51
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
52
|
Abstract
Proteases comprise a variety of enzymes defined by their ability to catalytically hydrolyze the peptide bonds of other proteins, resulting in protein lysis. Cathepsins, specifically, encompass a class of at least twenty proteases with potent endopeptidase activity. They are located subcellularly in lysosomes, organelles responsible for the cell’s degradative and autophagic processes, and are vital for normal lysosomal function. Although cathepsins are involved in a multitude of cell signaling activities, this chapter will focus on the role of cathepsins (with a special emphasis on Cathepsin B) in neuronal plasticity. We will broadly define what is known about regulation of cathepsins in the central nervous system and compare this with their dysregulation after injury or disease. Importantly, we will delineate what is currently known about the role of cathepsins in axon regeneration and plasticity after spinal cord injury. It is well established that normal cathepsin activity is integral to the function of lysosomes. Without normal lysosomal function, autophagy and other homeostatic cellular processes become dysregulated resulting in axon dystrophy. Furthermore, controlled activation of cathepsins at specialized neuronal structures such as axonal growth cones and dendritic spines have been positively implicated in their plasticity. This chapter will end with a perspective on the consequences of cathepsin dysregulation versus controlled, localized regulation to clarify how cathepsins can contribute to both neuronal plasticity and neurodegeneration.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
53
|
Kikuchi M, Nakazawa T, Kinoshita M, Yamamori H, Yasuda Y, Fujimoto M, Hashimoto R, Numata S. Methylation Analysis in Monozygotic Twins With Treatment-Resistant Schizophrenia and Discordant Responses to Clozapine. Front Psychiatry 2021; 12:734606. [PMID: 34616320 PMCID: PMC8488120 DOI: 10.3389/fpsyt.2021.734606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is a mental illness that involves both genetic and environmental factors. Clozapine, an atypical antipsychotic, is a well-established therapy for treatment-resistant schizophrenia. In this study, we focused on a set of monozygotic twins with treatment-resistant schizophrenia in which one twin effectively responded to clozapine treatment and the other did not. Our previous study generated neurons from induced pluripotent stem (iPS) cells derived from these patients and compared the transcriptome profiles between mock- and clozapine-treated neurons. In this study, we performed genome-wide DNA methylation profiling to investigate the mechanisms underlying gene expression changes. First, we extracted the differentially methylated sites from each twin based on statistical analysis. Then, we combined the DNA methylation profiling with transcriptome profiling from our previous RNA-seq data. Among the genes with altered methylation and expression, we found the different proportions of the genes related to neuronal and synaptic functions between the clozapine responder and non-responder (35.7 and 6.7%, respectively). This trend was observed even when the basal differences between the responder and non-responder was excluded. These results suggest that effective clozapine action may correct the abnormalities of neuronal and synapse functions in schizophrenia via changes in methylation.
Collapse
Affiliation(s)
- Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Makoto Kinoshita
- Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan.,Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Medical Corporation Foster, Osaka, Japan
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Shusuke Numata
- Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
54
|
Emberti Gialloreti L, Enea R, Di Micco V, Di Giovanni D, Curatolo P. Clustering Analysis Supports the Detection of Biological Processes Related to Autism Spectrum Disorder. Genes (Basel) 2020; 11:genes11121476. [PMID: 33316975 PMCID: PMC7763205 DOI: 10.3390/genes11121476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Genome sequencing has identified a large number of putative autism spectrum disorder (ASD) risk genes, revealing possible disrupted biological pathways; however, the genetic and environmental underpinnings of ASD remain mostly unanswered. The presented methodology aimed to identify genetically related clusters of ASD individuals. By using the VariCarta dataset, which contains data retrieved from 13,069 people with ASD, we compared patients pairwise to build “patient similarity matrices”. Hierarchical-agglomerative-clustering and heatmapping were performed, followed by enrichment analysis (EA). We analyzed whole-genome sequencing retrieved from 2062 individuals, and isolated 11,609 genetic variants shared by at least two people. The analysis yielded three clusters, composed, respectively, by 574 (27.8%), 507 (24.6%), and 650 (31.5%) individuals. Overall, 4187 variants (36.1%) were common to the three clusters. The EA revealed that the biological processes related to the shared genetic variants were mainly involved in neuron projection guidance and morphogenesis, cell junctions, synapse assembly, and in observational, imitative, and vocal learning. The study highlighted genetic networks, which were more frequent in a sample of people with ASD, compared to the overall population. We suggest that itemizing not only single variants, but also gene networks, might support ASD etiopathology research. Future work on larger databases will have to ascertain the reproducibility of this methodology.
Collapse
Affiliation(s)
- Leonardo Emberti Gialloreti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Roberto Enea
- IMME Research Centre, Via Giotto 43, 81100 Caserta, Italy;
| | - Valentina Di Micco
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (V.D.M.); (P.C.)
| | - Daniele Di Giovanni
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy;
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (V.D.M.); (P.C.)
| |
Collapse
|
55
|
Luo T, Deng L, Li A, Zhou C, Shao S, Sun Q, Gong H, Yang X, Li X. Scalable Resin Embedding Method for Large-Volume Brain Tissues with High Fluorescence Preservation Capacity. iScience 2020; 23:101717. [PMID: 33196032 PMCID: PMC7645060 DOI: 10.1016/j.isci.2020.101717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 01/15/2023] Open
Abstract
Resin embedding is widely used to dissect the fine structure of bio-tissue with electron and optical microscopy. However, it is difficult to embed large-volume tissues with resin. Here, we modified the formula of LR-White resin to prevent the sample cracking during polymerization process and applied this method to the intact brains of mouse, ferret, and macaque. Meanwhile, we increased the fluorescence preservation rate for green fluorescent protein (GFP) from 73 ± 4.0% to 126 ± 3.0% and tdTomato from 60 ± 3.3% to 117 ± 2.8%. Combined with the whole-brain imaging system, we acquired the cytoarchitectonic information and the circuit information such as individual axon and boutons which were labeled with multiple fluorescent proteins. This method shows great potential in the study of continuous fine microstructure information in large-volume tissues from different species, which can facilitate the neuroscience research and help the understanding of the structure-function relationship in complex bio-tissues. Modified LR-White resin embedding was proposed to embed large-volume tissues Retarder α-methyl-styrene was added to prevent cracking during polymerization Resin formula was modified to preserve multiple fluorescent proteins Microstructure information was acquired from the brains of different species
Collapse
Affiliation(s)
- Ting Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, #1037, Luoyu Road, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lei Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, #1037, Luoyu Road, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, #1037, Luoyu Road, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou 215125, China
| | - Can Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, #1037, Luoyu Road, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shuai Shao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, #1037, Luoyu Road, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingtao Sun
- HUST-Suzhou Institute for Brainsmatics, Suzhou 215125, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, #1037, Luoyu Road, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou 215125, China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, #1037, Luoyu Road, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou 215125, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, #1037, Luoyu Road, Wuhan, Hubei 430074, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou 215125, China
| |
Collapse
|
56
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
57
|
Pchitskaya E, Bezprozvanny I. Dendritic Spines Shape Analysis-Classification or Clusterization? Perspective. Front Synaptic Neurosci 2020; 12:31. [PMID: 33117142 PMCID: PMC7561369 DOI: 10.3389/fnsyn.2020.00031] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Dendritic spines are small protrusions from the dendrite membrane, where contact with neighboring axons is formed in order to receive synaptic input. Changes in size, shape, and density of synaptic spines are associated with learning and memory, and observed after drug abuse in a variety of neurodegenerative, neurodevelopmental, and psychiatric disorders. Due to the preeminent importance of synaptic spines, there have been major efforts into developing techniques that enable visualization and analysis of dendritic spines in cultured neurons, in fixed slices and in intact brain tissue. The classification of synaptic spines into predefined morphological groups is a standard approach in neuroscience research, where spines are divided into fixed categories such as thin, mushroom, and stubby subclasses. This study examines accumulated evidence that supports the existence of dendritic spine shapes as a continuum rather than separated classes. Using new approaches and software tools we reflect on complex dendritic spine shapes, positing that understanding of their highly dynamic nature is required to perform analysis of their morphology. The study discusses and compares recently developed algorithms that rely on clusterization rather than classification, therefore enabling new levels of spine shape analysis. We reason that improved methods of analysis may help to investigate a link between dendritic spine shape and its function, facilitating future studies of learning and memory as well as studies of brain disorders.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.,Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| |
Collapse
|
58
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020. [DOI: 10.3389/fnsyn.2020.00036
expr 823669561 + 872784217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
59
|
Runge K, Cardoso C, de Chevigny A. Dendritic Spine Plasticity: Function and Mechanisms. Front Synaptic Neurosci 2020; 12:36. [PMID: 32982715 PMCID: PMC7484486 DOI: 10.3389/fnsyn.2020.00036] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic spines are small protrusions studding neuronal dendrites, first described in 1888 by Ramón y Cajal using his famous Golgi stainings. Around 50 years later the advance of electron microscopy (EM) confirmed Cajal's intuition that spines constitute the postsynaptic site of most excitatory synapses in the mammalian brain. The finding that spine density decreases between young and adult ages in fixed tissues suggested that spines are dynamic. It is only a decade ago that two-photon microscopy (TPM) has unambiguously proven the dynamic nature of spines, through the repeated imaging of single spines in live animals. Spine dynamics comprise formation, disappearance, and stabilization of spines and are modulated by neuronal activity and developmental age. Here, we review several emerging concepts in the field that start to answer the following key questions: What are the external signals triggering spine dynamics and the molecular mechanisms involved? What is, in return, the role of spine dynamics in circuit-rewiring, learning, and neuropsychiatric disorders?
Collapse
Affiliation(s)
- Karen Runge
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Carlos Cardoso
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| | - Antoine de Chevigny
- Institut de Neurobiologie de la Méditerranée (INMED) INSERM U1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
60
|
Ve H, Cabana VC, Gouspillou G, Lussier MP. Quantitative Immunoblotting Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and EEA1 Proteins is Altered in the Brains of Aged Mice. Neuroscience 2020; 442:100-113. [PMID: 32652177 DOI: 10.1016/j.neuroscience.2020.06.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 01/21/2023]
Abstract
Optimal synaptic activity is essential for cognitive function, including memory and learning. Evidence indicates that cognitive decline in elderly individuals is associated with altered synaptic function. However, the impact of aging on the expression of neurotransmitter receptors and accessory proteins in brain synapses remains unclear. To fill this knowledge gap, we investigated the effect of aging on the mouse brain by utilizing a subcellular brain tissue fractionation procedure to measure protein abundance using quantitative Western Blotting. Comparing 7-month- (control) and 22-month- (aged) old mouse tissue, no significant differences were identified in the levels of AMPA receptor subunits between the experimental groups. The abundance of GluN2B NMDA receptor subunits decreased in aged mice, whereas the levels of GluN2A did not change. The analysis of cytoskeletal proteins showed an altered level of actin and tubulin in aged mice while PSD-95 protein did not change. Vesicle protein analysis revealed that synaptophysin abundance is decreased in older brains whereas EEA1 was significantly increased. Thus, our results suggest that physiological aging profoundly impacts the abundance of molecules associated with neurotransmitter release and vesicle cycling, proteins implicated in cognitive function.
Collapse
Affiliation(s)
- Hou Ve
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Valérie C Cabana
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'Activité Physique, Groupe de Recherche en Activité Physique Adaptée, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Marc P Lussier
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
61
|
Wang R, Qiu Z, Wang G, Hu Q, Shi N, Zhang Z, Wu Y, Zhou C. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice. Eur J Pharmacol 2020; 882:173266. [PMID: 32553736 DOI: 10.1016/j.ejphar.2020.173266] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/27/2023]
Abstract
Numerous studies indicate that the changes of synaptic morphology and synaptic protein levels in spinal dorsal horn neurons contributes to the development and maintenance of neuropathic pain. Quercetin, a bioflavonoid compound, has been shown to have analgesic effect in several pain models. However, the underlying mechanism for quercetin to allieviate pain is unclear. Therefore, in this study, we observed the effect of quercetin on diabetic neuropathic pain in db/db mice and explored the underlying mechanisms. Our results showed that chronic quercetin treatment alleviated thermal hyperalgesia in db/db mice. Moreover, quercetin administration significantly reduced the total dendritic length, the number of dendritic branches, and the dendritic spine density in the spinal dorsal horn neurons of db/db mice. Meanwhile, the up-regulated expressions of synaptic plasticity-associated proteins postsynaptic density protein 95 (PSD-95) and synaptophysin in spinal dorsal horn of db/db mice were decreased by quercetin treatment. In addition, quercetin treatment reduced the phosphorylated levels of mammalian target of rapamycin (mTOR) and p70 ribosomal S6 kinase (p70S6K) in spinal dorsal horn of db/db mice. These results demonstrate that quercetin may alleviate diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn neurons of db/db mice. These findings suggest that quercetin may be a promising therapeutic drug in neuropathic pain.
Collapse
Affiliation(s)
- Ruiyao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhuang Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Guizhi Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qian Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Naihao Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zongqin Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.
| | - Chenghua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
62
|
Matsuoka K, Makinodan M, Kitamura S, Takahashi M, Yoshikawa H, Yasuno F, Ishida R, Kishimoto N, Yasuda Y, Hashimoto R, Taoka T, Miyasaka T, Kichikawa K, Kishimoto T. Increased Dendritic Orientation Dispersion in the Left Occipital Gyrus is Associated with Atypical Visual Processing in Adults with Autism Spectrum Disorder. Cereb Cortex 2020; 30:5617-5625. [PMID: 32515826 DOI: 10.1093/cercor/bhaa121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
In autism spectrum disorder (ASD), the complexity-specific hypothesis explains that atypical visual processing is attributable to selective functional changes in visual pathways. We investigated dendritic microstructures and their associations with functional connectivity (FC). Participants included 28 individuals with ASD and 29 typically developed persons. We explored changes in neurite orientation dispersion and density imaging (NODDI) and brain areas whose FC was significantly correlated with NODDI parameters in the explored regions of interests. Individuals with ASD showed significantly higher orientation dispersion index (ODI) values in the left occipital gyrus (OG) corresponding to the secondary visual cortex (V2). FC values between the left OG and the left middle temporal gyrus (MTG) were significantly negatively correlated with mean ODI values. The mean ODI values in the left OG were significantly positively associated with low registration of the visual quadrants of the Adolescent/Adult Sensory Profile (AASP), resulting in a significant positive correlation with passive behavioral responses of the AASP visual quadrants; additionally, the FC values between the left OG and the left MTG were significantly negatively associated with reciprocal social interaction. Our results suggest that abnormal V2 dendritic arborization is associated with atypical visual processing by altered intermediation in the ventral visual pathway.
Collapse
Affiliation(s)
- Kiwamu Matsuoka
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.,Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Soichiro Kitamura
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.,Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Masato Takahashi
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiroaki Yoshikawa
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Naoko Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan.,Department of Psychiatry, Life Grow Brilliant Mental Clinic, Medical Corporation Foster, Osaka 530-0012, Japan.,Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira 187-8551, Japan.,Department of Psychiatry, Osaka University Medical School, Suita 565-0871, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Toshiteru Miyasaka
- Department of Radiology, Nara Medical University, Kashihara 634-8521, Japan
| | - Kimihiko Kichikawa
- Department of Radiology, Nara Medical University, Kashihara 634-8521, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
63
|
Cheyne JE, Montgomery JM. The cellular and molecular basis of in vivo synaptic plasticity in rodents. Am J Physiol Cell Physiol 2020; 318:C1264-C1283. [PMID: 32320288 DOI: 10.1152/ajpcell.00416.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plasticity within the neuronal networks of the brain underlies the ability to learn and retain new information. The initial discovery of synaptic plasticity occurred by measuring synaptic strength in vivo, applying external stimulation and observing an increase in synaptic strength termed long-term potentiation (LTP). Many of the molecular pathways involved in LTP and other forms of synaptic plasticity were subsequently uncovered in vitro. Over the last few decades, technological advances in recording and imaging in live animals have seen many of these molecular mechanisms confirmed in vivo, including structural changes both pre- and postsynaptically, changes in synaptic strength, and changes in neuronal excitability. A well-studied aspect of neuronal plasticity is the capacity of the brain to adapt to its environment, gained by comparing the brains of deprived and experienced animals in vivo, and in direct response to sensory stimuli. Multiple in vivo studies have also strongly linked plastic changes to memory by interfering with the expression of plasticity and by manipulating memory engrams. Plasticity in vivo also occurs in the absence of any form of external stimulation, i.e., during spontaneous network activity occurring with brain development. However, there is still much to learn about how plasticity is induced during natural learning and how this is altered in neurological disorders.
Collapse
Affiliation(s)
- Juliette E Cheyne
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
64
|
Glucagon-like peptide-1 suppresses neuroinflammation and improves neural structure. Pharmacol Res 2019; 152:104615. [PMID: 31881271 DOI: 10.1016/j.phrs.2019.104615] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a hormone mainly secreted from enteroendocrine L cells. GLP-1 and its receptor are also expressed in the brain. GLP-1 signaling has pivotal roles in regulating neuroinflammation and memory function, but it is unclear how GLP-1 improves memory function by regulating neuroinflammation. Here, we demonstrated that GLP-1 enhances neural structure by inhibiting lipopolysaccharide (LPS)-induced inflammation in microglia with the effects of GLP-1 itself on neurons. Inflammatory secretions of BV-2 microglia by LPS aggravated mitochondrial function and cell survival, as well as neural structure in Neuro-2a neurons. In inflammatory condition, GLP-1 suppressed the secretion of tumor necrosis factor-alpha (TNF-α)-associated cytokines and chemokines in BV-2 microglia and ultimately enhanced neurite complexity (neurite length, number of neurites from soma, and secondary branches) in Neuro-2a neurons. We confirmed that GLP-1 improves neurite complexity, dendritic spine morphogenesis, and spine development in TNF-α-treated primary cortical neurons based on altered expression levels of the factors related to neurite growth and spine morphology. Given that our data that GLP-1 itself enhances neurite complexity and spine morphology in neurons, we suggest that GLP-1 has a therapeutic potential in central nervous system diseases.
Collapse
|