51
|
Remy KE, Hall MW, Cholette J, Juffermans NP, Nicol K, Doctor A, Blumberg N, Spinella PC, Norris PJ, Dahmer MK, Muszynski JA. Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion 2018; 58:804-815. [PMID: 29383722 DOI: 10.1111/trf.14488] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/13/2017] [Accepted: 12/10/2017] [Indexed: 01/28/2023]
Abstract
Red blood cell (RBC) transfusion is common in critically ill, postsurgical, and posttrauma patients in whom both systemic inflammation and immune suppression are associated with adverse outcomes. RBC products contain a multitude of immunomodulatory mediators that interact with and alter immune cell function. These interactions can lead to both proinflammatory and immunosuppressive effects. Defining clinical outcomes related to immunomodulatory effects of RBCs in transfused patients remains a challenge, likely due to complex interactions between individual blood product characteristics and patient-specific risk factors. Unpacking these complexities requires an in-depth understanding of the mechanisms of immunomodulatory effects of RBC products. In this review, we outline and classify potential mediators of RBC transfusion-related immunomodulation and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Kenneth E Remy
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Mark W Hall
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio.,The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Jill Cholette
- Pediatric Critical Care and Cardiology, University of Rochester, Rochester, New York
| | - Nicole P Juffermans
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Kathleen Nicol
- Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio
| | - Allan Doctor
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Neil Blumberg
- Transfusion Medicine/Blood Bank and Clinical Laboratories, Departments of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York
| | - Philip C Spinella
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Philip J Norris
- Blood Systems Research Institute, San Francisco, California.,Departments of Laboratory Medicine and Medicine, University of California at San Francisco, San Francisco, California
| | - Mary K Dahmer
- Department of Pediatrics, Division of Pediatric Critical Care, University of Michigan, Ann Arbor, Michigan
| | - Jennifer A Muszynski
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio.,The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | |
Collapse
|
52
|
Reisz JA, Tzounakas VL, Nemkov T, Voulgaridou AI, Papassideri IS, Kriebardis AG, D’Alessandro A, Antonelou MH. Metabolic Linkage and Correlations to Storage Capacity in Erythrocytes from Glucose 6-Phosphate Dehydrogenase-Deficient Donors. Front Med (Lausanne) 2018; 4:248. [PMID: 29376053 PMCID: PMC5768619 DOI: 10.3389/fmed.2017.00248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE In glucose 6-phosphate dehydrogenase (G6PD) deficiency, decreased NADPH regeneration in the pentose phosphate pathway and subnormal levels of reduced glutathione result in insufficient antioxidant defense, increased susceptibility of red blood cells (RBCs) to oxidative stress, and acute hemolysis following exposure to pro-oxidant drugs and infections. Despite the fact that redox disequilibrium is a prominent feature of RBC storage lesion, it has been reported that the G6PD-deficient RBCs store well, at least in respect to energy metabolism, but their overall metabolic phenotypes and molecular linkages to the storability profile are scarcely investigated. METHODS We performed UHPLC-MS metabolomics analyses of weekly sampled RBC concentrates from G6PD sufficient and deficient donors, stored in citrate phosphate dextrose/saline adenine glucose mannitol from day 0 to storage day 42, followed by statistical and bioinformatics integration of the data. RESULTS Other than previously reported alterations in glycolysis, metabolomics analyses revealed bioactive lipids, free fatty acids, bile acids, amino acids, and purines as top variables discriminating RBC concentrates for G6PD-deficient donors. Two-way ANOVA showed significant changes in the storage-dependent variation in fumarate, one-carbon, and sulfur metabolism, glutathione homeostasis, and antioxidant defense (including urate) components in G6PD-deficient vs. sufficient donors. The levels of free fatty acids and their oxidized derivatives, as well as those of membrane-associated plasticizers were significantly lower in G6PD-deficient units in comparison to controls. By using the strongest correlations between in vivo and ex vivo metabolic and physiological parameters, consecutively present throughout the storage period, several interactomes were produced that revealed an interesting interplay between redox, energy, and hemolysis variables, which may be further associated with donor-specific differences in the post-transfusion performance of G6PD-deficient RBCs. CONCLUSION The metabolic phenotypes of G6PD-deficient donors recapitulate the basic storage lesion profile that leads to loss of metabolic linkage and rewiring. Donor-related issues affect the storability of RBCs even in the narrow context of this donor subgroup in a way likely relevant to transfusion medicine.
Collapse
Affiliation(s)
- Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | | | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G. Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Athens, Greece
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
53
|
Yurkovich JT, Zielinski DC, Yang L, Paglia G, Rolfsson O, Sigurjónsson ÓE, Broddrick JT, Bordbar A, Wichuk K, Brynjólfsson S, Palsson S, Gudmundsson S, Palsson BO. Quantitative time-course metabolomics in human red blood cells reveal the temperature dependence of human metabolic networks. J Biol Chem 2017; 292:19556-19564. [PMID: 29030425 PMCID: PMC5712598 DOI: 10.1074/jbc.m117.804914] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/21/2017] [Indexed: 11/06/2022] Open
Abstract
The temperature dependence of biological processes has been studied at the levels of individual biochemical reactions and organism physiology (e.g. basal metabolic rates) but has not been examined at the metabolic network level. Here, we used a systems biology approach to characterize the temperature dependence of the human red blood cell (RBC) metabolic network between 4 and 37 °C through absolutely quantified exo- and endometabolomics data. We used an Arrhenius-type model (Q10) to describe how the rate of a biochemical process changes with every 10 °C change in temperature. Multivariate statistical analysis of the metabolomics data revealed that the same metabolic network-level trends previously reported for RBCs at 4 °C were conserved but accelerated with increasing temperature. We calculated a median Q10 coefficient of 2.89 ± 1.03, within the expected range of 2-3 for biological processes, for 48 individual metabolite concentrations. We then integrated these metabolomics measurements into a cell-scale metabolic model to study pathway usage, calculating a median Q10 coefficient of 2.73 ± 0.75 for 35 reaction fluxes. The relative fluxes through glycolysis and nucleotide metabolism pathways were consistent across the studied temperature range despite the non-uniform distributions of Q10 coefficients of individual metabolites and reaction fluxes. Together, these results indicate that the rate of change of network-level responses to temperature differences in RBC metabolism is consistent between 4 and 37 °C. More broadly, we provide a baseline characterization of a biochemical network given no transcriptional or translational regulation that can be used to explore the temperature dependence of metabolism.
Collapse
Affiliation(s)
- James T Yurkovich
- From the Departments of Bioengineering and
- Bioinformatics and Systems Biology Program, and
| | | | | | - Giuseppe Paglia
- Institute for Biomedicine, EURAC Research, Viale Druso Drususallee 1, 39100 Bolzano, Bozen, Italy
| | - Ottar Rolfsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, IS-101 Reykjavík, Iceland
| | - Ólafur E Sigurjónsson
- The Blood Bank, Landspítali-University Hospital, Snorrabraut 60, 105 Reykjavík, Iceland
- School of Science and Engineering, Reykjavík University, Menntavegur 1, IS-101 Reykjavík, Iceland, and
| | - Jared T Broddrick
- From the Departments of Bioengineering and
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | | | - Kristine Wichuk
- Center for Systems Biology, University of Iceland, Sturlugata 8, IS-101 Reykjavík, Iceland
| | - Sigurður Brynjólfsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, IS-101 Reykjavík, Iceland
| | - Sirus Palsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, IS-101 Reykjavík, Iceland
- Sinopia Biosciences, San Diego, California 92101
| | - Sveinn Gudmundsson
- The Blood Bank, Landspítali-University Hospital, Snorrabraut 60, 105 Reykjavík, Iceland
| | - Bernhard O Palsson
- From the Departments of Bioengineering and
- Bioinformatics and Systems Biology Program, and
- Center for Systems Biology, University of Iceland, Sturlugata 8, IS-101 Reykjavík, Iceland
- Pediatrics
| |
Collapse
|
54
|
Nemkov T, Sun K, Reisz JA, Song A, Yoshida T, Dunham A, Wither MJ, Francis RO, Roach RC, Dzieciatkowska M, Rogers SC, Doctor A, Kriebardis A, Antonelou M, Papassideri I, Young CT, Thomas TA, Hansen KC, Spitalnik SL, Xia Y, Zimring JC, Hod EA, D'Alessandro A. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage. Haematologica 2017; 103:361-372. [PMID: 29079593 PMCID: PMC5792281 DOI: 10.3324/haematol.2017.178608] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1–7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and – preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo. Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Kaiqi Sun
- Department of Biochemistry, University of Texas Houston - School of Medicine, Houston, TX, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Anren Song
- Department of Biochemistry, University of Texas Houston - School of Medicine, Houston, TX, USA
| | | | | | - Matthew J Wither
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Richard O Francis
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Robert C Roach
- Altitude Research Center, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen C Rogers
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Allan Doctor
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Anastasios Kriebardis
- Department of Medical Laboratories, Technological and Educational Institute of Athens, Greece
| | - Marianna Antonelou
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | | | | | - Tiffany A Thomas
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Steven L Spitalnik
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Yang Xia
- Department of Biochemistry, University of Texas Houston - School of Medicine, Houston, TX, USA
| | | | - Eldad A Hod
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA .,Boettcher Investigator
| |
Collapse
|
55
|
Mesenchymal stromal cells can be applied to red blood cells storage as a kind of cellular additive. Biosci Rep 2017; 37:BSR20170676. [PMID: 28864783 PMCID: PMC5603755 DOI: 10.1042/bsr20170676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
During storage in blood banks, red blood cells (RBCs) undergo the mechanical and metabolic damage, which may lead to the diminished capacity to deliver oxygen. At high altitude regions, the above-mentioned damage may get worse. Thus, more attention should be paid to preserve RBCs when these components need transfer from plain to plateau regions. Recently, we found that mesenchymal stromal cells (MSCs) could rescue from anemia, and MSCs have been demonstrated in hematopoietic stem cells (HSCs) transplantation to reconstitute hematopoiesis in vivo by us. Considering the functions and advantages of MSCs mentioned above, we are trying to find out whether they are helpful to RBCs in storage duration at high altitudes. In the present study, we first found that mice MSCs could be preserved in citrate phosphate dextrose adenine-1 (CPDA-1) at 4 ± 2°C for 14 days, and still maintained great viability, even at plateau region. Thus, we attempted to use MSCs as an available supplement to decrease RBCs lesion during storage. We found that MSCs were helpful to support RBCs to maintain biochemical parameters and kept RBCs function well on relieving anemia in an acute hemolytic murine model. Therefore, our investigation developed a method to get a better storage of RBCs through adding MSCs, which may be applied in RBCs storage as a kind of cellular additive into preservation solution.
Collapse
|
56
|
Gehrke S, Reisz JA, Nemkov T, Hansen KC, D’Alessandro A. Characterization of rapid extraction protocols for high-throughput metabolomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1445-1452. [PMID: 28586533 PMCID: PMC5547002 DOI: 10.1002/rcm.7916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE In the last five years, high-throughput metabolomics has significantly advanced scientific research and holds the potential to promote strides in the fields of clinical metabolomics and personalized medicine. While innovations in the field of flow-injection mass spectrometry and three-minute metabolomics methods now allow investigators to process hundreds to thousands of samples per day, time-sensitive clinical applications, particularly in the emergency department, are limited by a lack of rapid extraction methods. METHODS Here we characterized the efficacy of fast liquid-liquid extractions for characterization of hydrophilic compounds through ultra-high-pressure liquid chromatography/mass spectrometry. Internal stable-isotope-labeled standards were used to quantitatively characterize markers of energy and oxidative metabolism in human whole blood, plasma and red blood cells - three common matrices of clinical relevance. RESULTS For all the tested matrices, vortexing time (4-60 min) did not significantly affect extraction yields for the tested hydrophilic metabolites. Coefficients of variations <<20% for all tested compounds, except for the redox-sensitive metabolite cystine (accumulating over time). Internal standards and second extractions confirmed recoveries >80% for all tested metabolites, except for basic amino acids and polyamines, which showed reproducible yields ranging from 50 to 75%. Global profiling and absolute quantitation of 24 metabolites revealed similarities between the plasma and red blood cell metabolomes. CONCLUSIONS Rapid extraction (~4 min) of hydrophilic compounds is a viable and potentially automatable strategy to perform quantitative analysis of whole blood, plasma and red blood cells for research or clinical applications.
Collapse
Affiliation(s)
- Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, 12801 East 17 Ave, Aurora, CO, 80045 USA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, 12801 East 17 Ave, Aurora, CO, 80045 USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, 12801 East 17 Ave, Aurora, CO, 80045 USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, 12801 East 17 Ave, Aurora, CO, 80045 USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, 12801 East 17 Ave, Aurora, CO, 80045 USA
| |
Collapse
|
57
|
Silliman CC, Kelher MR, Khan SY, West FB, McLaughlin NJD, Elzi DJ, England K, Bjornsen J, Kuldanek SA, Banerjee A. Supernatants and lipids from stored red blood cells activate pulmonary microvascular endothelium through the BLT2 receptor and protein kinase C activation. Transfusion 2017; 57:2690-2700. [PMID: 28880373 DOI: 10.1111/trf.14271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although transfusion is a lifesaving intervention, it may be associated with significant morbidity in injured patients. We hypothesize that stored red blood cells (RBCs) induce proinflammatory activation of human pulmonary microvascular endothelial cells (HMVECs) resulting in neutrophil (PMN) adhesion and predisposition to acute lung injury (ALI). STUDY DESIGN AND METHODS Ten units of RBCs were collected; 50% (by weight) were leukoreduced (LR-RBCs) and the remainder was unmodified and stored in additive solution-5 (AS-5). An additional 10 units of RBCs were collected, leukoreduced, and stored in AS-3. HMVECs were incubated with [10%-40%]FINAL of the supernatants on Day (D)1 to D42 of storage, lipid extracts, and purified lipids. Endothelial surface expression of intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-8 release, and PMN adhesion to HMVECs were measured. HMVEC signaling via the BLT2 receptor was evaluated. Supernatants and lipids were also employed as the first event in a two-event model of ALI. RESULTS The supernatants [10%-40%]FINAL from D21 LR-RBCs and D42 RBCs and LR-RBCs and the lipids from D42 stored in AS-5 induced increased ICAM-1 surface expression on endothelium, IL-8 release, and PMN adhesion. In addition, the supernatants [20%-40%]FINAL from D21 and D42 RBCs in AS-5 also increased endothelial surface expression of ICAM-1. D42 supernatants and lipids also caused coprecipitation of β-arrestin-1 with BLT2, protein kinase C (PKC)βI , and PKCδ and served as the first event in a two-event rodent model of ALI. CONCLUSION Lipids that accumulate during RBC storage activate endothelium and predispose to ALI, which may explain some of the adverse events associated with the transfusion of critically injured patients.
Collapse
Affiliation(s)
- Christopher C Silliman
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Marguerite R Kelher
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Samina Y Khan
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | | | - Nathan J D McLaughlin
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - David J Elzi
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Kelly England
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Jason Bjornsen
- Research Laboratory, Bonfils Blood Center, Denver, Colorado
| | - Susan A Kuldanek
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Anirban Banerjee
- Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| |
Collapse
|
58
|
Rolfsson Ó, Johannsson F, Magnusdottir M, Paglia G, Sigurjonsson ÓE, Bordbar A, Palsson S, Brynjólfsson S, Guðmundsson S, Palsson B. Mannose and fructose metabolism in red blood cells during cold storage in SAGM. Transfusion 2017; 57:2665-2676. [DOI: 10.1111/trf.14266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Óttar Rolfsson
- Center for Systems Biology
- Medical Department; University of Iceland
| | - Freyr Johannsson
- Center for Systems Biology
- Medical Department; University of Iceland
| | | | - Giuseppe Paglia
- Center for Systems Biology
- Center for Biomedicine; European Academy of Bolzano/Bozen; Bolzano Italy
| | - Ólafur E. Sigurjonsson
- The Blood Bank, Landspitali-University Hospital
- School of Science and Engineering; Reykjavik University; Reykjavik Iceland
| | | | | | | | | | | |
Collapse
|
59
|
Palomino-Schätzlein M, García H, Gutiérrez-Carcedo P, Pineda-Lucena A, Herance JR. Assessment of gold nanoparticles on human peripheral blood cells by metabolic profiling with 1H-NMR spectroscopy, a novel translational approach on a patient-specific basis. PLoS One 2017; 12:e0182985. [PMID: 28793337 PMCID: PMC5549967 DOI: 10.1371/journal.pone.0182985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/27/2017] [Indexed: 01/03/2023] Open
Abstract
Human peripheral blood cells are relevant ex vivo models for characterizing diseases and evaluating the pharmacological effects of therapeutic interventions, as they provide a close reflection of an individual pathophysiological state. In this work, a new approach to evaluate the impact of nanoparticles on the three main fractions of human peripheral blood cells by nuclear magnetic resonance spectroscopy is shown. Thus, a comprehensive protocol has been set-up including the separation of blood cells, their in vitro treatment with nanoparticles and the extraction and characterization of metabolites by nuclear magnetic resonance. This method was applied to assess the effect of gold nanoparticles, either coated with chitosan or supported on ceria, on peripheral blood cells from healthy individuals. A clear antioxidant effect was observed for chitosan-coated gold nanoparticles by a significant increase in reduced glutathione, that was much less pronounced for gold-cerium nanoparticles. In addition, the analysis revealed significant alterations of several other pathways, which were stronger for gold-cerium nanoparticles. These results are in accordance with the toxicological data previously reported for these materials, confirming the value of the current methodology.
Collapse
Affiliation(s)
| | | | - Patricia Gutiérrez-Carcedo
- Grup de Recerca en Imatge Mèdica Molecular, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Pineda-Lucena
- Laboratorio de Bioquímica Estructural, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Unidad de Descubrimiento de Fármacos, Instituto de Investigación Sanitaria La Fe, Hospital Universitario i Politécnico La Fe, Valencia, Spain
| | - José Raul Herance
- Grup de Recerca en Imatge Mèdica Molecular, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
60
|
Dencker D, Pedersen F, Engstrøm T, Schroeder TV, Lönn L, Johansson PI, De Backer O. Red blood cell storage duration and long-term mortality in patients undergoing cardiac intervention: a Danish register study. Transfus Med 2017; 27:268-274. [PMID: 28661030 DOI: 10.1111/tme.12435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 05/14/2017] [Accepted: 05/24/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To study the effect of red blood cell (RBC) storage duration on long-term mortality in patients undergoing cardiac intervention. BACKGROUND RBCs undergo numerous structural and functional changes during storage. Observational studies have assessed the association between RBC storage duration and patient outcomes with conflicting results. METHODS Between January 2006 and December 2014, 82 408 patients underwent coronary angiography. Of these, 1856 patients received one to four RBC units within 30 days after this procedure. Patients were allocated according to length of RBC storage duration: short-term (≤11 days), intermediate (IM)-term (12-23 days) and long-term (≥24 days). The study endpoints were 30-day and long-term all-cause mortality. RESULTS A total of 4168 RBC units were given to 1856 patients. The mean RBC storage duration was 8.5 ± 2.1, 17.7 ± 3.4 and 29.9 ± 3.4 days in the short-term, IM-term and long-term storage groups, respectively. There was no difference in baseline characteristics between the groups. The long-term storage group received significantly more units (2.4 ± 1.0 units) as compared to the short-term (2.0 ± 1.0 units; P < 0.001) and IM-term storage group (2.2 ± 1.0 units; P < 0.01). In the survival analysis, there was no significant difference in all-cause mortality between the groups (log-rank: 0.509 for 30-days mortality; 0.493 for 5-year mortality). Additional stratified analysis demonstrated no association between RBC storage duration and long-term mortality. CONCLUSION This study did not find an association between RBC storage duration and 30-days or long-term mortality in patients undergoing cardiac intervention.
Collapse
Affiliation(s)
- D Dencker
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
| | - F Pedersen
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - T Engstrøm
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - T V Schroeder
- Copenhagen Academy for Medical Education and Simulation, Copenhagen, Denmark
| | - L Lönn
- Department of Radiology, Rigshospitalet, Copenhagen, Denmark
| | - P I Johansson
- Capital Region Blood Bank & Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark.,Department of Surgery, University of Texas Health Medical School, Houston, Texas, USA
| | - O De Backer
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
61
|
NEMKOV T, HANSEN KC, D’ALESSANDRO A. A three-minute method for high-throughput quantitative metabolomics and quantitative tracing experiments of central carbon and nitrogen pathways. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:663-673. [PMID: 28195377 PMCID: PMC5364945 DOI: 10.1002/rcm.7834] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 05/07/2023]
Abstract
RATIONALE The implementation of mass spectrometry (MS)-based metabolomics is advancing many areas of biomedical research. The time associated with traditional chromatographic methods for resolving metabolites prior to mass analysis has limited the potential to perform large-scale, highly powered metabolomics studies and clinical applications. METHODS Here we describe a three-minute method for the rapid profiling of central metabolic pathways through UHPLC/MS, tracing experiments in vitro and in vivo, and targeted quantification of compounds of interest using spiked in heavy labeled standards. RESULTS This method has shown to be linear, reproducible, selective, sensitive, and robust for the semi-targeted analysis of central carbon and nitrogen metabolism. Isotopically labeled internal standards are used for absolute quantitation of steady-state metabolite levels and de novo synthesized metabolites in tracing studies. We further propose exploratory applications to biofluids, cell and tissue extracts derived from relevant biomedical/clinical samples. CONCLUSIONS While limited to the analysis of central carbon and nitrogen metabolism, this method enables the analysis of hundreds of samples per day derived from diverse biological matrices. This approach makes it possible to analyze samples from large patient populations for translational research, personalized medicine, and clinical metabolomics applications. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Travis NEMKOV
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, 12801 East 17 Ave, 80045 Aurora, CO, USA
| | - Kirk C. HANSEN
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, 12801 East 17 Ave, 80045 Aurora, CO, USA
| | - Angelo D’ALESSANDRO
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, 12801 East 17 Ave, 80045 Aurora, CO, USA
- Corresponding author: Angelo D’Alessandro, PhD, Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, 12801 East 17th Ave., 80045 Aurora, CO, Phone # 303 724-8495,
| |
Collapse
|
62
|
Srinivasan AJ, Morkane C, Martin DS, Welsby IJ. Should modulation of p50 be a therapeutic target in the critically ill? Expert Rev Hematol 2017; 10:449-458. [PMID: 28402148 DOI: 10.1080/17474086.2017.1313699] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION A defining feature of human hemoglobin is its oxygen binding affinity, quantified by the partial pressure of oxygen at which hemoglobin is 50% saturated (p50), and the variability of this parameter over a range of physiological and environmental states. Modulation of this property of hemoglobin can directly affect the degree of peripheral oxygen offloading and tissue oxygenation. Areas covered: This review summarizes the role of hemoglobin oxygen affinity in normal and abnormal physiology and discusses the current state of the literature regarding artificial modulation of p50. Hypoxic tumors, sickle cell disease, heart failure, and transfusion medicine are discussed in the context of recent advances in hemoglobin oxygen affinity manipulation. Expert commentary: Of particular clinical interest is the possibility of maintaining adequate end-organ oxygen availability in patients with anemia or compromised cardiac function via an increase in systemic p50. This increase in systemic p50 can be achieved with small molecule drugs or a packed red blood cell unit processing variant called rejuvenation, and human trials are needed to better understand the potential clinical benefits to modulating p50.
Collapse
Affiliation(s)
| | - Clare Morkane
- b Department of Anesthesia , Royal Free Hospital , London , UK
| | - Daniel S Martin
- b Department of Anesthesia , Royal Free Hospital , London , UK.,c University College London Centre for Altitude Space and Extreme Environment Medicine , London , UK
| | - Ian J Welsby
- d Department of Anesthesiology and Critical Care , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
63
|
Purinergic control of red blood cell metabolism: novel strategies to improve red cell storage quality. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:535-542. [PMID: 28488967 DOI: 10.2450/2017.0366-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/23/2017] [Indexed: 02/08/2023]
Abstract
Transfusion of stored blood is regarded as one of the great advances in modern medicine. However, during storage in the blood bank, red blood cells (RBCs) undergo a series of biochemical and biomechanical changes that affect cell morphology and physiology and potentially impair transfusion safety and efficacy. Despite reassuring evidence from clinical trials, it is universally accepted that the storage lesion(s) results in the altered physiology of long-stored RBCs and helps explain the rapid clearance of up to one-fourth of long-stored RBCs from the recipient's bloodstream at 24 hours after administration. These considerations explain the importance of understanding and mitigating the storage lesion. With the emergence of new technologies that have enabled large-scale and in-depth screening of the RBC metabolome and proteome, recent studies have provided novel insights into the molecule-level metabolic changes underpinning the accumulation of storage lesions to RBCs in the blood bank and alternative storage strategies to mitigate such lesion(s). These approaches borrow from recent insights on the biochemistry of RBC adaptation to high altitude hypoxia. We recently conducted investigations in genetically modified mice and revealed novel insights into the role of adenosine signalling in response to hypoxia as a previously unrecognised cascade regulating RBC glucose metabolism and increasing O2 release, while decreasing inflammation and tissue injuries in animal models. Here, we will discuss the molecular mechanisms underlying the role of purinergic molecules, including adenosine and adenosine triphosphate in manipulating RBCs and blood vessels in response to hypoxia. We will also speculate about new therapeutic possibilities to improve the quality of stored RBCs and the prognosis after transfusion.
Collapse
|
64
|
Prevention of red cell storage lesion: a comparison of five different additive solutions. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:456-462. [PMID: 28488968 DOI: 10.2450/2017.0371-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND In Europe, red cell concentrates (RCC) are usually stored in SAGM (saline-adenine-glucose-mannitol). During storage, in vitro red cell quality declines, including lowered energy status and increased cell lysis. Recently, several additive solutions (ASs), designed to diminish the decline in in vitro quality during storage, have been developed. These new solutions have mainly been developed to better maintain red blood cell (RBC) 2,3-biphosphoglycerate (2,3 BPG) levels and energy status during storage. High levels of 2,3 BPG allow for better oxygen release while high energy status is necessary for function and survival of RBC in vivo. In a paired study design, RBC ASs were compared for their ability to provide improved in vitro quality during hypothermic storage. MATERIALS AND METHODS For each experiment, 5 whole blood units held overnight were pooled and split. The whole blood units were processed according to the buffy coat method. RBCs were resuspended in either SAGM, PAGGSM, PAG3M, E-Sol 5 or AS-7 and leucoreduced by filtration. RCCs were stored for eight weeks at 2-6 °C and sampled weekly for analysis of in vitro quality parameters. RESULTS Red cell concentrates stored in PAG3M, E-Sol 5 and AS-7 showed significantly higher lactate production and higher levels of intracellular adenosine triphosphate (ATP) and total adenylate. 2,3 BPG levels rapidly declined during storage in SAGM and PAGGSM. The decline in 2,3 BPG was inhibited during storage in E-Sol 5 and AS-7, while in PAG3M, 2,3 BPG level increased above the initial level till day 35 and remained detectable till day 56. Haemolysis was comparable for all ASs until day 35, upon prolonged storage, haemolysis in SAGM was higher than with the other ASs. As compared to SAGM, storage in PAGGSM, PAG3M, E-Sol 5 and AS-7 better maintained morphological properties. DISCUSSION Storage of RBCs in the new generation ASs yield RBCs with more stable metabolite levels and improved overall quality during storage as compared with RBCs stored in SAGM.
Collapse
|
65
|
Rolfsson Ó, Sigurjonsson ÓE, Magnusdottir M, Johannsson F, Paglia G, Guðmundsson S, Bordbar A, Palsson S, Brynjólfsson S, Guðmundsson S, Palsson B. Metabolomics comparison of red cells stored in four additive solutions reveals differences in citrate anticoagulant permeability and metabolism. Vox Sang 2017; 112:326-335. [PMID: 28370161 DOI: 10.1111/vox.12506] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Metabolomics studies have revealed transition points in metabolic signatures of red cells during storage in SAGM, whose clinical significance is unclear. We set out to investigate whether these transition points occur independent of storage media and define differences in the metabolism of red cells in additive solutions. MATERIALS AND METHODS Red cell concentrates were stored in SAGM, AS-1, AS-3 or PAGGSM, and sampled fourteen times spanning Day 1-46. Following quality control, the samples were split into extracellular and intracellular aliquots. These were analysed with ultra-high-performance liquid chromatography coupled to mass spectrometry analysis affording quantitative metabolic profiles of both intra- and extracellular red cell metabolites. RESULTS Differences were observed in glycolysis, purine salvage, glutathione synthesis and citrate metabolism on account of the storage solutions. Donor variability however hindered the accurate characterization of metabolic transition time-points. Intracellular citrate concentrations were increased in red cells stored in AS-3 and PAGGSM media. The metabolism of citrate in red cells in SAGM was subsequently confirmed using 13 C citrate isotope labelling and shown to originate from citrate anticoagulant. CONCLUSION Metabolic signatures that discriminate between 'fresh' and 'old' stored red cells are dependent upon additive solutions. Specifically, the incorporation and metabolism of citrate in additive solutions with lower chloride ion concentration is altered and impacts glycolysis.
Collapse
Affiliation(s)
- Ó Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland.,Medical Department, University of Iceland, Reykjavik, Iceland
| | - Ó E Sigurjonsson
- The Blood Bank, Landspitali-University Hospital, Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - M Magnusdottir
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - F Johannsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland.,Medical Department, University of Iceland, Reykjavik, Iceland
| | - G Paglia
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland.,Center for Biomedicine, European Academy of Bolzano/Bozen, Bolzano, Italy
| | - S Guðmundsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - A Bordbar
- Sinopia Bioscience, San Diego, CA, USA
| | - S Palsson
- Sinopia Bioscience, San Diego, CA, USA
| | - S Brynjólfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - S Guðmundsson
- The Blood Bank, Landspitali-University Hospital, Reykjavik, Iceland
| | - B Palsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
66
|
D'Alessandro A, Gray AD, Szczepiorkowski ZM, Hansen K, Herschel LH, Dumont LJ. Red blood cell metabolic responses to refrigerated storage, rejuvenation, and frozen storage. Transfusion 2017; 57:1019-1030. [PMID: 28295356 DOI: 10.1111/trf.14034] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/10/2016] [Accepted: 12/19/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Storage of red blood cells (RBCs) under blood bank conditions promotes metabolic modulation within the RBC. This "metabolic storage lesion" may affect the quality and safety of the transfused RBCs. The aim of this study is to determine the metabolic changes in stored RBCs over 42 days of routine storage followed by a US Food and Drug Administration-approved method of rejuvenation, freezing, and preparation for transfusion. STUDY DESIGN AND METHODS We exploited a mass spectrometry-based metabolomics approach to monitor 42-day-stored citrate phosphate dextrose/AS-1 RBCs (n = 29) that were rejuvenated, glycerolized and frozen, then thawed and deglycerolized, and held for 24 hours at 1 to 6ºC in saline-glucose. RESULTS Previously reported metabolic alterations were confirmed in 42-day-old RBCs. In this study, in total, 181 (62%) of the biochemical compounds exhibited significant (p ≤ 0.05) change compared with Day 0 values. Rejuvenation restored adenosine triphosphate and 2,3-diphosphoglycerate levels, replenished purine reservoirs, up regulated glycolysis, increased levels of pentose phosphate pathway intermediates, and partially rescued glutathione biosynthesis. Increased levels of lysophospholipid in rejuvenated RBCs suggests the activation of recycling pathways of damaged membrane lipids, in which a total of 167 (57%) biochemical compounds showed significant change compared with Day 42 values. CONCLUSION Rejuvenation reversed over one-half of the metabolic biochemical compounds evaluated compared with Day 42 values, and the compounds were stable through frozen storage and preparation for transfusion. Rejuvenation promoted significant metabolic reprogramming, including the reactivation of energy-generating and antioxidant pathways (the pentose phosphate pathway and glutathione homeostasis), salvage reactions, cofactor reservoirs, and membrane lipid recycling.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Zbigniew M Szczepiorkowski
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Larry J Dumont
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
67
|
The accumulation of lipids and proteins during red blood cell storage: the roles of leucoreduction and experimental filtration. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:131-136. [PMID: 28263170 DOI: 10.2450/2017.0314-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Pre-storage leucoreduction has been universally adopted in most developed countries in Asia, Europe and the Americas. It decreases febrile transfusion reactions, alloimmunisation to HLA antigens, cytomegalovirus exposure, the accumulation of a number of pro-inflammatory mediators in the supernatant, including the accumulation of platelet-and leucocyte-derived proteins and metabolites during routine storage. This review will highlight the lipids and proteins, biological response modifiers (BRMs) that accumulate, their clinical effects in transfused hosts, and methods of mitigation.
Collapse
|
68
|
Duration of red blood cell storage and inflammatory marker generation. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:145-152. [PMID: 28263172 DOI: 10.2450/2017.0343-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 02/08/2023]
Abstract
Red blood cell (RBC) transfusion is a life-saving treatment for several pathologies. RBCs for transfusion are stored refrigerated in a preservative solution, which extends their shelf-life for up to 42 days. During storage, the RBCs endure abundant physicochemical changes, named RBC storage lesions, which affect the overall quality standard, the functional integrity and in vivo survival of the transfused RBCs. Some of the changes occurring in the early stages of the storage period (for approximately two weeks) are reversible but become irreversible later on as the storage is extended. In this review, we aim to decipher the duration of RBC storage and inflammatory marker generation. This phenomenon is included as one of the causes of transfusion-related immunomodulation (TRIM), an emerging concept developed to potentially elucidate numerous clinical observations that suggest that RBC transfusion is associated with increased inflammatory events or effects with clinical consequence.
Collapse
|
69
|
D'Alessandro A, Seghatchian J. Hitchhiker's guide to the red cell storage galaxy: Omics technologies and the quality issue. Transfus Apher Sci 2017; 56:248-253. [PMID: 28343934 DOI: 10.1016/j.transci.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Red blood cell storage in the blood bank makes millions of units of available for transfusion to civilian and military recipients every year. From glass bottles to plastic bags, from anticoagulants to complex additives, from whole blood to leukocyte filtered packed red blood cells: huge strides have been made in the field of blood component processing and storage in the blood bank during the last century. Still, refrigerated preservation of packed red blood cells under blood bank conditions results in the progressive accumulation of a wide series of biochemical and morphological changes to the stored erythrocytes, collectively referred to as the storage lesion(s). Approximately ten years ago, retrospective clinical evidence had suggested that such lesion(s) may be clinically relevant and mediate some of the untoward transfusion-related effects observed especially in some categories of recipients at risk (e.g. massively or chronically transfused recipients). Since then, randomized clinical trials have failed to prospectively detect any signal related to red cell storage duration and increased morbidity and mortality in several categories of recipients, at the limits of the statistical power of these studies. While a good part of the transfusion community has immediately adopted the take-home message "if it isn't broken, don't fix it" (i.e. no change to the standard of practice should be pursued), decision makers have been further questioning whether there may be room for further improvements in this field. Provocatively, we argue that consensus has yet to be unanimously reached on what makes a good quality marker of the red cell storage lesion and transfusion safety/efficacy. In other words, if it is true that "you can't manage what you can't measure", then future advancements in the field of transfusion medicine will necessarily rely on state of the art analytical omics technologies of well-defined quality parameters. Heavily borrowing from Douglas Adam's imaginary repertoire from the world famous "Hitchhiker's guide to the galaxy", we briefly summarize how some of the principles for intergalactic hitchhikers may indeed apply to inform navigation through the complex universe of red cell storage quality, safety and efficacy.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| |
Collapse
|
70
|
Yurkovich JT, Yang L, Palsson BO. Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells. PLoS Comput Biol 2017; 13:e1005424. [PMID: 28264007 PMCID: PMC5358888 DOI: 10.1371/journal.pcbi.1005424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/20/2017] [Accepted: 02/23/2017] [Indexed: 11/18/2022] Open
Abstract
Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites (p < 0.05) in RBC metabolism using only measurements of these five biomarkers. The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. The ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements. While deep-coverage omics data sets are allowing for more complete characterization of biological systems, there has been a concerted effort to identify a subset of measurements that are representative of qualitative network-level behavior. For some systems—like the human red blood cell (RBC)—such biomarkers have already been identified. Using the concentration profiles of these biomarkers as input to a statistical model, we predict quantitative concentration profiles of other metabolites in the RBC network. These results demonstrate that if good biomarkers are available for a biological system, it is possible to use these measurements to gain insight into the quantitative state of the rest of the network.
Collapse
Affiliation(s)
- James T. Yurkovich
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, United States of America
| | - Laurence Yang
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
71
|
D’Alessandro A, Nemkov T, Reisz J, Dzieciatkowska M, Wither MJ, Hansen KC. Omics markers of the red cell storage lesion and metabolic linkage. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:137-144. [PMID: 28263171 PMCID: PMC5336335 DOI: 10.2450/2017.0341-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/28/2016] [Indexed: 01/28/2023]
Abstract
The introduction of omics technologies in the field of Transfusion Medicine has significantly advanced our understanding of the red cell storage lesion. While the clinical relevance of such a lesion is still a matter of debate, quantitative and redox proteomics approaches, as well quantitative metabolic flux analysis and metabolic tracing experiments promise to revolutionise our understanding of the role of blood processing strategies, inform the design and testing of novel additives or technologies (such as pathogen reduction), and evaluate the clinical relevance of donor and recipient biological variability with respect to red cell storability and transfusion outcomes. By reviewing existing literature in this rapidly expanding research endeavour, we highlight for the first time a correlation between metabolic markers of the red cell storage age and protein markers of haemolysis. Finally, we introduce the concept of metabolic linkage, i.e. the appreciation of a network of highly correlated small molecule metabolites which results from biochemical constraints of erythrocyte metabolic enzyme activities. For the foreseeable future, red cell studies will advance Transfusion Medicine and haematology by addressing the alteration of metabolic linkage phenotypes in response to stimuli, including, but not limited to, storage additives, enzymopathies (e.g. glucose 6-phosphate dehydrogenase deficiency), hypoxia, sepsis or haemorrhage.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Julie Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Matthew J. Wither
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
72
|
D'Alessandro A, Zolla L. Proteomic analysis of red blood cells and the potential for the clinic: what have we learned so far? Expert Rev Proteomics 2017; 14:243-252. [PMID: 28162022 DOI: 10.1080/14789450.2017.1291347] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Red blood cells (RBC) are the most abundant host cells in the human body. Mature erythrocytes are devoid of nuclei and organelles and have always been regarded as circulating 'bags of hemoglobin'. The advent of proteomics has challenged this assumption, revealing unanticipated complexity and novel roles for RBCs not just in gas transport, but also in systemic metabolic homeostasis in health and disease. Areas covered: In this review we will summarize the main advancements in the field of discovery mode and redox/quantitative proteomics with respect to RBC biology. We thus focus on translational/clinical applications, such as transfusion medicine, hematology (e.g. hemoglobinopathies) and personalized medicine. Synergy of omics technologies - especially proteomics and metabolomics - are highlighted as a hallmark of clinical metabolomics applications for the foreseeable future. Expert commentary: The introduction of advanced proteomics technologies, especially quantitative and redox proteomics, and the integration of proteomics data with omics information gathered through orthogonal technologies (especially metabolomics) promise to revolutionize many biomedical areas, from hematology and transfusion medicine to personalized medicine and clinical biochemistry.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Lello Zolla
- b Department of Ecological and Biological Sciences , Universita' degli Studi della Tuscia , Viterbo , Italy
| |
Collapse
|
73
|
Forest S, Rapido F, Hod EA. Storage Lesion: Evolving Concepts and Controversies. Respir Med 2017. [DOI: 10.1007/978-3-319-41912-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
74
|
D'Alessandro A, Nemkov T, Bogren LK, Martin SL, Hansen KC. Comfortably Numb and Back: Plasma Metabolomics Reveals Biochemical Adaptations in the Hibernating 13-Lined Ground Squirrel. J Proteome Res 2016; 16:958-969. [PMID: 27991798 DOI: 10.1021/acs.jproteome.6b00884] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hibernation is an evolutionary adaptation that affords some mammals the ability to exploit the cold to achieve extreme metabolic depression (torpor) while avoiding ischemia/reperfusion or hemorrhagic shock injuries. Hibernators cycle periodically out of torpor, restoring high metabolic activity. If understood at the molecular level, the adaptations underlying torpor-arousal cycles may be leveraged for translational applications in critical fields such as intensive care medicine. Here, we monitored 266 metabolites to investigate the metabolic adaptations to hibernation in plasma from 13-lined ground squirrels (57 animals, 9 time points). Results indicate that the periodic arousals foster the removal of potentially toxic oxidative stress-related metabolites, which accumulate in plasma during torpor while replenishing reservoirs of circulating catabolic substrates (free fatty acids and amino acids). Specifically, we identified metabolic fluctuations of basic amino acids lysine and arginine, one-carbon metabolism intermediates, and sulfur-containing metabolites methionine, cysteine, and cystathionine. Conversely, reperfusion injury markers such as succinate/fumarate remained relatively stable across cycles. Considering the cycles of these metabolites with the hibernator's cycling metabolic activity together with their well-established role as substrates for the production of hydrogen sulfide (H2S), we hypothesize that these metabolic fluctuations function as a biological clock regulating torpor to arousal transitions and resistance to reperfusion during arousal.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Lori K Bogren
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Sandra L Martin
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| |
Collapse
|
75
|
Chang AL, Kim Y, Seitz AP, Schuster RM, Pritts TA. pH modulation ameliorates the red blood cell storage lesion in a murine model of transfusion. J Surg Res 2016; 212:54-59. [PMID: 28550922 DOI: 10.1016/j.jss.2016.12.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Prolonged storage of packed red blood cells (pRBCs) induces a series of harmful biochemical and metabolic changes known as the RBC storage lesion. RBCs are currently stored in an acidic storage solution, but the effect of pH on the RBC storage lesion is unknown. We investigated the effect of modulation of storage pH on the RBC storage lesion and on erythrocyte survival after transfusion. METHODS Murine pRBCs were stored in Additive Solution-3 (AS3) under standard conditions (pH, 5.8), acidic AS3 (pH, 4.5), or alkalinized AS3 (pH, 8.5). pRBC units were analyzed at the end of the storage period. Several components of the storage lesion were measured, including cell-free hemoglobin, microparticle production, phosphatidylserine externalization, lactate accumulation, and byproducts of lipid peroxidation. Carboxyfluorescein-labeled erythrocytes were transfused into healthy mice to determine cell survival. RESULTS Compared with pRBCs stored in standard AS3, those stored in alkaline solution exhibited decreased hemolysis, phosphatidylserine externalization, microparticle production, and lipid peroxidation. Lactate levels were greater after storage in alkaline conditions, suggesting that these pRBCs remained more metabolically viable. Storage in acidic AS3 accelerated erythrocyte deterioration. Compared with standard AS3 storage, circulating half-life of cells was increased by alkaline storage but decreased in acidic conditions. CONCLUSIONS Storage pH significantly affects the quality of stored RBCs and cell survival after transfusion. Current erythrocyte storage solutions may benefit from refinements in pH levels.
Collapse
Affiliation(s)
- Alex L Chang
- Department of Surgery, Institute of Military Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Young Kim
- Department of Surgery, Institute of Military Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Aaron P Seitz
- Department of Surgery, Institute of Military Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Rebecca M Schuster
- Department of Surgery, Institute of Military Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Timothy A Pritts
- Department of Surgery, Institute of Military Medicine, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
76
|
Affiliation(s)
- A. D'Alessandro
- Department of Biochemistry and Molecular Genetics; University of Colorado Denver; Aurora CO USA
| |
Collapse
|
77
|
D'Alessandro A, Nemkov T, Yoshida T, Bordbar A, Palsson BO, Hansen KC. Citrate metabolism in red blood cells stored in additive solution-3. Transfusion 2016; 57:325-336. [PMID: 27813142 DOI: 10.1111/trf.13892] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/03/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Red blood cells (RBCs) are thought to have a relatively simple metabolic network compared to other human cell types. Recent proteomics reports challenge the notion that RBCs are mere hemoglobin carriers with limited metabolic activity. Expanding our understanding of RBC metabolism has key implications in many biomedical areas, including transfusion medicine. STUDY DESIGN AND METHODS In-gel digestion coupled with mass spectrometric analysis proteomics approaches were combined with state-of-the-art tracing experiments by incubating leukofiltered RBCs in additive solution-3 for up to 42 days under blood bank conditions, in presence of 13 C1,2,3 -glucose, 2,2,4,4-d-citrate, and 13 C,15 N-glutamine. RESULTS Results indicate that the pentose phosphate pathway/glycolysis ratio increases during storage in additive solution-3. While the majority of supernatant glucose is consumed to fuel glycolysis, incorporation of glucose-derived pentose phosphate moieties was observed in nucleoside monophosphates. Incubation with deuterated citrate indicated that citrate uptake and metabolism contribute to explain the origin of up to approximately 20% to 30% lactate that could not be explained by glucose oxidation and 2,3-diphosphoglycerate consumption alone. Incubation with 13 C,15 N-glutamine showed that glutaminolysis fuels transamination reactions and accumulation of millimolar levels of 5-oxoproline, while de novo glutathione synthesis was not significantly active during refrigerated storage. CONCLUSION Quantitative tracing metabolic experiments revealed that mature RBCs can metabolize other substrates than glucose, such as citrate, an observation relevant to transfusion medicine (i.e., formulation of novel additives), and other research endeavors where metabolic modulation of RBCs opens potential avenues for therapeutic interventions, such as in sickle cell disease.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
78
|
Antonelou MH, Seghatchian J. Insights into red blood cell storage lesion: Toward a new appreciation. Transfus Apher Sci 2016; 55:292-301. [PMID: 27839967 DOI: 10.1016/j.transci.2016.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Red blood cell storage lesion (RSL) is a multifaceted biological phenomenon. It refers to deterioration in RBC quality that is characterized by lethal and sub-lethal, reversible and irreversible defects. RSL is influenced by prestorage variables and it might be associated with variable clinical outcomes. Optimal biopreservation conditions are expected to offer maximum levels of RBC survival and acceptable functionality and bioreactivity in-bag and in vivo; consequently, full appraisal of RSL requires understanding of how RSL changes interact with each other and with the recipient. Recent technological innovation in MS-based omics, imaging, cytometry, small particle and systems biology has offered better understanding of RSL contributing factors and effects. A number of elegant in vivo and in vitro studies have paved the way for the identification of quality control biomarkers useful to predict RSL profile and posttransfusion performance. Moreover, screening tools for the early detection of good or poor "storers" and donors have been developed. In the light of new perspectives, storage time is not the touchstone to rule on the quality of a packed RBC unit. At least by a biochemical standpoint, the metabolic aging pattern during storage may not correspond to the currently fresh/old distinction of stored RBCs. Finally, although each unit of RBCs is probably unique, a metabolic signature of RSL across storage variables might exist. Moving forward from traditional hematologic measures to integrated information on structure, composition, biochemistry and interactions collected in bag and in vivo will allow identification of points for intervention in a transfusion meaningful context.
Collapse
Affiliation(s)
- Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategy, London, UK.
| |
Collapse
|
79
|
D'Alessandro A, Nemkov T, Sun K, Liu H, Song A, Monte AA, Subudhi AW, Lovering AT, Dvorkin D, Julian CG, Kevil CG, Kolluru GK, Shiva S, Gladwin MT, Xia Y, Hansen KC, Roach RC. AltitudeOmics: Red Blood Cell Metabolic Adaptation to High Altitude Hypoxia. J Proteome Res 2016; 15:3883-3895. [PMID: 27646145 DOI: 10.1021/acs.jproteome.6b00733] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro hypoxia through the so-called oxygen-dependent metabolic regulation, which involves the competitive binding of deoxyhemoglobin and glycolytic enzymes to the N-terminal cytosolic domain of band 3. This mechanism promotes the accumulation of 2,3-DPG, stabilizing the deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading through the Bohr effect. Despite in vitro studies, in vivo adaptations to hypoxia have not yet been completely elucidated. Within the framework of the AltitudeOmics study, erythrocytes were collected from 21 healthy volunteers at sea level, after exposure to high altitude (5260 m) for 1, 7, and 16 days, and following reascent after 7 days at 1525 m. UHPLC-MS metabolomics results were correlated to physiological and athletic performance parameters. Immediate metabolic adaptations were noted as early as a few hours from ascending to >5000 m, and maintained for 16 days at high altitude. Consistent with the mechanisms elucidated in vitro, hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine catabolism, glutathione homeostasis, arginine/nitric oxide, and sulfur/H2S metabolism. Metabolic adaptations were preserved 1 week after descent, consistently with improved physical performances in comparison to the first ascendance, suggesting a mechanism of metabolic memory.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver , Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver , Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Kaiqi Sun
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston , Houston, Texas, United States
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston , Houston, Texas, United States
| | - Anren Song
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston , Houston, Texas, United States
| | - Andrew A Monte
- Altitude Research Center, Department of Emergency Medicine, University of Colorado , Anschutz Medical Campus, Aurora, Colorado, United States
| | - Andrew W Subudhi
- Altitude Research Center, Department of Emergency Medicine, University of Colorado , Anschutz Medical Campus, Aurora, Colorado, United States.,Department of Biology, University of Colorado Colorado Springs , Colorado Springs, Colorado, United States
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon , Eugene, Oregon, United States
| | - Daniel Dvorkin
- Altitude Research Center, Department of Emergency Medicine, University of Colorado , Anschutz Medical Campus, Aurora, Colorado, United States
| | - Colleen G Julian
- Altitude Research Center, Department of Emergency Medicine, University of Colorado , Anschutz Medical Campus, Aurora, Colorado, United States
| | - Christopher G Kevil
- Department of Pathology, Centre for Cardiovascular Diseases and Sciences, LSU Health , Shreveport, Louisiana, United States
| | - Gopi K Kolluru
- Department of Pathology, Centre for Cardiovascular Diseases and Sciences, LSU Health , Shreveport, Louisiana, United States
| | - Sruti Shiva
- Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania, United States
| | - Mark T Gladwin
- Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania, United States
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston , Houston, Texas, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver , Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robert C Roach
- Altitude Research Center, Department of Emergency Medicine, University of Colorado , Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
80
|
Pei S, Minhajuddin M, D'Alessandro A, Nemkov T, Stevens BM, Adane B, Khan N, Hagen FK, Yadav VK, De S, Ashton JM, Hansen KC, Gutman JA, Pollyea DA, Crooks PA, Smith C, Jordan CT. Rational Design of a Parthenolide-based Drug Regimen That Selectively Eradicates Acute Myelogenous Leukemia Stem Cells. J Biol Chem 2016; 291:21984-22000. [PMID: 27573247 DOI: 10.1074/jbc.m116.750653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
Although multidrug approaches to cancer therapy are common, few strategies are based on rigorous scientific principles. Rather, drug combinations are largely dictated by empirical or clinical parameters. In the present study we developed a strategy for rational design of a regimen that selectively targets human acute myelogenous leukemia (AML) stem cells. As a starting point, we used parthenolide, an agent shown to target critical mechanisms of redox balance in primary AML cells. Next, using proteomic, genomic, and metabolomic methods, we determined that treatment with parthenolide leads to induction of compensatory mechanisms that include up-regulated NADPH production via the pentose phosphate pathway as well as activation of the Nrf2-mediated oxidative stress response pathway. Using this knowledge we identified 2-deoxyglucose and temsirolimus as agents that can be added to a parthenolide regimen as a means to inhibit such compensatory events and thereby further enhance eradication of AML cells. We demonstrate that the parthenolide, 2-deoxyglucose, temsirolimus (termed PDT) regimen is a potent means of targeting AML stem cells but has little to no effect on normal stem cells. Taken together our findings illustrate a comprehensive approach to designing combination anticancer drug regimens.
Collapse
Affiliation(s)
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045
| | | | | | | | | | - Vinod K Yadav
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, and
| | - Subhajyoti De
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, and
| | - John M Ashton
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045
| | | | | | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas, Little Rock, Arkansas 72205
| | | | | |
Collapse
|
81
|
Biomarkers defining the metabolic age of red blood cells during cold storage. Blood 2016; 128:e43-50. [PMID: 27554084 DOI: 10.1182/blood-2016-06-721688] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/12/2016] [Indexed: 12/28/2022] Open
Abstract
Metabolomic investigations of packed red blood cells (RBCs) stored under refrigerated conditions in saline adenine glucose mannitol (SAGM) additives have revealed the presence of 3 distinct metabolic phases, occurring on days 0-10, 10-18, and after day 18 of storage. Here we used receiving operating characteristics curve analysis to identify biomarkers that can differentiate between the 3 metabolic states. We first recruited 24 donors and analyzed 308 samples coming from RBC concentrates stored in SAGM and additive solution 3. We found that 8 extracellular compounds (lactic acid, nicotinamide, 5-oxoproline, xanthine, hypoxanthine, glucose, malic acid, and adenine) form the basis for an accurate classification/regression model and are able to differentiate among the metabolic phases. This model was then validated by analyzing an additional 49 samples obtained by preparing 7 new RBC concentrates in SAGM. Despite the technical variability associated with RBC processing strategies, verification of these markers was independently confirmed in 2 separate laboratories with different analytical setups and different sample sets. The 8 compounds proposed here highly correlate with the metabolic age of packed RBCs, and can be prospectively validated as biomarkers of the RBC metabolic lesion.
Collapse
|
82
|
Paglia G, Sigurjónsson ÓE, Bordbar A, Rolfsson Ó, Magnusdottir M, Palsson S, Wichuk K, Gudmundsson S, Palsson BO. Metabolic fate of adenine in red blood cells during storage in SAGM solution. Transfusion 2016; 56:2538-2547. [PMID: 27491795 DOI: 10.1111/trf.13740] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Red blood cells (RBCs) are routinely stored and transfused worldwide. Recently, metabolomics have shown that RBCs experience a three-phase metabolic decay process during storage, resulting in the definition of three distinct metabolic phenotypes, occurring between Days 1 and 10, 11 and 17, and 18 and 46. Here we use metabolomics and stable isotope labeling analysis to study adenine metabolism in RBCs. STUDY DESIGN AND METHODS A total of 6 units were prepared in SAGM or modified additive solutions (ASs) containing 15 N5 -adenine. Three of them were spiked with 15 N5 -adenine on Days 10, 14, and 17 during storage. Each unit was sampled 10 times spanning Day 1 to Day 32. At each time point metabolic profiling was performed. RESULTS We increased adenine concentration in the AS and we pulsed the adenine concentration during storage and found that in both cases the RBCs' main metabolic pathways were not affected. Our data clearly show that RBCs cannot consume adenine after 18 days of storage, even if it is still present in the storage solution. However, increased levels of adenine influenced S-adenosylmethionine metabolism. CONCLUSION In this work, we have studied in detail the metabolic fate of adenine during RBC storage in SAGM. Adenine is one of the main substrates used by RBCs, but the metabolic shift observed during storage is not caused by an absence of adenine later in storage. The rate of adenine consumption strongly correlated with duration of storage but not with the amount of adenine present in the AS.
Collapse
Affiliation(s)
- Giuseppe Paglia
- Center for Biomedicine, European Academy of Bolzano/Bozen, Bolzano, Italy. .,Center for Systems Biology, University of Iceland, Reykjavik, Iceland;.
| | - Ólafur E Sigurjónsson
- The Blood Bank, Landspitali-University Hospital, Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland; and
| | | | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | | | - Sirus Palsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland.,Sinopia Biosciences, San Diego, California
| | - Kristine Wichuk
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | | | | |
Collapse
|
83
|
Abstract
In order to maintain adequate inventories of red blood cells (RBCs) for transfusion, RBC units are refrigerator-stored for variable amounts of time prior to transfusion. A subset of RBCs is damaged during prolonged storage. Clearance of these damaged RBCs is hypothesized to induce an inflammatory response in the transfusion recipient. However, there is controversy over whether RBC transfusions are in fact associated with inflammation, and more generally, whether current standards for maximal RBC storage times are safe. We will explore the evidence for and against this outsider adverse event in transfusion: whether certain RBC transfusions do or do not cause inflammation.
Collapse
Affiliation(s)
- Eldad A Hod
- Columbia university college of physicians and surgeons, New York Presbyterian hospital, department of pathology and cell biology, 630, West 168th Street, P&S 14-434, 10032 New York, NY, USA.
| | - Elizabeth A Godbey
- Columbia university college of physicians and surgeons, New York Presbyterian hospital, department of pathology and cell biology, 630, West 168th Street, P&S 14-434, 10032 New York, NY, USA
| |
Collapse
|
84
|
Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Blood 2016; 128:e32-42. [PMID: 27405778 DOI: 10.1182/blood-2016-05-714816] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) plays a key regulatory function in glucose oxidation by mediating fluxes through glycolysis or the pentose phosphate pathway (PPP) in an oxidative stress-dependent fashion. Previous studies documented metabolic reprogramming in stored red blood cells (RBCs) and oxidation of GAPDH at functional residues upon exposure to pro-oxidants diamide and H2O2 Here we hypothesize that routine storage of erythrocyte concentrates promotes metabolic modulation of stored RBCs by targeting functional thiol residues of GAPDH. Progressive increases in PPP/glycolysis ratios were determined via metabolic flux analysis after spiking (13)C1,2,3-glucose in erythrocyte concentrates stored in Additive Solution-3 under blood bank conditions for up to 42 days. Proteomics analyses revealed a storage-dependent oxidation of GAPDH at functional Cys152, 156, 247, and His179. Activity loss by oxidation occurred with increasing storage duration and was progressively irreversible. Irreversibly oxidized GAPDH accumulated in stored erythrocyte membranes and supernatants through storage day 42. By combining state-of-the-art ultra-high-pressure liquid chromatography-mass spectrometry metabolic flux analysis with redox and switch-tag proteomics, we identify for the first time ex vivo functionally relevant reversible and irreversible (sulfinic acid; Cys to dehydroalanine) oxidations of GAPDH without exogenous supplementation of excess pro-oxidant compounds in clinically relevant blood products. Oxidative and metabolic lesions, exacerbated by storage under hyperoxic conditions, were ameliorated by hypoxic storage. Storage-dependent reversible oxidation of GAPDH represents a mechanistic adaptation in stored erythrocytes to promote PPP activation and generate reducing equivalents. Removal of irreversibly oxidized, functionally compromised GAPDH identifies enhanced vesiculation as a self-protective mechanism in ex vivo aging erythrocytes.
Collapse
|
85
|
Tzounakas VL, Kriebardis AG, Georgatzakou HT, Foudoulaki-Paparizos LE, Dzieciatkowska M, Wither MJ, Nemkov T, Hansen KC, Papassideri IS, D'Alessandro A, Antonelou MH. Glucose 6-phosphate dehydrogenase deficient subjects may be better "storers" than donors of red blood cells. Free Radic Biol Med 2016; 96:152-65. [PMID: 27094493 DOI: 10.1016/j.freeradbiomed.2016.04.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/04/2016] [Accepted: 04/09/2016] [Indexed: 02/04/2023]
Abstract
Storage of packed red blood cells (RBCs) is associated with progressive accumulation of lesions, mostly triggered by energy and oxidative stresses, which potentially compromise the effectiveness of the transfusion therapy. Concerns arise as to whether glucose 6-phosphate dehydrogenase deficient subjects (G6PD(-)), ~5% of the population in the Mediterranean area, should be accepted as routine donors in the light of the increased oxidative stress their RBCs suffer from. To address this question, we first performed morphology (scanning electron microscopy), physiology and omics (proteomics and metabolomics) analyses on stored RBCs from healthy or G6PD(-) donors. We then used an in vitro model of transfusion to simulate transfusion outcomes involving G6PD(-) donors or recipients, by reconstituting G6PD(-) stored or fresh blood with fresh or stored blood from healthy volunteers, respectively, at body temperature. We found that G6PD(-) cells store well in relation to energy, calcium and morphology related parameters, though at the expenses of a compromised anti-oxidant system. Additional stimuli, mimicking post-transfusion conditions (37°C, reconstitution with fresh healthy blood, incubation with oxidants) promoted hemolysis and oxidative lesions in stored G6PD(-) cells in comparison to controls. On the other hand, stored healthy RBC units showed better oxidative parameters and lower removal signaling when reconstituted with G6PD(-) fresh blood compared to control. Although the measured parameters of stored RBCs from the G6PD deficient donors appeared to be acceptable, the results from the in vitro model of transfusion suggest that G6PD(-) RBCs could be more susceptible to hemolysis and oxidative stresses post-transfusion. On the other hand, their chronic exposure to oxidative stress might make them good recipients, as they better tolerate exposure to oxidatively damaged long stored healthy RBCs.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens 15784, Greece
| | - Anastasios G Kriebardis
- Laboratory of Hematology and Transfusion Medicine, Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Athens 12210, Greece
| | - Hara T Georgatzakou
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens 15784, Greece
| | | | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Matthew J Wither
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Issidora S Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens 15784, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA.
| | - Marianna H Antonelou
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens 15784, Greece.
| |
Collapse
|
86
|
Tzounakas VL, Kriebardis AG, Georgatzakou HT, Foudoulaki-Paparizos LE, Dzieciatkowska M, Wither MJ, Nemkov T, Hansen KC, Papassideri IS, D'Alessandro A, Antonelou MH. Data on how several physiological parameters of stored red blood cells are similar in glucose 6-phosphate dehydrogenase deficient and sufficient donors. Data Brief 2016; 8:618-27. [PMID: 27437434 PMCID: PMC4939423 DOI: 10.1016/j.dib.2016.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/19/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022] Open
Abstract
This article contains data on the variation in several physiological parameters of red blood cells (RBCs) donated by eligible glucose-6-phosphate dehydrogenase (G6PD) deficient donors during storage in standard blood bank conditions compared to control, G6PD sufficient (G6PD+) cells. Intracellular reactive oxygen species (ROS) generation, cell fragility and membrane exovesiculation were measured in RBCs throughout the storage period, with or without stimulation by oxidants, supplementation of N-acetylcysteine and energy depletion, following incubation of stored cells for 24 h at 37 °C. Apart from cell characteristics, the total or uric acid-dependent antioxidant capacity of the supernatant in addition to extracellular potassium concentration was determined in RBC units. Finally, procoagulant activity and protein carbonylation levels were measured in the microparticles population. Further information can be found in “Glucose 6-phosphate dehydrogenase deficient subjects may be better “storers” than donors of red blood cells” [1].
Collapse
Key Words
- AnnV, annexin V
- CPD, citrate-phosphate-dextrose
- Cell fragility
- FRAP, ferric reducing antioxidant power
- FSC, forward scatter
- G6PD deficiency
- G6PD, glucose-6-phosphate dehydrogenase
- G6PD−, G6PD deficiency
- Hb, hemoglobin
- Hct, hematocrit
- K+, potassium
- MCF, mean corpuscular fragility
- MFI, mechanical fragility index
- MP, micoparticles, microvesicles
- MPPA, microparticles pro-coagulant activity
- Microparticles
- NAC, N-acetylcysteine
- NS, non-stored
- Oxidative stress
- PBS, phosphate buffer saline
- PCI, protein carbonylation index
- PS, phosphatidylserine
- RBC, red blood cell
- RFU, relative fluorescence units
- ROS, reactive oxygen species
- Red blood cell storage lesion
- SAGM, saline-adenine-glucose-mannitol
- SSC, side scatter
- TAC, total antioxidant capacity
- UA-dep AC, uric acid dependent antioxidant capacity
- UA-ind AC, uric acid independent antioxidant capacity
- tBHP, tert-Butyl hydroperoxide
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, NKUA, Athens 15784, Greece
| | - Anastasios G Kriebardis
- Laboratory of Hematology and Transfusion Medicine, Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Athens 12210, Greece
| | - Hara T Georgatzakou
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, NKUA, Athens 15784, Greece
| | | | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Matthew J Wither
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Issidora S Papassideri
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, NKUA, Athens 15784, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine-Anschutz Medical Campus, Aurora, 80045 CO, USA
| | - Marianna H Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, NKUA, Athens 15784, Greece
| |
Collapse
|
87
|
Glynn SA, Klein HG, Ness PM. The red blood cell storage lesion: the end of the beginning. Transfusion 2016; 56:1462-8. [PMID: 27080455 DOI: 10.1111/trf.13609] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Simone A Glynn
- Blood Epidemiology and Clinical Therapeutics Branch, Division of Blood Diseases and Resources, National Heart, Lung, and Blood Institute
| | - Harvey G Klein
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Paul M Ness
- Transfusion Medicine Division, Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
88
|
Champagne DP, Hatle KM, Fortner KA, D'Alessandro A, Thornton TM, Yang R, Torralba D, Tomás-Cortázar J, Jun YW, Ahn KH, Hansen KC, Haynes L, Anguita J, Rincon M. Fine-Tuning of CD8(+) T Cell Mitochondrial Metabolism by the Respiratory Chain Repressor MCJ Dictates Protection to Influenza Virus. Immunity 2016; 44:1299-311. [PMID: 27234056 DOI: 10.1016/j.immuni.2016.02.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 12/27/2022]
Abstract
Mitochondrial respiration is regulated in CD8(+) T cells during the transition from naive to effector and memory cells, but mechanisms controlling this process have not been defined. Here we show that MCJ (methylation-controlled J protein) acted as an endogenous break for mitochondrial respiration in CD8(+) T cells by interfering with the formation of electron transport chain respiratory supercomplexes. Metabolic profiling revealed enhanced mitochondrial metabolism in MCJ-deficient CD8(+) T cells. Increased oxidative phosphorylation and subcellular ATP accumulation caused by MCJ deficiency selectively increased the secretion, but not expression, of interferon-γ. MCJ also adapted effector CD8(+) T cell metabolism during the contraction phase. Consequently, memory CD8(+) T cells lacking MCJ provided superior protection against influenza virus infection. Thus, MCJ offers a mechanism for fine-tuning CD8(+) T cell mitochondrial metabolism as an alternative to modulating mitochondrial mass, an energetically expensive process. MCJ could be a therapeutic target to enhance CD8(+) T cell responses.
Collapse
Affiliation(s)
- Devin P Champagne
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Ketki M Hatle
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Karen A Fortner
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Tina M Thornton
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Rui Yang
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Daniel Torralba
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA
| | - Julen Tomás-Cortázar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio 48160 Bizkaia, Spain
| | - Yong Woong Jun
- Department of Chemistry, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 790-784 Gyeongbuk, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Center for Electro-Photo Behaviors in Advanced Molecular Systems, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 790-784 Gyeongbuk, Republic of Korea
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Laura Haynes
- Center on Aging and Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Juan Anguita
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio 48160 Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Mercedes Rincon
- Program in Immunobiology, Department of Medicine, University of Vermont, Burlington, Vermont, 05405 USA.
| |
Collapse
|
89
|
Bosman GJCGM. The involvement of erythrocyte metabolism in organismal homeostasis in health and disease. Proteomics Clin Appl 2016; 10:774-7. [PMID: 27068218 DOI: 10.1002/prca.201500129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/10/2016] [Accepted: 04/05/2016] [Indexed: 01/28/2023]
Abstract
Historically, study of erythrocyte homeostasis has focussed on the survival of erythrocytes in the blood bank and, especially in pathological circumstances, on the mechanisms leading to accelerated aging and removal from the circulation. Recent proteomic and metabolomic data suggest that erythrocyte metabolism involves more than ATP production and transport of oxygen and carbondioxide; is subject to regulation; and is likely to reflect organismal metabolism. Also, it has become clear that systemic diseases affect erythrocyte homeostasis. The perspectives emerging from these data include new possibilities to manipulate erythrocyte function and survival in vivo, and thereby organismal homeostasis.
Collapse
Affiliation(s)
- Giel J C G M Bosman
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
90
|
Metabolomics of trauma-associated death: shared and fluid-specific features of human plasma vs lymph. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 14:185-94. [PMID: 27177401 DOI: 10.2450/2016.0208-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/17/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Water-soluble components in mesenteric lymph have been implicated in the pathophysiology of acute lung injury and distal organ failure following trauma and haemorrhagic shock. Proteomics analyses have recently shown similarities and specificities of post-trauma/haemorrhagic shock lymph and plasma. We hypothesise that the metabolic phenotype of post-trauma/haemorrhagic shock mesenteric lymph and plasma share common metabolites, but are also characterised by unique features that differentiate these two fluids. MATERIALS AND METHODS Matched samples were collected from 5 brain-dead organ donors who had suffered extreme trauma/haemorrhagic shock. Metabolomics analyses were performed through ultra-high performance liquid chromatography mass spectrometry. RESULTS Overall, 269 metabolites were identified in either fluid. Despite significant overlapping, metabolic phenotypes of matched lymph or plasma from the same patients could be used to discriminate sample fluid or biological patient/traumatic-injury origin. Metabolites showing relatively high levels in both fluids included markers of haemolysis and cell lysis secondary to tissue injury. DISCUSSION High positive correlations were observed between the quantitative levels of markers of systemic metabolic derangement following traumatic/haemorrhagic hypoxaemia, such as succinate, oxoproline, urate and fatty acids. These metabolites might contribute to coagulopathies of trauma and neutrophil priming driving acute lung injury. Future studies will investigate whether the observed compositional specificities mirror functional or pathological adaptations after trauma and haemorrhage.
Collapse
|
91
|
Pertinhez TA, Casali E, Baroni F, Berni P, Baricchi R, Spisni A. A Comparative Study of the Effect of Leukoreduction and Pre-storage Leukodepletion on Red Blood Cells during Storage. Front Mol Biosci 2016; 3:13. [PMID: 27148539 PMCID: PMC4839302 DOI: 10.3389/fmolb.2016.00013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/24/2016] [Indexed: 11/24/2022] Open
Abstract
Blood transfusion is a fundamental therapy in numerous pathological conditions. Regrettably, many clinical reports describe adverse transfusion's drawbacks due to red blood cells alterations during storage. Thus, the possibility for a blood bank to ameliorate the quality of the erythrocyte concentrates units is crucial to improve clinical results and reduce transfusion adverse occurrences. Leukodepletion is a pre-storage treatment recognized to better preserve the quality of red blood cells with respect to leukoreduction. Aim of this work is to unravel the biochemical and biophysical basis that sustain the good clinical outcomes associated to the use of leukodepleted erythrocytes units. Erythrocytes concentrates were prepared as leukoreduced (n = 8) and pre-storage leukodepleted (n = 8) and then studied during 6 weeks in blood bank conditions. Overall, the data indicate that leukodepletion not only provide red blood cells with an appropriate amount of nutrients for a longer time but also selects red blood cells characterized by a more resilient plasma membrane fit to prolong their viability. We believe these results will stimulate new ideas to further optimize the current storage protocols.
Collapse
Affiliation(s)
- Thelma A Pertinhez
- Transfusion Medicine Unit, Arcispedale Santa Maria Nuova - IRCCSReggio Emilia, Italy; Department of Biomedical, Biotechnological and Translational Sciences, University of ParmaParma, Italy
| | - Emanuela Casali
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma Parma, Italy
| | - Fabio Baroni
- Transfusion Medicine Unit, Arcispedale Santa Maria Nuova - IRCCS Reggio Emilia, Italy
| | - Pamela Berni
- Transfusion Medicine Unit, Arcispedale Santa Maria Nuova - IRCCS Reggio Emilia, Italy
| | - Roberto Baricchi
- Transfusion Medicine Unit, Arcispedale Santa Maria Nuova - IRCCS Reggio Emilia, Italy
| | - Alberto Spisni
- Department of Surgical Sciences, University of Parma Parma, Italy
| |
Collapse
|
92
|
de Wolski K, Fu X, Dumont LJ, Roback JD, Waterman H, Odem-Davis K, Howie HL, Zimring JC. Metabolic pathways that correlate with post-transfusion circulation of stored murine red blood cells. Haematologica 2016; 101:578-86. [PMID: 26921359 DOI: 10.3324/haematol.2015.139139] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
Transfusion of red blood cells is a very common inpatient procedure, with more than 1 in 70 people in the USA receiving a red blood cell transfusion annually. However, stored red blood cells are a non-uniform product, based upon donor-to-donor variation in red blood cell storage biology. While thousands of biological parameters change in red blood cells over storage, it has remained unclear which changes correlate with function of the red blood cells, as opposed to being co-incidental changes. In the current report, a murine model of red blood cell storage/transfusion is applied across 13 genetically distinct mouse strains and combined with high resolution metabolomics to identify metabolic changes that correlated with red blood cell circulation post storage. Oxidation in general, and peroxidation of lipids in particular, emerged as changes that correlated with extreme statistical significance, including generation of dicarboxylic acids and monohydroxy fatty acids. In addition, differences in anti-oxidant pathways known to regulate oxidative stress on lipid membranes were identified. Finally, metabolites were identified that differed at the time the blood was harvested, and predict how the red blood cells perform after storage, allowing the potential to screen donors at time of collection. Together, these findings map out a new landscape in understanding metabolic changes during red blood cell storage as they relate to red blood cell circulation.
Collapse
Affiliation(s)
| | - Xiaoyoun Fu
- Bloodworks NW Research Institute, Seattle, WA, USA University of Washington Department of Internal Medicine, Division of Hematology, Seattle, WA, USA
| | | | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | - James C Zimring
- Bloodworks NW Research Institute, Seattle, WA, USA University of Washington Department of Internal Medicine, Division of Hematology, Seattle, WA, USA University of Washington Department of Laboratory Medicine and Department of Internal Medicine, Division of Hematology, Seattle, WA, USA
| |
Collapse
|
93
|
D'Alessandro A, Dzieciatkowska M, Hill RC, Hansen KC. Supernatant protein biomarkers of red blood cell storage hemolysis as determined through an absolute quantification proteomics technology. Transfusion 2016; 56:1329-39. [PMID: 26813021 DOI: 10.1111/trf.13483] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Laboratory technologies have highlighted the progressive accumulation of the so-called "storage lesion," a wide series of alterations to stored red blood cells (RBCs) that may affect the safety and effectiveness of the transfusion therapy. New improvements in the field are awaited to ameliorate this lesion, such as the introduction of washing technologies in the cell processing pipeline. Laboratory studies that have tested such technologies so far rely on observational qualitative or semiquantitative techniques. STUDY DESIGN AND METHODS A state-of-the-art quantitative proteomics approach utilizing quantitative concatamers (QconCAT) was used to simultaneously monitor fluctuations in the abundance of 114 proteins in AS-3 RBC supernatants (n = 5; 11 time points, including before and after leukoreduction, at 3 hours, on Days 1 and 2, and weekly sampling from Day 7 through Day 42). RESULTS Leukoreduction-dependent depletion of plasma proteins was observed at the earliest time points. A subset of proteins showed very high linear correlation (r(2) > 0.9) not only with storage time, but also with absolute levels of hemoglobin α1 and β, a proxy for RBC hemolysis and vesiculation. Linear regression was performed to describe the temporal relationship between these proteins. Our findings suggest a role for supernatant glyceraldehyde-3-phosphate dehydrogenase; peroxiredoxin-1, -2, and -6; carbonic anhydrase-1 and -2; selenium binding protein-1; biliverdin reductase; aminolevulinate dehydratase; and catalase as potential biomarkers of RBC quality during storage. CONCLUSION A targeted proteomics technology revealed novel biomarkers of the RBC storage lesion and promises to become a key analytical readout for the development and testing of alternative cell processing strategies.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
94
|
Bordbar A, Johansson PI, Paglia G, Harrison SJ, Wichuk K, Magnusdottir M, Valgeirsdottir S, Gybel-Brask M, Ostrowski SR, Palsson S, Rolfsson O, Sigurjónsson OE, Hansen MB, Gudmundsson S, Palsson BO. Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes. Transfusion 2016; 56:852-62. [PMID: 26749434 DOI: 10.1111/trf.13460] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND There has been interest in determining whether older red blood cell (RBC) units have negative clinical effects. Numerous observational studies have shown that older RBC units are an independent factor for patient mortality. However, recently published randomized clinical trials have shown no difference of clinical outcome for patients receiving old or fresh RBCs. An overlooked but essential issue in assessing RBC unit quality and ultimately designing the necessary clinical trials is a metric for what constitutes an old or fresh RBC unit. STUDY DESIGN AND METHODS Twenty RBC units were profiled using quantitative metabolomics over 42 days of storage in SAGM with 3- to 4-day time intervals. Metabolic pathway usage during storage was assessed using systems biology methods. The detected time intervals of the metabolic states were compared to clinical outcomes. RESULTS Using multivariate statistics, we identified a nonlinear decay process exhibiting three distinct metabolic states (Days 0-10, 10-17, and 17-42). Hematologic variables traditionally measured in the transfusion setting (e.g., pH, hemolysis, RBC indices) did not distinguish these three states. Systemic changes in pathway usage occurred between the three states, with key pathways changing in both magnitude and direction. Finally, an association was found between the time periods of the metabolic states with the clinical outcomes of more than 280,000 patients in the country of Denmark transfused over the past 15 years and endothelial damage markers in healthy volunteers undergoing autologous transfusions. CONCLUSION The state of RBC metabolism may be a better indicator of cellular quality than traditional hematologic variables.
Collapse
Affiliation(s)
| | - Pär I Johansson
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshopitalet, University of Copenhagen, Copenhagen, Denmark
| | - Giuseppe Paglia
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Scott J Harrison
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kristine Wichuk
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | | | | | - Mikkel Gybel-Brask
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshopitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshopitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sirus Palsson
- Sinopia Biosciences, San Diego, California.,Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Ottar Rolfsson
- Center for Systems Biology, University of Iceland, Reykjavik, Iceland
| | - Olafur E Sigurjónsson
- Blood Bank, Landspitali-University Hospital.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Morten B Hansen
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshopitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
95
|
Sawadogo S, Deneys V. Preparation of red cell concentrates in low-income countries: Efficacy of whole blood settling method by simple gravity in Burkina Faso. ACTA ACUST UNITED AC 2016. [DOI: 10.5348/ijbti-2016-25-oa-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
96
|
Nemkov T, Hansen KC, Dumont LJ, D'Alessandro A. Metabolomics in transfusion medicine. Transfusion 2015; 56:980-93. [PMID: 26662506 DOI: 10.1111/trf.13442] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Abstract
Biochemical investigations on the regulatory mechanisms of red blood cell (RBC) and platelet (PLT) metabolism have fostered a century of advances in the field of transfusion medicine. Owing to these advances, storage of RBCs and PLT concentrates has become a lifesaving practice in clinical and military settings. There, however, remains room for improvement, especially with regard to the introduction of novel storage and/or rejuvenation solutions, alternative cell processing strategies (e.g., pathogen inactivation technologies), and quality testing (e.g., evaluation of novel containers with alternative plasticizers). Recent advancements in mass spectrometry-based metabolomics and systems biology, the bioinformatics integration of omics data, promise to speed up the design and testing of innovative storage strategies developed to improve the quality, safety, and effectiveness of blood products. Here we review the currently available metabolomics technologies and briefly describe the routine workflow for transfusion medicine-relevant studies. The goal is to provide transfusion medicine experts with adequate tools to navigate through the otherwise overwhelming amount of metabolomics data burgeoning in the field during the past few years. Descriptive metabolomics data have represented the first step omics researchers have taken into the field of transfusion medicine. However, to up the ante, clinical and omics experts will need to merge their expertise to investigate correlative and mechanistic relationships among metabolic variables and transfusion-relevant variables, such as 24-hour in vivo recovery for transfused RBCs. Integration with systems biology models will potentially allow for in silico prediction of metabolic phenotypes, thus streamlining the design and testing of alternative storage strategies and/or solutions.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Larry J Dumont
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
97
|
Deterioration of red blood cell mechanical properties is reduced in anaerobic storage. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2015; 14:80-8. [PMID: 26674833 DOI: 10.2450/2015.0241-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/15/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hypothermic storage of red blood cells (RBCs) results in progressive deterioration of the rheological properties of the cells, which may reduce the efficacy of RBC transfusions. Recent studies have suggested that storing RBC units under anaerobic conditions may reduce this storage-induced deterioration. MATERIALS AND METHODS The aim of this study was to compare the rheological properties of conventionally and anaerobically stored RBC and provide a measure of the relationship between oxidative damage to stored RBC and their ability to perfuse microvascular networks. Three different microfluidic devices were used to measure the ability of both types of stored RBC to perfuse artificial microvascular networks. Flow rates of the RBC passing through the entire network (bulk perfusion) and the individual capillaries (capillary perfusion) of the devices were measured on days 2, 21, 42, and 63 of storage. RESULTS The bulk perfusion rates for anaerobically stored RBC were significantly higher than for conventionally stored RBCs over the entire duration of storage for all devices (up to 10% on day 42; up to 14% on day 63). Capillary perfusion rates suggested that anaerobically stored RBC units contained significantly fewer non-deformable RBC capable of transiently plugging microfluidic device capillaries. The number of plugging events caused by these non-deformable RBC increased over the 63 days of hypothermic storage by nearly 16- to 21-fold for conventionally stored units, and by only about 3- to 6-fold for anaerobically stored units. DISCUSSION The perfusion measurements suggest that anaerobically stored RBC retain a greater ability to perfuse networks of artificial capillaries compared to conventionally (aerobically) stored RBC. It is likely that anaerobic storage confers this positive effect on the bulk mechanical properties of stored RBC by significantly reducing the number of non-deformable cells present in the overall population of relatively well-preserved RBC.
Collapse
|
98
|
Dumont LJ, D'Alessandro A, Szczepiorkowski ZM, Yoshida T. CO2 -dependent metabolic modulation in red blood cells stored under anaerobic conditions. Transfusion 2015; 56:392-403. [PMID: 26477888 DOI: 10.1111/trf.13364] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Anaerobic red blood cell (RBC) storage reduces oxidative damage, maintains adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG) levels, and has superior 24-hour recovery at 6 weeks compared to standard storage. This study will determine if removal of CO2 during O2 depletion by gas exchange may affect RBCs during anaerobic storage. STUDY DESIGN AND METHODS This is a matched three-arm study (n = 14): control, O2 and CO2 depleted with Ar (AN), and O2 depleted with 95%Ar/5%CO2 (AN[CO2 ]). RBCs in additives AS-3 or OFAS-3 were evenly divided into three bags, and anaerobic conditions were established by gas exchange. Bags were stored at 1 to 6°C in closed chambers under anaerobic conditions or ambient air, sampled weekly for up to 9 weeks for a panel of in vitro tests. A full metabolomics screening was conducted for the first 4 weeks of storage. RESULTS Purging with Ar (AN) results in alkalization of the RBC and increased glucose consumption. The addition of 5% CO2 to the purging gas prevented CO2 loss with an equivalent starting and final pH and lactate to control bags (p > 0.5, Days 0-21). ATP levels are higher in AN[CO2 ] (p < 0.0001). DPG was maintained beyond 2 weeks in the AN arm (p < 0.0001). Surprisingly, DPG was lost at the same rate in both control and AN[CO2 ] arms (p = 0.6). CONCLUSION Maintenance of ATP in the AN[CO2 ] arm demonstrates that ATP production is not solely a function of the pH effect on glycolysis. CO2 in anaerobic storage prevented the maintenance of DPG, and DPG production appears to be pH dependent. CO2 as well as O2 depletion provides metabolic advantage for stored RBCs.
Collapse
Affiliation(s)
- Larry J Dumont
- Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.,Metabolomics Core, Mass Spectrometry Shared Resource-SOM, University of Colorado Denver, Aurora, Colorado
| | - Zbigniew M Szczepiorkowski
- Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,Pathology, Dartmouth-Hitchcock, Lebanon, New Hampshire
| | | |
Collapse
|
99
|
Peters AL, van Bruggen R, de Korte D, Van Noorden CJ, Vlaar AP. Glucose-6-phosphate dehydrogenase activity decreases during storage of leukoreduced red blood cells. Transfusion 2015; 56:427-32. [DOI: 10.1111/trf.13378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Anna L. Peters
- Laboratory of Experimental Intensive Care and Anesthesia/Intensive Care; Academic Medical Centre
| | - Robin van Bruggen
- Department of Blood Cell Research; Sanquin Blood Bank; Amsterdam the Netherlands
| | - Dirk de Korte
- Department of Blood Cell Research; Sanquin Blood Bank; Amsterdam the Netherlands
- Department Product and Process Development; Sanquin Blood Bank; Amsterdam the Netherlands
| | | | - Alexander P.J. Vlaar
- Laboratory of Experimental Intensive Care and Anesthesia/Intensive Care; Academic Medical Centre
| |
Collapse
|
100
|
Moore HB, Moore EE, Chapman MP, Gonzalez E, Slaughter AL, Morton AP, D'Alessandro A, Hansen KC, Sauaia A, Banerjee A, Silliman CC. Viscoelastic measurements of platelet function, not fibrinogen function, predicts sensitivity to tissue-type plasminogen activator in trauma patients. J Thromb Haemost 2015; 13:1878-87. [PMID: 26256459 PMCID: PMC4838414 DOI: 10.1111/jth.13067] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/22/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Systemic hyperfibrinolysis is a lethal phenotype of trauma-induced coagulopathy. Its pathogenesis is poorly understood. Recent studies have support a central role of platelets in hemostasis and in fibrinolysis regulation, implying that platelet impairment is integral to the development of postinjury systemic hyperfibrinolysis. OBJECTIVE The objective of this study was to identify if platelet function is associated with blood clot sensitivity to fibrinolysis. We hypothesize that platelet impairment of the ADP pathway correlates with fibrinolysis sensitivity in trauma patients. METHODS A prospective observational study of patients meeting the criteria for the highest level of activation at an urban trauma center was performed. Viscoelastic parameters associated with platelet function (maximum amplitude [MA]) were measured with native thrombelastography (TEG), and TEG platelet mapping of the ADP pathway (ADP-MA). The contribution of fibrinogen to clotting was measured with TEG (angle) and the TEG functional fibrinogen (FF) assay (FF-MA). Another TEG assay containing tissue-type plasminogen activator (t-PA) (75 ng mL(-1) ) was used to assess clot sensitivity to an exogenous fibrinolytic stimulus by use of the TEG lysis at 30 min (LY30) variable. Multivariate linear regression was used to identify which TEG variable correlated with t-PA-LY30 (quantification of fibrinolysis sensitivity). RESULTS Fifty-eight trauma patients were included in the analysis, with a median injury severity score of 17 and a base deficit of 6 mEq L(-1) . TEG parameters that significantly predicted t-PA-LY30 were related to platelet function (ADP-MA, P = 0.001; MA, P < 0.001) but not to fibrinogen (FF-MA, P = 0.773; angle, P = 0.083). Clinical predictors of platelet ADP impairment included calcium level (P = 0.001), base deficit (P = 0.001), and injury severity (P = 0.001). RESULTS AND CONCLUSIONS Platelet impairment of the ADP pathway is associated with increased sensitivity to t-PA. ADP pathway inhibition in platelets may be an early step in the pathogenesis of systemic hyperfibrinolysis.
Collapse
Affiliation(s)
- H B Moore
- Department of Surgery, University of Colorado, Aurora, CO, USA
- Denver Health Medical Center, Denver, CO, USA
| | - E E Moore
- Department of Surgery, University of Colorado, Aurora, CO, USA
- Denver Health Medical Center, Denver, CO, USA
| | - M P Chapman
- Department of Surgery, University of Colorado, Aurora, CO, USA
- Denver Health Medical Center, Denver, CO, USA
| | - E Gonzalez
- Department of Surgery, University of Colorado, Aurora, CO, USA
- Denver Health Medical Center, Denver, CO, USA
| | - A L Slaughter
- Department of Surgery, University of Colorado, Aurora, CO, USA
- Denver Health Medical Center, Denver, CO, USA
| | - A P Morton
- Department of Surgery, University of Colorado, Aurora, CO, USA
- Denver Health Medical Center, Denver, CO, USA
| | - A D'Alessandro
- Department of Surgery, University of Colorado, Aurora, CO, USA
| | - K C Hansen
- Department of Surgery, University of Colorado, Aurora, CO, USA
| | - A Sauaia
- Department of Surgery, University of Colorado, Aurora, CO, USA
| | - A Banerjee
- Department of Surgery, University of Colorado, Aurora, CO, USA
| | - C C Silliman
- Department of Surgery, University of Colorado, Aurora, CO, USA
- Bonfils Blood Center, Denver, CO, USA
| |
Collapse
|