propagule type. Much lesser evidence exists from South American, Asian and African tropical systems and other dispersers such as large-bodied birds and mammals and non-spore propagule types. We did not find strong evidence that spore size varies across dispersal agents, but wind and large animals seem to be more efficient dispersers. However, the data is still too scarce to draw firm conclusions from this finding. We further discuss and propose critical research questions and potential approaches to advance the understanding of the ecology of AM fungi dispersal.
Collapse
Affiliation(s)
- Claudia Paz
- Department of Ecology, Institute of Biosciences, São Paulo State University, Av 24A 1515, Rio Claro, SP, 13506-900, Brazil.
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40 Street, 51005, Tartu, Estonia.
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40 Street, 51005, Tartu, Estonia
| | - Leticia Bulascoschi
- Department of Ecology, Institute of Biosciences, São Paulo State University, Av 24A 1515, Rio Claro, SP, 13506-900, Brazil
| | - C Guillermo Bueno
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40 Street, 51005, Tartu, Estonia
| | - Mauro Galetti
- Department of Ecology, Institute of Biosciences, São Paulo State University, Av 24A 1515, Rio Claro, SP, 13506-900, Brazil
- Department of Biology, University of Miami, Coral Gables, Miami, FL, 33146, USA
| |
Collapse
|
82
|
Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:518-541. [PMID: 33332645 PMCID: PMC8629125 DOI: 10.1111/tpj.15135] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 05/04/2023]
Abstract
The interaction of plants with complex microbial communities is the result of co-evolution over millions of years and contributed to plant transition and adaptation to land. The ability of plants to be an essential part of complex and highly dynamic ecosystems is dependent on their interaction with diverse microbial communities. Plant microbiota can support, and even enable, the diverse functions of plants and are crucial in sustaining plant fitness under often rapidly changing environments. The composition and diversity of microbiota differs between plant and soil compartments. It indicates that microbial communities in these compartments are not static but are adjusted by the environment as well as inter-microbial and plant-microbe communication. Hormones take a crucial role in contributing to the assembly of plant microbiomes, and plants and microbes often employ the same hormones with completely different intentions. Here, the function of hormones as go-betweens between plants and microbes to influence the shape of plant microbial communities is discussed. The versatility of plant and microbe-derived hormones essentially contributes to the creation of habitats that are the origin of diversity and, thus, multifunctionality of plants, their microbiota and ultimately ecosystems.
Collapse
Affiliation(s)
- Ruth Eichmann
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
| | - Luke Richards
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Patrick Schäfer
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
83
|
Ainsworth EA, Long SP. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? GLOBAL CHANGE BIOLOGY 2021; 27:27-49. [PMID: 33135850 DOI: 10.1111/gcb.15375] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2 ] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combined FACE with temperature, drought, ozone, and nitrogen treatments. Here, we summarize the results of now almost 250 observations, spanning 14 sites and five continents. Across 186 independent studies of 18 C3 crops, elevation of [CO2 ] by ca. 200 ppm caused a ca. 18% increase in yield under non-stress conditions. Legumes and root crops showed a greater increase and cereals less. Nitrogen deficiency reduced the average increase to 10%, as did warming by ca. 2°C. Two conclusions of the 2005 analysis were that C4 crops would not be more productive in elevated [CO2 ], except under drought, and that yield responses of C3 crops were diminished by nitrogen deficiency and wet conditions. Both stand the test of time. Further studies of maize and sorghum showed no yield increase, except in drought, while soybean productivity was negatively affected by early growing season wet conditions. Subsequent study showed reduced levels of nutrients, notably Zn and Fe in most crops, and lower nitrogen and protein in the seeds of non-leguminous crops. Testing across crop germplasm revealed sufficient variation to maintain nutrient content under rising [CO2 ]. A strong correlation of yield response under elevated [CO2 ] to genetic yield potential in both rice and soybean was observed. Rice cultivars with the highest yield potential showed a 35% yield increase in elevated [CO2 ] compared to an average of 14%. Future FACE experiments have the potential to develop cultivars and management strategies for co-promoting sustainability and productivity under future elevated [CO2 ].
Collapse
Affiliation(s)
- Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen P Long
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
84
|
Ramírez-Flores MR, Perez-Limon S, Li M, Barrales-Gamez B, Albinsky D, Paszkowski U, Olalde-Portugal V, Sawers RJH. The genetic architecture of host response reveals the importance of arbuscular mycorrhizae to maize cultivation. eLife 2020; 9:e61701. [PMID: 33211006 PMCID: PMC7676867 DOI: 10.7554/elife.61701] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous in cultivated soils, forming symbiotic relationships with the roots of major crop species. Studies in controlled conditions have demonstrated the potential of AMF to enhance the growth of host plants. However, it is difficult to estimate the actual benefit in the field, not least because of the lack of suitable AMF-free controls. Here we implement a novel strategy using the selective incorporation of AMF-resistance into a genetic mapping population to evaluate maize response to AMF. We found AMF to account for about one-third of the grain production in a medium input field, as well as to affect the relative performance of different plant genotypes. Characterization of the genetic architecture of the host response indicated a trade-off between mycorrhizal dependence and benefit. We identified several QTL linked to host benefit, supporting the feasibility of breeding crops to maximize profit from symbiosis with AMF.
Collapse
Affiliation(s)
- M Rosario Ramírez-Flores
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)IrapuatoMexico
| | - Sergio Perez-Limon
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN)IrapuatoMexico
| | - Meng Li
- Department of Plant Science, The Pennsylvania State UniversityState CollegeUnited States
| | - Benjamín Barrales-Gamez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN)IrapuatoMexico
| | - Doris Albinsky
- Crop Science Centre and Department of Plant Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Uta Paszkowski
- Crop Science Centre and Department of Plant Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Víctor Olalde-Portugal
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)IrapuatoMexico
| | - Ruairidh JH Sawers
- Department of Plant Science, The Pennsylvania State UniversityState CollegeUnited States
| |
Collapse
|
85
|
Herrera-Rus I, Pastor JE, Juan R. Fungal colonization associated with phenological stages of a photosynthetic terrestrial temperate orchid from the Southern Iberian Peninsula. JOURNAL OF PLANT RESEARCH 2020; 133:807-825. [PMID: 32968931 DOI: 10.1007/s10265-020-01225-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/14/2020] [Indexed: 05/20/2023]
Abstract
Fungal endophytes, both mycorrhizal and non-mycorrhizal, are involved in the development of the life cycle of orchids, providing potential beneficial relationships. Here, we assess the succession of changes in the diversity of fungal symbionts associated with a terrestrial temperate orchid species, Anacamptis morio subsp. champagneuxii, over three phenological stages: developed leaves but no stem elongation, flowering, and fruiting. Fungi endophyte associated with roots were obtained by culture in sterile conditions. A total of 18 morphotypes-one Mortierellomycota, two Basidiomycota and 15 Ascomycota-were differentiated, and were also characterized using PCR and DNA sequencing techniques. Only three of the 18 OTUs are shared among the three phenological stages examined: Westerdykella sp., a member of Ceratobasidiaceae, and Fusarium oxysporum, representing a relative abundance of between 28% (fruiting) to 41% (flowering). Our research confirmed that fungal symbionts varied among the different phenological stages examined, the peak of endophyte diversity appearing in the flowering stage. The availability of a diverse mycobiota seems to be important for the survival of orchid plants because it may cover particular physiological needs, and knowledge concerning this mycobiota is of special relevance in the establishment of reliable conservation programmes.
Collapse
Affiliation(s)
- Irene Herrera-Rus
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González, 2, 41012, Sevilla, Spain
| | - Julio E Pastor
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Reina Mercedes, 6, 41012, Sevilla, Spain
| | - Rocío Juan
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González, 2, 41012, Sevilla, Spain.
| |
Collapse
|
86
|
Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun 2020; 11:5125. [PMID: 33046698 PMCID: PMC7550596 DOI: 10.1038/s41467-020-18795-w] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild. Mycorrhizal symbioses have evolved repeatedly in diverse fungal lineages. A large phylogenomic analysis sheds light on genomic changes associated with transitions from saprotrophy to symbiosis, including divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.
Collapse
|
87
|
Harper CJ, Walker C, Schwendemann AB, Kerp H, Krings M. Archaeosporites rhyniensis gen. et sp. nov. (Glomeromycota, Archaeosporaceae) from the Lower Devonian Rhynie chert: a fungal lineage morphologically unchanged for more than 400 million years. ANNALS OF BOTANY 2020; 126:915-928. [PMID: 32577725 PMCID: PMC7539360 DOI: 10.1093/aob/mcaa113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS Structurally preserved arbuscular mycorrhizas from the Lower Devonian Rhynie chert represent core fossil evidence of the evolutionary history of mycorrhizal systems. Moreover, Rhynie chert fossils of glomeromycotan propagules suggest that this lineage of arbuscular fungi was morphologically diverse by the Early Devonian; however, only a small fraction of this diversity has been formally described and critically evaluated. METHODS Thin sections, previously prepared by grinding wafers of chert from the Rhynie beds, were studied by transmitted light microscopy. Fossils corresponding to the description of Archaeospora spp. occurred in 29 slides, and were measured, photographed and compared with modern-day species in that genus. KEY RESULTS Sessile propagules <85 µm in diameter, some still attached to a sporiferous saccule, were found in early land plant axes and the chert matrix; they developed, in a similar manner to extant Archaeospora, laterally or centrally within the saccule neck. Microscopic examination and comparison with extant fungi showed that, morphologically, the fossils share the characters used to circumscribe the genus Archaeospora (Glomeromycota; Archaeosporales; Archaeosporaceae). CONCLUSIONS The fossils can be assigned with confidence to the extant family Archaeosporaceae, but because molecular analysis is necessary to place organisms in these taxa to present-day genera and species, they are placed in a newly proposed fossil taxon, Archaeosporites rhyniensis.
Collapse
Affiliation(s)
- Carla J Harper
- Botany Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Christopher Walker
- Royal Botanic Garden Edinburgh, Edinburgh, UK
- School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| | | | - Hans Kerp
- Forschungsstelle für Paläobotanik am Geologisch-Paläontologischen Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Michael Krings
- SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
- Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
- Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
88
|
Abstract
The role of microbes in sustaining agricultural plant growth has great potential consequences for human prosperity. Yet we have an incomplete understanding of the basic function of rhizosphere microbial communities and how they may change under future stresses, let alone how these processes might be harnessed to sustain or improve crop yields. A reductionist approach may aid the generation and testing of hypotheses that can ultimately be translated to agricultural practices. With this in mind, we ask whether some rhizosphere microbial communities might be governed by 'keystone metabolites', envisioned here as microbially produced molecules that, through antibiotic and/or growth-promoting properties, may play an outsized role in shaping the development of the community spatiotemporally. To illustrate this point, we use the example of redox-active metabolites, and in particular phenazines, which are produced by many bacteria found in agricultural soils and have well-understood catalytic properties. Phenazines can act as potent antibiotics against a variety of cell types, yet they also can promote the acquisition of essential inorganic nutrients. In this essay, we suggest the ways these metabolites might affect microbial communities and ultimately agricultural productivity in two specific scenarios: firstly, in the biocontrol of beneficial and pathogenic fungi in increasingly arid crop soils and, secondly, through promotion of phosphorus bioavailability and sustainable fertilizer use. We conclude with specific proposals for future research.
Collapse
Affiliation(s)
- Kurt M Dahlstrom
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Darcy L McRose
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
89
|
Genomic and fossil windows into the secret lives of the most ancient fungi. Nat Rev Microbiol 2020; 18:717-730. [PMID: 32908302 DOI: 10.1038/s41579-020-0426-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 12/26/2022]
Abstract
Fungi have crucial roles in modern ecosystems as decomposers and pathogens, and they engage in various mutualistic associations with other organisms, especially plants. They have a lengthy geological history, and there is an emerging understanding of their impact on the evolution of Earth systems on a large scale. In this Review, we focus on the roles of fungi in the establishment and early evolution of land and freshwater ecosystems. Today, questions of evolution over deep time are informed by discoveries of new fossils and evolutionary analysis of new genomes. Inferences can be drawn from evolutionary analysis by comparing the genes and genomes of fungi with the biochemistry and development of their plant and algal hosts. We then contrast this emerging picture against evidence from the fossil record to develop a new, integrated perspective on the origin and early evolution of fungi.
Collapse
|
90
|
Delaux PM, Hetherington AJ, Coudert Y, Delwiche C, Dunand C, Gould S, Kenrick P, Li FW, Philippe H, Rensing SA, Rich M, Strullu-Derrien C, de Vries J. Reconstructing trait evolution in plant evo-devo studies. Curr Biol 2020; 29:R1110-R1118. [PMID: 31689391 DOI: 10.1016/j.cub.2019.09.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our planet is teeming with an astounding diversity of plants. In a mere single group of closely related species, tremendous diversity can be observed in their form and function - the colour of petals in flowering plants, the shape of the fronds in ferns, and the branching pattern of the gametophyte in mosses. Diversity can also be found in subtler traits, such as the resistance to pathogens or the ability to recruit symbiotic microbes from the environment. Plant traits can also be highly conserved - at the cellular and metabolic levels, entire biosynthetic pathways are present in all plant groups, and morphological characteristics such as vascular tissues have been conserved for hundreds of millions of years. The research community that seeks to understand these traits - both the diverse and the conserved - by taking an evolutionary point-of-view on plant biology is growing. Here, we summarize a subset of the different aspects of plant evolutionary biology, provide a guide for structuring comparative biology approaches and discuss the pitfalls that (plant) researchers should avoid when embarking on such studies.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France.
| | | | - Yoan Coudert
- Laboratoire Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, INRIA, 46 Allée d'Italie, Lyon, 69007, France
| | | | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Sven Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA; Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Hervé Philippe
- Centre de Théorisation et de Modélisation de la Biodiversité, Station d'Écologie Théorique et Expérimentale, UMR CNRS 5321, Moulis, France; Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University Freiburg, Germany; SYNMIKRO Research Center, University of Marburg, 35043 Marburg, Germany
| | - Mélanie Rich
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Christine Strullu-Derrien
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK; Institut de Systématique, Évolution, Biodiversité, UMR 7205, Muséum National d'Histoire Naturelle, Paris, France
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Institute of Microbiology, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany; Institute for Microbiology and Genetics, Bioinformatics, University of Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| |
Collapse
|
91
|
Hatté C, Zazzo A, Selosse MA. The radiocarbon age of mycoheterotrophic plants. THE NEW PHYTOLOGIST 2020; 227:1284-1288. [PMID: 32441806 DOI: 10.1111/nph.16637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Christine Hatté
- Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CEA CNRS UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Antoine Zazzo
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), Muséum National d'Histoire Naturelle, CNRS, CP56, 55 rue Buffon, 75005, Paris, France
| | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, SU, EPHE), Muséum National d'Histoire Naturelle, 57 rue Cuvier, 75005, Paris, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
92
|
Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH. The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens. Proc Natl Acad Sci U S A 2020; 117:21495-21503. [PMID: 32796103 PMCID: PMC7474681 DOI: 10.1073/pnas.2001913117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Symbioses are evolutionarily pervasive and play fundamental roles in structuring ecosystems, yet our understanding of their macroevolutionary origins, persistence, and consequences is incomplete. We traced the macroevolutionary history of symbiotic and phenotypic diversification in an iconic symbiosis, lichens. By inferring the most comprehensive time-scaled phylogeny of lichen-forming fungi (LFF) to date (over 3,300 species), we identified shifts among symbiont classes that broadly coincided with the convergent evolution of phylogenetically or functionally similar associations in diverse lineages (plants, fungi, bacteria). While a relatively recent loss of lichenization in Lecanoromycetes was previously identified, our work instead suggests lichenization was abandoned far earlier, interrupting what had previously been considered a direct switch between trebouxiophycean and trentepohlialean algal symbionts. Consequently, some of the most diverse clades of LFF are instead derived from nonlichenized ancestors and re-evolved lichenization with Trentepohliales algae, a clade that also facilitated lichenization in unrelated lineages of LFF. Furthermore, while symbiont identity and symbiotic phenotype influence the ecology and physiology of lichens, they are not correlated with rates of lineage birth and death, suggesting more complex dynamics underly lichen diversification. Finally, diversification patterns of LFF differed from those of wood-rotting and ectomycorrhizal taxa, likely reflecting contrasts in their fundamental biological properties. Together, our work provides a timeline for the ecological contributions of lichens, and reshapes our understanding of symbiotic persistence in a classic model of symbiosis.
Collapse
Affiliation(s)
- Matthew P Nelsen
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605;
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, 14195 Berlin, Germany
| | - C Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, CA 94305
| | - H Thorsten Lumbsch
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605
| | - Richard H Ree
- Department of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605
| |
Collapse
|
93
|
Poveda J. Marchantia polymorpha subsp. ruderalis (Bischl. & Boissel.-Dub.)-arbuscular mycorrhizal fungi interaction: beneficial or harmful? Symbiosis 2020. [DOI: 10.1007/s13199-020-00708-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
94
|
Tsai AYL, Oota M, Sawa S. Chemotactic Host-Finding Strategies of Plant Endoparasites and Endophytes. FRONTIERS IN PLANT SCIENCE 2020; 11:1167. [PMID: 32849722 PMCID: PMC7411241 DOI: 10.3389/fpls.2020.01167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 05/04/2023]
Abstract
Plants interact with microorganisms in the environment during all stages of their development and in most of their organs. These interactions can be either beneficial or detrimental for the plant and may be transient or long-term. In extreme cases, microorganisms become endoparastic or endophytic and permanently reside within a plant, while the host plant undergoes developmental reprogramming and produces new tissues or organs as a response to the invasion. Events at the cellular and molecular level following infection have been extensively described, however the mechanisms of how these microorganisms locate their plant hosts via chemotaxis remain largely unknown. In this review, we summarize recent findings concerning the signalling molecules that regulate chemotaxis of endoparasitic/endophytic bacteria, fungi, and nematodes. In particular, we will focus on the molecules secreted by plants that are most likely to act as guidance cues for microorganisms. These compounds are found in a wide range of plant species and show a variety of secondary effects. Interestingly, these compounds show different attraction potencies depending on the species of the invading organism, suggesting that cues perceived in the soil may be more complex than anticipated. However, what the cognate receptors are for these attractants, as well as the mechanism of how these attractants influence these organisms, remain important outstanding questions. Host-targeting marks the first step of plant-microorganism interactions, therefore understanding the signalling molecules involved in this step plays a key role in understanding these interactions as a whole.
Collapse
|
95
|
Morvan S, Meglouli H, Lounès-Hadj Sahraoui A, Hijri M. Into the wild blueberry (Vaccinium angustifolium) rhizosphere microbiota. Environ Microbiol 2020; 22:3803-3822. [PMID: 32623832 DOI: 10.1111/1462-2920.15151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
The ability of wild blueberries to adapt to their harsh environment is believed to be closely related to their symbiosis with ericoid mycorrhizal fungi, which produce enzymes capable of organic matter mineralization. Although some of these fungi have been identified and characterized, we still know little about the microbial ecology of wild blueberry. Our study aims to characterize the fungal and bacterial rhizosphere communities of Vaccinium angustifolium (the main species encountered in wild blueberry fields). Our results clearly show that the fungal order Helotiales was the most abundant taxon associated with V. angustifolium. Helotiales contains most of the known ericoid mycorrhizal fungi which are expected to dominate in such a biotope. Furthermore, we found the dominant bacterial order was the nitrogen-fixing Rhizobiales. The Bradyrhizobium genus, whose members are known to form nodules with legumes, was among the 10 most abundant genera in the bacterial communities. In addition, Bradyrhizobium and Roseiarcus sequences significantly correlated with higher leaf-nitrogen content. Overall, our data documented fungal and bacterial community structure differences in three wild blueberry production fields.
Collapse
Affiliation(s)
- Simon Morvan
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, QC, Canada
| | - Hacène Meglouli
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, QC, Canada
| | - Anissa Lounès-Hadj Sahraoui
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), SFR Condorcet FR CNRS 3417, Calais Cedex, France
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, QC, Canada.,AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Morocco
| |
Collapse
|
96
|
Genre A, Lanfranco L, Perotto S, Bonfante P. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 2020; 18:649-660. [PMID: 32694620 DOI: 10.1038/s41579-020-0402-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Mycorrhizas are among the most important biological interkingdom interactions, as they involve ~340,000 land plants and ~50,000 taxa of soil fungi. In these mutually beneficial interactions, fungi receive photosynthesis-derived carbon and provide the host plant with mineral nutrients such as phosphorus and nitrogen in exchange. More than 150 years of research on mycorrhizas has raised awareness of their biology, biodiversity and ecological impact. In this Review, we focus on recent phylogenomic, molecular and cell biology studies to present the current state of knowledge of the origin of mycorrhizal fungi and the evolutionary history of their relationship with land plants. As mycorrhizas feature a variety of phenotypes, depending on partner taxonomy, physiology and cellular interactions, we explore similarities and differences between mycorrhizal types. During evolution, mycorrhizal fungi have refined their biotrophic capabilities to take advantage of their hosts as food sources and protective niches, while plants have developed multiple strategies to accommodate diverse fungal symbionts. Intimate associations with pervasive ecological success have originated at the crossroads between these two evolutionary pathways. Our understanding of the biological processes underlying these symbioses, where fungi act as biofertilizers and bioprotectors, provides the tools to design biotechnological applications addressing environmental and agricultural challenges.
Collapse
Affiliation(s)
- Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
97
|
Bouffaud ML, Herrmann S, Tarkka MT, Bönn M, Feldhahn L, Buscot F. Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi. BMC Genomics 2020; 21:399. [PMID: 32532205 PMCID: PMC7291512 DOI: 10.1186/s12864-020-06806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Associations of tree roots with diverse symbiotic mycorrhizal fungi have distinct effects on whole plant functioning. An untested explanation might be that such effect variability is associated with distinct impacts of different fungi on gene expression in local and distant plant organs. Using a large scale transcriptome sequencing approach, we compared the impact of three ectomycorrhizal (EMF) and one orchid mycorrhizal fungi (OMF) on gene regulation in colonized roots (local), non-colonized roots (short distance) and leaves (long distance) of the Quercus robur clone DF159 with reference to the recently published oak genome. Since different mycorrhizal fungi form symbiosis in a different time span and variable extents of apposition structure development, we sampled inoculated but non-mycorrhizal plants, for which however markedly symbiotic effects have been reported. Local root colonization by the fungi was assessed by fungal transcript analysis. RESULTS The EMF induced marked and species specific effects on plant development in the analysed association stage, but the OMF did not. At local level, a common set of plant differentially expressed genes (DEG) was identified with similar patterns of responses to the three EMF, but not to the OMF. Most of these core DEG were down-regulated and correspond to already described but also new functions related to establishment of EMF symbiosis. Analysis of the fungal transcripts of two EMF in highly colonized roots also revealed onset of a symbiosis establishment. In contrast, in the OMF, the DEG were mainly related to plant defence. Already at short distances, high specificities in transcriptomic responses to the four fungi were detected, which were further enhanced at long distance in leaves, where almost no common DEG were found between the treatments. Notably, no correlation between phylogeny of the EMF and gene expression patterns was observed. CONCLUSIONS Use of clonal oaks allowed us to identify a core transcriptional program in roots colonized by three different EMF, supporting the existence of a common EMF symbiotic pathway. Conversely, the specific responses in non-colonized organs were more closely related to the specific impacts of the different of EMF on plant performance.
Collapse
Affiliation(s)
- Marie-Lara Bouffaud
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Sylvie Herrmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany.
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany.
| | - Mika T Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Markus Bönn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Lasse Feldhahn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| |
Collapse
|
98
|
Perez-Lamarque B, Selosse MA, Öpik M, Morlon H, Martos F. Cheating in arbuscular mycorrhizal mutualism: a network and phylogenetic analysis of mycoheterotrophy. THE NEW PHYTOLOGIST 2020; 226:1822-1835. [PMID: 32022272 DOI: 10.1111/nph.16474] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/20/2020] [Indexed: 05/27/2023]
Abstract
Although mutualistic interactions are widespread and essential in ecosystem functioning, the emergence of uncooperative cheaters threatens their stability, unless there are some physiological or ecological mechanisms limiting interactions with cheaters. In this framework, we investigated the patterns of specialization and phylogenetic distribution of mycoheterotrophic cheaters vs noncheating autotrophic plants and their respective fungi, in a global arbuscular mycorrhizal network with> 25 000 interactions. We show that mycoheterotrophy evolved repeatedly among vascular plants, suggesting low phylogenetic constraints for plants. However, mycoheterotrophic plants are significantly more specialized than autotrophic plants, and they tend to be associated with specialized and closely related fungi. These results raise new hypotheses about the mechanisms (e.g. sanctions, or habitat filtering) that actually limit the interaction of mycoheterotrophic plants and their associated fungi with the rest of the autotrophic plants. Beyond mycorrhizal symbiosis, this unprecedented comparison of mycoheterotrophic vs autotrophic plants provides a network and phylogenetic framework to assess the presence of constraints upon cheating emergences in mutualisms.
Collapse
Affiliation(s)
- Benoît Perez-Lamarque
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP39, 57 rue Cuvier, 75 005, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005, Paris, France
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP39, 57 rue Cuvier, 75 005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Maarja Öpik
- University of Tartu, 40 Lai Street, 51 005, Tartu, Estonia
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005, Paris, France
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP39, 57 rue Cuvier, 75 005, Paris, France
| |
Collapse
|
99
|
Poveda J, Abril-Urias P, Escobar C. Biological Control of Plant-Parasitic Nematodes by Filamentous Fungi Inducers of Resistance: Trichoderma, Mycorrhizal and Endophytic Fungi. Front Microbiol 2020; 11:992. [PMID: 32523567 PMCID: PMC7261880 DOI: 10.3389/fmicb.2020.00992] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023] Open
Abstract
Plant-parasitic-nematodes represent a major threat to the agricultural production of different crops worldwide. Due to the high toxicity of chemical nematicides, it is necessary to develop new control strategies against nematodes. In this respect, filamentous fungi can be an interesting biocontrol alternative. The genus Trichoderma, mycorrhizal and endophytic fungi are the main groups of filamentous fungi studied and used as biological control agents (BCAs) against nematodes as resistance inducers. They are able to reduce the damage caused by plant-parasitic nematodes directly by parasitism, antibiosis, paralysis and by the production of lytic enzymes. But they also minimize harm by space and resource-competition, by providing higher nutrient and water uptake to the plant, or by modifying the root morphology, and/or rhizosphere interactions, that constitutes an advantage for the plant-growth. Besides, filamentous fungi are able to induce resistance against nematodes by activating hormone-mediated (salicylic and jasmonic acid, strigolactones among others) plant-defense mechanisms. Additionally, the alteration of the transport of chemical defense components through the plant or the synthesis of plant secondary metabolites and different enzymes can also contribute to enhancing plant defenses. Therefore, the use of filamentous fungi of the mentioned groups as BCAs is a promising durable biocontrol strategy in agriculture against plant-parasitic nematodes.
Collapse
Affiliation(s)
- Jorge Poveda
- Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
- Biological Mission of Galicia (MBG-CSIC), Pontevedra, Spain
| | - Patricia Abril-Urias
- Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Salamanca, Spain
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
100
|
Evaluation of secondary ions related to plant tissue using least absolute shrinkage and selection operator. Biointerphases 2020; 15:021010. [PMID: 32272844 DOI: 10.1116/6.0000010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With regard to life sciences, it is important to understand biological functions such as metabolic reactions at the cellular level. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) that can provide chemical mappings at 100 nm lateral resolutions is useful for obtaining three-dimensional maps of biological molecules in cells and tissues. TOF-SIMS spectra generally contain several hundred to several thousand secondary ion peaks that provide detailed chemical information. In order to manage such a large number of peaks, data analysis methods such as multivariate analysis techniques have been applied to TOF-SIMS data of complex samples. However, the interpretation of the data analysis results is sometimes still difficult, especially for biological samples. In this study, TOF-SIMS data of resin-embedded plant samples were analyzed using one of the sparse modeling methods, least absolute shrinkage and selection operator (LASSO), to directly select secondary ions related to biological structures such as cell walls and nuclei. The same sample was measured by optical microscopy and the same measurement area as TOF-SIMS was extracted in order to prepare a target image for LASSO. The same area of the TOF-SIMS and microscope data were fused to evaluate the influence of the image fusion on the TOF-SIMS spectrum information using principal component analysis. Specifically, the authors examined onion mycorrhizal root colonized with Gigaspora margarita (an arbuscular mycorrhizal fungus). The results showed that by employing this approach using LASSO, important secondary ions from biological samples were effectively selected and could be clearly distinguished from the embedding resin.
Collapse
|