51
|
Astawa INM, Oka IBM, Dwinata IM. Antibody immunoglobulin G1 and immunoglobulin G2a responses against some cystic fluid proteins of Cysticercus bovis in Balb/c mice. Vet World 2018; 11:1641-1647. [PMID: 30587902 PMCID: PMC6303487 DOI: 10.14202/vetworld.2018.1641-1647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/11/2018] [Indexed: 01/23/2023] Open
Abstract
Background and Aim: Immunoglobulin (Ig) G1 and IgG2a are the surrogate markers respectively for humoral and cellular immune responses of hosts against antigens including cystic fluid proteins of Cysticercus bovis. A study was conducted to investigate the IgG1 and IgG2a responses of Balb/c mice against some individual cystic fluid proteins of C. bovis in an effort to determine the roles of each protein in inducing the humoral and cellular immune responses in host. Materials and Methods: Individual p71, p31, and p14 proteins of C. bovis were purified by separation of the proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and elution of individual proteins from the gel. Six female Balb/c mice were immunized 4 times at 10-day intervals with the crude cystic fluid proteins, and sera were collected for the measurement of IgG1 and IgG2a levels against the individual proteins. Sera samples collected before the first immunization were used as negative antibody control, sera samples collected after the fourth immunization were used as positive antibody control, and crude cystic fluid protein was used as positive antigen control. Results: All immunized mice were immune to p71, p31, p14, and crude cystic fluid proteins of C. bovis. The crude cystic fluid proteins of C. bovis induced a higher IgG2a than IgG1 level following the first and the second immunizations but switched into a higher IgG1 than IgG2a level following the fourth immunization. Protein 71 kDa (p71) induced a higher IgG2a than IgG1 level following the fourth immunization. In contrast, p14 induced a higher IgG1 than IgG2a level following the fourth immunization. Low and balance IgG1 and IgG2a levels against p31 were observed following the first to the fourth immunizations. Conclusion: Using IgG1 and IgG2a levels as the surrogate markers, it appears that cystic fluid antigens of C. bovis induce both humoral and cellular immune responses in Balb/c mice. The p71 appears to be a better inducer of cellular immune response, whereas p14 is a better inducer of humoral immune response of mice.
Collapse
Affiliation(s)
- I Nyoman Mantik Astawa
- Laboratory of Immunology, Faculty of Veterinary Medicine, Udayana University, Denpasar Bali 80232, Indonesia
| | - Ida Bagus Made Oka
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Udayana University, Bali 80232, Indonesia
| | - I Made Dwinata
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Udayana University, Bali 80232, Indonesia
| |
Collapse
|
52
|
Ascaris Larval Infection and Lung Invasion Directly Induce Severe Allergic Airway Disease in Mice. Infect Immun 2018; 86:IAI.00533-18. [PMID: 30249744 DOI: 10.1128/iai.00533-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022] Open
Abstract
Ascaris lumbricoides (roundworm) is the most common helminth infection globally and a cause of lifelong morbidity that may include allergic airway disease, an asthma phenotype. We hypothesize that Ascaris larval migration through the lungs leads to persistent airway hyperresponsiveness (AHR) and type 2 inflammatory lung pathology despite resolution of infection that resembles allergic airway disease. Mice were infected with Ascaris by oral gavage. Lung AHR was measured by plethysmography and histopathology with hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) stains, and cytokine concentrations were measured by using Luminex Magpix. Ascaris-infected mice were compared to controls or mice with allergic airway disease induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Ascaris-infected mice developed profound AHR starting at day 8 postinfection (p.i.), peaking at day 12 p.i. and persisting through day 21 p.i., despite resolution of infection, which was significantly increased compared to controls and OVA/OVA mice. Ascaris-infected mice had a robust type 2 cytokine response in both the bronchoalveolar lavage (BAL) fluid and lung tissue, similar to that of the OVA/OVA mice, including interleukin-4 (IL-4) (P < 0.01 and P < 0.01, respectively), IL-5 (P < 0.001 and P < 0.001), and IL-13 (P < 0.001 and P < 0.01), compared to controls. By histopathology, Ascaris-infected mice demonstrated early airway remodeling similar to, but more profound than, that in OVA/OVA mice. We found that Ascaris larval migration causes significant pulmonary damage, including AHR and type 2 inflammatory lung pathology that resembles an extreme form of allergic airway disease. Our findings indicate that ascariasis may be an important cause of allergic airway disease in regions of endemicity.
Collapse
|
53
|
Abstract
Helminth parasites are complex metazoans that belong to different taxonomic families but that collectively share the capacity to downregulate the host immune response directed toward themselves (parasite-specific immunoregulation). During long-standing chronic infection, these helminths appear able to suppress immune responses to bystander pathogens/antigens and atopic, autoimmune, and metabolic disorders. Helminth-induced immunoregulation occurs through the induction of regulatory T cells or Th2-type cells (or both). However, secreted or excreted parasite metabolites, proteins, or extracellular vesicles (or a combination of these) may also directly induce signaling pathways in host cells. Therefore, the focus of this review will be to highlight recent advances in understanding the immune responses to helminth infection, emphasizing the strategies/molecules and some of the mechanisms used by helminth parasites to modulate the immune response of their hosts.
Collapse
Affiliation(s)
- Pedro H Gazzinelli-Guimaraes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Building 4, Room 211, Bethesda, MD, 20892, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Building 4, Room 211, Bethesda, MD, 20892, USA
| |
Collapse
|
54
|
Immobilization of β-galactosidase and α-mannosidase onto magnetic nanoparticles: A strategy for increasing the potentiality of valuable glycomic tools for glycosylation analysis and biological role determination of glycoconjugates. Enzyme Microb Technol 2018; 117:45-55. [DOI: 10.1016/j.enzmictec.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 01/08/2023]
|
55
|
McSorley HJ, Chayé MAM, Smits HH. Worms: Pernicious parasites or allies against allergies? Parasite Immunol 2018; 41:e12574. [PMID: 30043455 PMCID: PMC6585781 DOI: 10.1111/pim.12574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
Type 2 immune responses are most commonly associated with allergy and helminth parasite infections. Since the discovery of Th1 and Th2 immune responses more than 30 years ago, models of both allergic disease and helminth infections have been useful in characterizing the development, effector mechanisms and pathological consequences of type 2 immune responses. The observation that some helminth infections negatively correlate with allergic and inflammatory disease led to a large field of research into parasite immunomodulation. However, it is worth noting that helminth parasites are not always benign infections, and that helminth immunomodulation can have stimulatory as well as suppressive effects on allergic responses. In this review, we will discuss how parasitic infections change host responses, the consequences for bystander immunity and how this interaction influences clinical symptoms of allergy.
Collapse
Affiliation(s)
- Henry J McSorley
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mathilde A M Chayé
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| |
Collapse
|
56
|
A Toxocara canis infection influences the immune response to house dust mite allergens in dogs. Vet Immunol Immunopathol 2018; 202:11-17. [DOI: 10.1016/j.vetimm.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
|
57
|
Narasimhan PB, Akabas L, Tariq S, Huda N, Bennuru S, Sabzevari H, Hofmeister R, Nutman TB, Tolouei Semnani R. Similarities and differences between helminth parasites and cancer cell lines in shaping human monocytes: Insights into parallel mechanisms of immune evasion. PLoS Negl Trop Dis 2018; 12:e0006404. [PMID: 29668679 PMCID: PMC5927465 DOI: 10.1371/journal.pntd.0006404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/30/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
A number of features at the host-parasite interface are reminiscent of those that are also observed at the host-tumor interface. Both cancer cells and parasites establish a tissue microenvironment that allows for immune evasion and may reflect functional alterations of various innate cells. Here, we investigated how the phenotype and function of human monocytes is altered by exposure to cancer cell lines and if these functional and phenotypic alterations parallel those induced by exposure to helminth parasites. Thus, human monocytes were exposed to three different cancer cell lines (breast, ovarian, or glioblastoma) or to live microfilariae (mf) of Brugia malayi-a causative agent of lymphatic filariasis. After 2 days of co-culture, monocytes exposed to cancer cell lines showed markedly upregulated expression of M1-associated (TNF-α, IL-1β), M2-associated (CCL13, CD206), Mreg-associated (IL-10, TGF-β), and angiogenesis associated (MMP9, VEGF) genes. Similar to cancer cell lines, but less dramatically, mf altered the mRNA expression of IL-1β, CCL13, TGM2 and MMP9. When surface expression of the inhibitory ligands PDL1 and PDL2 was assessed, monocytes exposed to both cancer cell lines and to live mf significantly upregulated PDL1 and PDL2 expression. In contrast to exposure to mf, exposure to cancer cell lines increased the phagocytic ability of monocytes and reduced their ability to induce T cell proliferation and to expand Granzyme A+ CD8+ T cells. Our data suggest that despite the fact that helminth parasites and cancer cell lines are extraordinarily disparate, they share the ability to alter the phenotype of human monocytes.
Collapse
Affiliation(s)
- Prakash Babu Narasimhan
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Leor Akabas
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Sameha Tariq
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Naureen Huda
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Helen Sabzevari
- EMD Serono Research and Development Institute, Billerica, MA, United States of America
| | - Robert Hofmeister
- EMD Serono Research and Development Institute, Billerica, MA, United States of America
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Roshanak Tolouei Semnani
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
58
|
Stutzer C, Richards SA, Ferreira M, Baron S, Maritz-Olivier C. Metazoan Parasite Vaccines: Present Status and Future Prospects. Front Cell Infect Microbiol 2018; 8:67. [PMID: 29594064 PMCID: PMC5859119 DOI: 10.3389/fcimb.2018.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic parasites and pathogens continue to cause some of the most detrimental and difficult to treat diseases (or disease states) in both humans and animals, while also continuously expanding into non-endemic countries. Combined with the ever growing number of reports on drug-resistance and the lack of effective treatment programs for many metazoan diseases, the impact that these organisms will have on quality of life remain a global challenge. Vaccination as an effective prophylactic treatment has been demonstrated for well over 200 years for bacterial and viral diseases. From the earliest variolation procedures to the cutting edge technologies employed today, many protective preparations have been successfully developed for use in both medical and veterinary applications. In spite of the successes of these applications in the discovery of subunit vaccines against prokaryotic pathogens, not many targets have been successfully developed into vaccines directed against metazoan parasites. With the current increase in -omics technologies and metadata for eukaryotic parasites, target discovery for vaccine development can be expedited. However, a good understanding of the host/vector/pathogen interface is needed to understand the underlying biological, biochemical and immunological components that will confer a protective response in the host animal. Therefore, systems biology is rapidly coming of age in the pursuit of effective parasite vaccines. Despite the difficulties, a number of approaches have been developed and applied to parasitic helminths and arthropods. This review will focus on key aspects of vaccine development that require attention in the battle against these metazoan parasites, as well as successes in the field of vaccine development for helminthiases and ectoparasites. Lastly, we propose future direction of applying successes in pursuit of next generation vaccines.
Collapse
Affiliation(s)
- Christian Stutzer
- Tick Vaccine Group, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
59
|
Souza AJ, Milhomem AC, Rezende HH, Matos-Silva H, Vinaud MC, Oliveira MA, Castro AM, Lino-Júnior RS. Taenia crassiceps antigens induce a Th2 immune response and attenuate injuries experimentally induced by neurotoxoplasmosis in BALB/c mice. Parasitol Int 2018; 67:16-22. [DOI: 10.1016/j.parint.2017.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023]
|
60
|
Díaz Á. Immunology of cystic echinococcosis (hydatid disease). Br Med Bull 2017; 124:121-133. [PMID: 29253150 DOI: 10.1093/bmb/ldx033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND The neglected disease cystic echinococcosis is caused by larval Echinococcus granulosus flatworms, which form bladder-like hydatid cysts in liver, lungs, and other organs. SOURCES OF DATA Published literature. AREAS OF AGREEMENT Establishing larvae are susceptible to antibody-dependent killing, as attested by successful animal vaccination, whereas once established they are partially protected by the so-called laminated layer. Host responses are Th2 dominated, with a Th1 component. Diagnostic antigens from cyst fluid are known, but responses appear absent in one-fifth of patients. AREAS OF CONTROVERSY Is evasion mainly based on induction of Th2 or regulatory responses by the parasite? GROWING POINTS The parasite induces regulatory responses. The laminated layer has immune-regulatory properties. AREAS TIMELY FOR DEVELOPING RESEARCH Develop tools for functional genomics; characterize immunologically interesting proteins suggested by genomic information; analyse infection in broader context of granulomatous responses; identify molecules secreted/excreted by intact larvae/cysts towards their outside, including diffusible immune-regulators.
Collapse
Affiliation(s)
- Álvaro Díaz
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
61
|
Aravindhan V, Anand G. Cell Type-Specific Immunomodulation Induced by Helminthes: Effect on Metainflammation, Insulin Resistance and Type-2 Diabetes. Am J Trop Med Hyg 2017; 97:1650-1661. [PMID: 29141759 DOI: 10.4269/ajtmh.17-0236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent epidemiological studies have documented an inverse relationship between the decreasing prevalence of helminth infections and the increasing prevalence of metabolic diseases ("metabolic hygiene hypothesis"). Chronic inflammation leading to insulin resistance (IR) has now been identified as a major etiological factor for a variety of metabolic diseases other than obesity and Type-2 diabetes (metainflammation). One way by which helminth infections such as filariasis can modulate IR is by inducing a chronic, nonspecific, low-grade, immune suppression mediated by modified T-helper 2 (Th2) response (induction of both Th2 and regulatory T cells) which can in turn suppress the proinflammatory responses and promote insulin sensitivity (IS). This article provides evidence on how the cross talk between the innate and adaptive arms of the immune responses can modulate IR/sensitivity. The cross talk between innate (macrophages, dendritic cells, natural killer cells, natural killer T cells, myeloid derived suppressor cells, innate lymphoid cells, basophils, eosinophils, and neutrophils) and adaptive (helper T [CD4+] cells, cytotoxic T [CD8+] cells and B cells) immune cells forms two opposing circuits, one associated with IR and the other associated with IS under the conditions of metabolic syndrome and helminth-mediated immunomodulation, respectively.
Collapse
|
62
|
Varyani F, Fleming JO, Maizels RM. Helminths in the gastrointestinal tract as modulators of immunity and pathology. Am J Physiol Gastrointest Liver Physiol 2017; 312:G537-G549. [PMID: 28302598 PMCID: PMC5495915 DOI: 10.1152/ajpgi.00024.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 01/31/2023]
Abstract
Helminth parasites are highly prevalent in many low- and middle-income countries, in which inflammatory bowel disease and other immunopathologies are less frequent than in the developed world. Many of the most common helminths establish themselves in the gastrointestinal tract and can exert counter-inflammatory influences on the host immune system. For these reasons, interest has arisen as to how parasites may ameliorate intestinal inflammation and whether these organisms, or products they release, could offer future therapies for immune disorders. In this review, we discuss interactions between helminth parasites and the mucosal immune system, as well as the progress being made toward identifying mechanisms and molecular mediators through which it may be possible to attenuate pathology in the intestinal tract.
Collapse
Affiliation(s)
- Fumi Varyani
- 1Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom; ,2Edinburgh Clinical Academic Track, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom; and
| | - John O. Fleming
- 3Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Rick M. Maizels
- 1Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom;
| |
Collapse
|
63
|
Watts NS, Mizinduko MM, Barnett ED, White LF, Hochberg NS. Association between parasitic infections and tuberculin skin test results in refugees. Travel Med Infect Dis 2017; 16:35-40. [PMID: 28342825 DOI: 10.1016/j.tmaid.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Parasitic infections are known to modulate the immune response necessary for controlling Mycobacterium tuberculosis infection. We sought to investigate species-specific effects of parasite infection on M. tuberculosis infection. METHODS As part of the Refugee Health Assessment Program, stool examinations and tuberculin skin testing were performed on refugees seen at Boston Medical Center between 1995 and 2012. Tuberculin skin test (TST) and stool examination data were collected for 6669 refugees; 3349 (50.2%) were TST positive (≥10 mm). RESULTS Among TST-positive subjects, 176 (5.3%) had helminth infections and 1149 (34.3%) protozoa. After adjusting for sex, age, and country of origin, helminth and protozoan infections were not associated with TST-positivity. When species-specific effects were examined, subjects infected with Trichuris trichiura and Giardia lamblia had reduced odds of TST-positivity (adjusted OR [aOR] 0.65 [95%CI 0.44-0.96; p = 0.03] and aOR 0.79 [95%CI 0.65-0.95, p = 0.01], respectively). CONCLUSIONS Our findings suggest that T. trichiura and G. lamblia may provide protection against M. tuberculosis infection. This study adds to a growing body of literature suggesting that immune response modulation and susceptibility to M. tuberculosis infection is parasite species-dependent.
Collapse
Affiliation(s)
- Nathaniel S Watts
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States; Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States.
| | - Mucho M Mizinduko
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States.
| | - Elizabeth D Barnett
- Department of Pediatrics, Boston University School of Medicine, Boston, MA, United States.
| | - Laura F White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States.
| | - Natasha S Hochberg
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States; Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
64
|
Zamora V, García-Ballesteros C, Benet-Campos C, Ballester F, Cuéllar C, Andreu-Ballester JC. Anti-Anisakis sp. antibodies in serum of healthy subjects. Relationship with αβ and γδ T cells. Acta Parasitol 2017; 62:97-103. [PMID: 28030343 DOI: 10.1515/ap-2017-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 10/10/2016] [Indexed: 02/02/2023]
Abstract
Anisakiosis is nowadays one of the nematodoses more prevalent in Spain, with rates that oscillate between 0.43% in Galicia (N.W. Spain), and 15.7% and 22.1% in inland and southern regions, respectively. Likewise, it has been proved that Anisakis larvae have developed mechanisms to modulate the dichotomy of the host immune response for their own benefit. The experimental hypothesis of the present study was that Anisakis sp. larval products can be mediators of immune suppression and induce changes on the populations of αβ+ and γδ+ T cells. In the present study we determined the levels of anti-Anisakis antibodies in the serum of healthy people, and their relationship with the B and T cell subsets. Levels of anti-Anisakis antibodies (Ig's, IgG, IgM, IgA and IgE) were measured by ELISA, while B and T cell subsets were studied by flow cytometry. Cells were labelled with monoclonal antibodies against CD45, CD4, CD8, CD56, CD3, CD19, TCRαβ and TCRγδ. All the specific isotypes studied were negatively correlated with NKT cell rates with the exception of IgG. A previous contact with Anisakis was related to a decrease in CD56+αβ+ and all γδ+ T cell subsets. The CD3+γδ+ population was lower in the group of subjects that showed IgA anti-Anisakis. We observed an inverse correlation among αβ-γδ NKT cells and anti-Anisakis sp. antibodies. CD3+CD56+ cells showed a significant decrease in the group of anti-Anisakis positive subjects. This fact was especially significant with CD3+CD56+γδ+ cells in the case of the anti-Anisakis IgA positive group.
Collapse
|
65
|
Rowe RK, Pyle DM, Tomlinson AR, Lv T, Hu Z, Gill MA. IgE cross-linking impairs monocyte antiviral responses and inhibits influenza-driven T H1 differentiation. J Allergy Clin Immunol 2017; 140:294-298.e8. [PMID: 28087327 DOI: 10.1016/j.jaci.2016.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 10/08/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Regina K Rowe
- Department of Pediatrics, University of Texas Southwestern, Dallas, Tex
| | - David M Pyle
- Department of Pediatrics, University of Texas Southwestern, Dallas, Tex; Department of Immunology, University of Texas Southwestern, Dallas, Texas
| | - Andrew R Tomlinson
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas
| | - Tinghong Lv
- Department of Pediatrics, University of Texas Southwestern, Dallas, Tex
| | - Zheng Hu
- Department of Pediatrics, University of Texas Southwestern, Dallas, Tex
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern, Dallas, Tex; Department of Immunology, University of Texas Southwestern, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas.
| |
Collapse
|
66
|
Abstract
First described by Paul Ehrlich in 1879, who noted its characteristic staining by acidophilic dyes, for many years, the eosinophil was considered to be an end-effector cell associated with helminth infections and a cause of tissue damage. Over the past 30 years, research has helped to elucidate the complexity of the eosinophil's function and establish its role in host defense and immunity. Eosinophils express an array of ligand receptors which play a role in cell growth, adhesion, chemotaxis, degranulation, and cell-to-cell interactions. They play a role in activation of complement via both classical and alternative pathways. Eosinophils synthesize, store and secrete cytokines, chemokines, and growth factors. They can process antigen, stimulate T cells, and promote humoral responses by interacting with B cells. Eosinophils can function as antigen presenting cells and can regulate processes associated with both T1 and T2 immunity. Although long known to play a role in defense against helminth organisms, the interactions of eosinophils with these parasites are now recognized to be much more complex. In addition, their interaction with other pathogens continues to be investigated. In this paper, we review the eosinophil's unique biology and structure, including its characteristic granules and the effects of its proteins, our developing understanding of its role in innate and adaptive immunity and importance in immunomodulation, and the part it plays in defense against parasitic, viral, fungal and bacterial infections. Rather than our worst enemy, the eosinophil may, in fact, be one of the most essential components in host defense and immunity.
Collapse
|
67
|
Díaz A, Casaravilla C, Barrios AA, Ferreira AM. Parasite molecules and host responses in cystic echinococcosis. Parasite Immunol 2016; 38:193-205. [PMID: 26425838 DOI: 10.1111/pim.12282] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Cystic echinococcosis is the infection by the larvae of cestode parasites belonging to the Echinococcus granulosus sensu lato species complex. Local host responses are strikingly subdued in relation to the size and persistence of these larvae, which develop within mammalian organs as 'hydatid cysts' measuring up to tens of cm in diameter. In a context in which helminth-derived immune-suppressive, as well as Th2-inducing, molecules garner much interest, knowledge on the interactions between E. granulosus molecules and the immune system lags behind. Here, we discuss what is known and what are the open questions on E. granulosus molecules and structures interacting with the innate and adaptive immune systems, potentially or in demonstrated form. We attempt a global biological approach on molecules that have been given consideration primarily as protective (Eg95) or diagnostic antigens (antigen B, antigen 5). We integrate glycobiological information, which traverses the discussions on antigen 5, the mucin-based protective laminated layer and immunologically active preparations from protoscoleces. We also highlight some less well-known molecules that appear as promising candidates to possess immune-regulatory activities. Finally, we point out gaps in the molecular-level knowledge of this infectious agent that hinder our understanding of its immunology.
Collapse
Affiliation(s)
- A Díaz
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - C Casaravilla
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - A A Barrios
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - A M Ferreira
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
68
|
Immune Profile of Honduran Schoolchildren with Intestinal Parasites: The Skewed Response against Geohelminths. J Parasitol Res 2016; 2016:1769585. [PMID: 27882241 PMCID: PMC5108857 DOI: 10.1155/2016/1769585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/10/2016] [Indexed: 01/18/2023] Open
Abstract
Soil-transmitted helminth infections typically induce a type-2 immune response (Th2), but no immunoepidemiological studies have been undertaken in Honduras, an endemic country where the main control strategy is children's annual deworming. We aimed to characterize the immune profile of Honduran schoolchildren harbouring these parasitoses. Demographic and epidemiological data were obtained through a survey; nutritional status was assessed through anthropometry; intestinal parasites were diagnosed by formol-ether and Kato-Katz; and blood samples were collected to determine immunological markers including Th1/Th2 cytokines, IgE, and eosinophil levels. A total of 225 children participated in the study, all of whom had received deworming during the national campaign five months prior to the study. Trichuriasis and ascariasis prevalence were 22.2% and 20.4%, respectively. Stunting was associated with both age and trichuriasis, whereas ascariasis was associated with sex and household conditions. Helminth infections were strongly associated with eosinophilia and hyper-IgE as well as with a Th2-polarized response (increased levels of IL-13, IL-10, and IL4/IFN-γ ratios and decreased levels of IFN-γ). Pathogenic protozoa infections were associated with a Th1 response characterized by elevated levels of IFN-γ and decreased IL10/IFN-γ ratios. Even at low prevalence levels, STH infections affect children's nutrition and play a polarizing role in their immune system.
Collapse
|
69
|
Abstract
Cystic and alveolar echinococcosis are severe chronic helminthic diseases caused by the cystic growth or the intrahepatic tumour-like growth of the metacestode of Echinococcus granulosus or Echinococcus multilocularis, respectively. Both parasites have evolved sophisticated strategies to escape host immune responses, mainly by manipulating and directing this immune response towards anergy and/or tolerance. Recent research studies have revealed a number of respective immunoregulatory mechanisms related to macrophages and dendritic cell as well as T cell activities (regulatory T cells, Tregs). A better understanding of this complex parasite-host relationship, and the elucidation of specific crucial events that lead to disease, represents targets towards the development of novel treatment strategies and options.
Collapse
|
70
|
Iweala OI, Burks AW. Food Allergy: Our Evolving Understanding of Its Pathogenesis, Prevention, and Treatment. Curr Allergy Asthma Rep 2016; 16:37. [PMID: 27041704 DOI: 10.1007/s11882-016-0616-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Food allergy is defined as an IgE-mediated hypersensitivity response to ingested food with allergic symptoms ranging from urticaria to life-threatening anaphylaxis. Food allergy is thought to develop because of (1) failed induction of tolerance upon initial exposure to food antigen or (2) breakdown of established tolerance to food antigen. We review current understanding of the pathogenesis, epidemiology, and natural history of food allergy, including the unconventional IgE-mediated food allergy to mammalian meat known as alpha-gal food allergy. We highlight emerging data on food allergy treatment and prevention, emphasizing the growing appeal of manipulating the gut microenvironment using probiotics and helminth products to blunt systemic allergic responses to food.
Collapse
Affiliation(s)
- Onyinye I Iweala
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, University of North Carolina School of Medicine, 030 MacNider Hall, CB 7231, Chapel Hill, NC, 27599-7231, USA.
| | - A Wesley Burks
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, University of North Carolina School of Medicine, 030 MacNider Hall, CB 7231, Chapel Hill, NC, 27599-7231, USA
| |
Collapse
|
71
|
Suzuki M, Hara M, Ichikawa S, Kamijo S, Nakazawa T, Hatanaka H, Akiyama K, Ogawa H, Okumura K, Takai T. Presensitization to Ascaris antigens promotes induction of mite-specific IgE upon mite antigen inhalation in mice. Allergol Int 2016; 65:44-51. [PMID: 26666495 DOI: 10.1016/j.alit.2015.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 07/02/2015] [Accepted: 07/12/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Patients with house dust mite (HDM) allergy or Ascariasis produce serum IgE specific to the antigens of HDM or nematode Ascaris, respectively. Although human IgE cross-reactivity has been reported between HDM and Ascaris antigens, it remains unclear whether it contributes to the pathogenesis of allergic diseases. We herein investigated the induction of cross-reactive antibodies and T cells in mice and effects of airway exposure to HDM antigens after preimmunization with Ascaris antigens. METHODS Mice were intraperitoneally immunized with HDM or Ascaris antigens with Alum, followed by the intranasal administration of HDM antigens. Serum antigen-specific IgE and IgG were measured by ELISA. Cytokine release in splenocytes from Ascaris-immunized mice upon in vitro restimulation with HDM antigens were measured by ELISA. RESULTS Immunization with Ascaris or HDM antigens induced cross-reactive IgG1. Splenocytes from Ascaris-immunized mice released IL-5 and IL-13 in response to the restimulation with HDM antigens. Subsequent airway exposure to HDM antigens promoted the induction of HDM-specific IgE and upregulation of HDM-specific IgG1 in Ascaris-immunized mice, whereas these responses were not detected or smaller without the Ascaris presensitization. CONCLUSIONS We demonstrated that the immunization of naïve mice with Ascaris antigens induced production of antibodies and differentiation of Th2 cells, which were cross-reactive to HDM antigens, and accelerated induction of serum HDM-specific IgE upon subsequent airway exposure to HDM antigens in mice. These results suggest that sensitization to HDM towards IgE-mediated allergic diseases is faster in individuals with a previous history of Ascaris infection than in those without presensitization to Ascaris.
Collapse
Affiliation(s)
- Mayu Suzuki
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Materials and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Ichikawa
- Department of Materials and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Nakazawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan; Department of Rheumatology, Allergy, and Clinical Immunology, National Hospital Organization Chiba-East National Hospital, Chiba, Japan
| | - Hideki Hatanaka
- National Bioscience Database Center, Japan Science and Technology Agency, Tokyo, Japan
| | - Kazuo Akiyama
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|