51
|
Ribelayga C, Cao Y, Mangel SC. The circadian clock in the retina controls rod-cone coupling. Neuron 2008; 59:790-801. [PMID: 18786362 DOI: 10.1016/j.neuron.2008.07.017] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 04/17/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
Although rod and cone photoreceptor cells in the vertebrate retina are anatomically connected or coupled by gap junctions, a type of electrical synapse, rod-cone electrical coupling is thought to be weak. Using tracer labeling and electrical recording in the goldfish retina and tracer labeling in the mouse retina, we show that the retinal circadian clock, and not the retinal response to the visual environment, controls the extent and strength of rod-cone coupling by activating dopamine D(2)-like receptors in the day, so that rod-cone coupling is weak during the day but remarkably robust at night. The results demonstrate that circadian control of rod-cone electrical coupling serves as a synaptic switch that allows cones to receive very dim light signals from rods at night, but not in the day. The increase in the strength and extent of rod-cone coupling at night may facilitate the detection of large dim objects.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | | | |
Collapse
|
52
|
Dorenbos R, Contini M, Hirasawa H, Gustincich S, Raviola E. Expression of circadian clock genes in retinal dopaminergic cells. Vis Neurosci 2007; 24:573-80. [PMID: 17705893 DOI: 10.1017/s0952523807070538] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 05/26/2007] [Indexed: 11/07/2022]
Abstract
The mammalian neural retina contains single or multiple intrinsic circadian oscillators that can be directly entrained by light cycles. Dopaminergic amacrine (DA) cells represent an especially interesting candidate as a site of the retinal oscillator because of the crucial role of dopamine in light adaptation, and the widespread distribution of dopamine receptors in the retina. We hereby show by single-cell, end-point RT-PCR that retinal DA cells contain the transcripts for six core components of the circadian clock: Bmal1, Clock, Cry1, Cry2, Per1, and Per2. Rod photoreceptors represented a negative control, because they did not appear to contain clock transcripts. We finally confirmed that DA cells contain the protein encoded by the Bmal1 gene by comparing immunostaining of the nuclei of DA cells in the retinas of wildtype and Bmal1-/- mice. It is therefore likely that DA cells contain a circadian clock that anticipates predictable variations in retinal illumination.
Collapse
Affiliation(s)
- Ronald Dorenbos
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
53
|
Ribelayga C, Mangel SC. Tracer coupling between fish rod horizontal cells: modulation by light and dopamine but not the retinal circadian clock. Vis Neurosci 2007; 24:333-44. [PMID: 17640444 DOI: 10.1017/s0952523807070319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 03/21/2007] [Indexed: 11/08/2022]
Abstract
Horizontal cells are second order neurons that receive direct synaptic input from photoreceptors. In teleosts horizontal cells can be divided into two categories, cone-connected and rod-connected. Although the anatomy and physiology of fish cone horizontal cells have been extensively investigated, less is known about rod horizontal cells. This study was undertaken to determine whether light and/or the circadian clock regulate gap junctional coupling between goldfish rod horizontal cells. We used fine-tipped, microelectrode intracellular recording to monitor rod horizontal cells under various visual stimulation conditions, and tracer (biocytin) iontophoresis to visualize their morphology and evaluate the extent of coupling. Under dark-adapted conditions, rod horizontal cells were extensively coupled to cells of like-type (homologous coupling) with an average of approximately 120 cells coupled. Under these conditions, no differences were observed between day, night, the subjective day, and subjective night. In addition, under dark-adapted conditions, application of the dopamine D2-like agonist quinpirole (1 microM), the D2-like antagonist spiperone (10 microM), or the D1-like antagonist SCH23390 (10 microM) had no effect on rod horizontal cell tracer coupling. In contrast, the extent of tracer coupling was reduced by approximately 90% following repetitive light (photopic range) stimulation of the retina or application of the D1-agonist SKF38393 (10 microM) during the subjective day and night. We conclude that similarly to cone horizontal cells, rod horizontal cells are extensively coupled to one another in darkness and that the extent of coupling is dramatically reduced by bright light stimulation or dopamine D1-receptor activation. However, in contrast to cone horizontal cells whose light responses are under the control of the retinal clock, the light responses of rod horizontal cells under dark-adapted conditions were similar during the day, night, subjective day, and subjective night thus demonstrating that they are not under the influence of the circadian clock.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | |
Collapse
|
54
|
Gagné AM, Gagné P, Hébert M. Impact of light therapy on rod and cone functions in healthy subjects. Psychiatry Res 2007; 151:259-63. [PMID: 17376538 DOI: 10.1016/j.psychres.2006.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 06/09/2006] [Accepted: 09/08/2006] [Indexed: 12/01/2022]
Abstract
Light therapy is an effective treatment for patients with seasonal affective disorders and is commonly used at an intensity of 10,000 lx. The aim of this study was to investigate the direct impact of light therapy on cones and rods photoreceptors using the electroretinogram (ERG) technique. Twelve healthy subjects were exposed for 60 min to three light conditions: 10,000 lx, 100 lx and 5 lx. ERG cone and rod luminance response functions were obtained immediately after exposures. Cone function was not affected by any light conditions. Maximal response achieved by the rods was significantly lower following the 100 lx and 10,000 lx conditions when compared with the 5 lx condition. Retinal rod sensitivity was significantly lower in the 10,000 lx condition when compared with the 12 lx condition. A decrease in rod function can readily be observed at 100 lx, that is, at regular indoor lighting. This decrease could be related to the triggering of retinal dopamine production, which would favour day vision over night vision. The further decrease in light sensitivity observed after 60 min at 10,000 lx may be perceived as a protective mechanism of the rod system against bright light.
Collapse
Affiliation(s)
- Anne-Marie Gagné
- Centre de recherche Université Laval Robert-Giffard (CRULRG), 2601 de la Canardière, F4500, Québec, Québec, Canada
| | | | | |
Collapse
|
55
|
Yu CJ, Gao Y, Willis CL, Li P, Tiano JP, Nakamura PA, Hyde DR, Li L. Mitogen-associated protein kinase- and protein kinase A-dependent regulation of rhodopsin promoter expression in zebrafish rod photoreceptor cells. J Neurosci Res 2007; 85:488-96. [PMID: 17183589 DOI: 10.1002/jnr.21157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitogen-associated protein kinase (MAPK)- and protein kinase A (PKA)-dependent signal transductions play important roles in the regulation of gene expression. Both MAPK and PKA pathways can be activated by light exposure. In this study, we investigated the effect of light on MAPK and PKA signal transduction and their roles in the regulation of rhodopsin promoter expression by using transgenic zebrafish [Tg(rhod::GFP)]. The Tg(rhod::GFP) fish express short half-life GFP that is under the transcriptional control of the zebrafish rhodopsin promoter and can therefore be used for in vivo studies of rhodopsin gene transcription in live cells. Blue light plays a role in the regulation of rhodopsin promoter expression via an MAPK-mediated signal transduction cascade. Blue light excites cryptochromes (CRY), which activate the downstream PKC-dependent MAPK signal pathway. White light, on the other hand, regulates rhodopsin promoter expression via a G-protein-coupled cAMP-dependent PKA pathway. White light promotes dopamine release in the retina, which activates dopamine receptors and the downstream PKA pathway. Blocking MAPK signaling diminishes the blue light-induced increases in rhodopsin promoter expression, but this treatment has no effect on white light-mediated rhodopsin promoter expression. Conversely, blocking the PKA pathway diminishes the white light-induced rhodopsin promoter expression but does not affect rhodopsin promoter expression regulated by blue light. Together, the data suggest that MAPK and PKA regulate rhodopsin transcription through parallel signal transduction pathways.
Collapse
Affiliation(s)
- Chuan-Jiang Yu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Zilberman-Peled B, Ron B, Gross A, Finberg JPM, Gothilf Y. A possible new role for fish retinal serotonin-N-acetyltransferase-1 (AANAT1): Dopamine metabolism. Brain Res 2006; 1073-1074:220-8. [PMID: 16427617 DOI: 10.1016/j.brainres.2005.12.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 12/08/2005] [Accepted: 12/08/2005] [Indexed: 11/29/2022]
Abstract
Serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase, AANAT) is the key enzyme in the generation of melatonin rhythms in the pineal gland and retinal photoreceptors. Rhythmic AANAT activity drives rhythmic melatonin production in these tissues. Two AANATs, AANAT1 and AANAT2, are present in teleost fish species. Different spatial expression patterns, enzyme kinetics and substrate preferences suggest that they may have different functions. Enzyme activity assays revealed that recombinant seabream and zebrafish AANAT1s, but not AANAT2s, acetylate dopamine with kinetic characteristics that are similar to those for tryptamine acetylation. High performance liquid chromatography analysis of seabream retinal extracts indicated the presence of N-acetyldopamine. Time-of-day analysis of retinal AANAT activity and concentration of melatonin, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and N-acetyldopamine revealed a daily pattern of retinal melatonin and N-acetyldopamine production that are correlated with retinal AANAT1 activity. In situ hybridization analysis of seabream retinal sections indicated that tyrosine hydroxylase is expressed in the inner nuclear layer (INL) and that AANAT1 is expressed in the outer nuclear layer (ONL) and INL. Together, these observations point to the possibility that dopamine is acetylated by retinal AANAT1 in the INL. Such novel activity of AANAT1 may reflect an important function in the circadian physiology of the retina.
Collapse
Affiliation(s)
- Bina Zilberman-Peled
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
57
|
Huang H, Lee SC, Yang XL. Modulation by melatonin of glutamatergic synaptic transmission in the carp retina. J Physiol 2005; 569:857-71. [PMID: 16239269 PMCID: PMC1464261 DOI: 10.1113/jphysiol.2005.098798] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin is involved in a variety of physiological functions through activating specific receptors coupled to GTP-binding protein. Melatonin and its receptors are abundant in the retina. Here we show for the first time that melatonin modulates glutamatergic synaptic transmission from cones to horizontal cells (HCs) in carp retina. Immunocytochemical data revealed the expression of the MT1 receptor on carp HCs. Whole-cell recordings further showed that melatonin of physiological concentrations potentiated glutamate-induced currents from isolated cone-driven HCs (H1 cells) in a dose-dependent manner, by increasing the efficacy and apparent affinity of the glutamate receptor. The effects of melatonin were reversed by luzindole, but not by K 185, indicating the involvement of the MT1 receptor. Like melatonin, methylene blue (MB), a guanylate cyclase inhibitor, also potentiated the glutamate currents, but internal infusion of cGMP suppressed them. The effects of melatonin were not observed in cGMP-filled and MB-incubated HCs. These results suggest that the melatonin effects may be mediated by decreasing the intracellular concentration of cGMP. Consistent with these observations, melatonin depolarized the membrane potential of H1 cells and reduced their light responses, which could also be blocked by luzindole. These effects of melatonin persisted in the presence of the antagonists of receptors for dopamine, GABA and glycine, indicating a direct action of melatonin on H1 cells. Such modulation by melatonin of glutamatergic transmission from cones to HCs is thought to be in part responsible for circadian changes in light responsiveness of cone HCs in teleost retina.
Collapse
Affiliation(s)
- Hai Huang
- Institute of Neurobiology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | | | | |
Collapse
|
58
|
Zhang DQ, Zhou T, Ruan GX, McMahon DG. Circadian rhythm of Period1 clock gene expression in NOS amacrine cells of the mouse retina. Brain Res 2005; 1050:101-9. [PMID: 15978557 DOI: 10.1016/j.brainres.2005.05.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 05/10/2005] [Accepted: 05/13/2005] [Indexed: 11/19/2022]
Abstract
The vertebrate retina contains self-sustained circadian clocks that broadly influence retinal physiology. In the present study, we have examined the relationship of nitric oxide, GABAergic and glycinergic inner retinal neurons with expression of a reporter for the circadian clock gene Period1 (Per1). Using Per1 : :GFP transgenic mice, we found that 72% of brain nitric oxide synthase (bNOS) expressing amacrine cells (NOS amacrine cells) sampled during the daytime were also immunoreactive for Per1-driven GFP. The number of bright GFP(+) NOS(+) cells was greater at Zeitgeber time (ZT) 10 than at 22, and this pattern persisted in retinas from animals which were placed in constant darkness [Circadian time (CT) 10 vs. 22]. Intensities of GFP-IR for individual NOS amacrine cells were analyzed at ZT4, 10, 16 and 22, with the peak value occurring at ZT10. Similar results were obtained from retinas sampled at CT4, 10, 16 and 22 in constant darkness, indicating that an endogenous circadian clock drives the transcription of the Per1 clock gene within NOS amacrine cells. The predominance of Per1 : :GFP(+) amacrine cells (82%), was immunoreactive to glutamate decarboxylase 65, but no Per1 : :GFP(+) amacrine cells colabeled with a glycine transporter 1 antibody. The results demonstrate circadian rhythms in Per1 promoter activation in nitric oxide (NO) and GABA secreting amacrine cells, and suggest that NO and GABA could be controlled by circadian clock mechanisms in the mammalian retina.
Collapse
Affiliation(s)
- Dao-Qi Zhang
- Department of Biological Sciences, Vanderbilt University, VU Station B, Box 35-1634, Nashville, TN 37235-1634, USA
| | | | | | | |
Collapse
|
59
|
Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS. Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog Retin Eye Res 2005; 24:433-56. [PMID: 15845344 DOI: 10.1016/j.preteyeres.2005.01.003] [Citation(s) in RCA: 247] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circadian clocks are self-sustaining genetically based molecular machines that impose approximately 24h rhythmicity on physiology and behavior that synchronize these functions with the solar day-night cycle. Circadian clocks in the vertebrate retina optimize retinal function by driving rhythms in gene expression, photoreceptor outer segment membrane turnover, and visual sensitivity. This review focuses on recent progress in understanding how clocks and light control arylalkylamine N-acetyltransferase (AANAT), which is thought to drive the daily rhythm in melatonin production in those retinas that synthesize the neurohormone; AANAT is also thought to detoxify arylalkylamines through N-acetylation. The review will cover evidence that cAMP is a major output of the circadian clock in photoreceptor cells; and recent advances indicating that clocks and clock networks occur in multiple cell types of the retina.
Collapse
Affiliation(s)
- P Michael Iuvone
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, rm. 5107, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
60
|
O'Brien J, Nguyen HB, Mills SL. Cone photoreceptors in bass retina use two connexins to mediate electrical coupling. J Neurosci 2004; 24:5632-42. [PMID: 15201336 PMCID: PMC2222551 DOI: 10.1523/jneurosci.1248-04.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrical coupling via gap junctions is a common property of CNS neurons. In retinal photoreceptors, coupling plays important roles in noise filtering, intensity coding, and spatial processing. In many vertebrates, coupling is regulated during the course of light adaptation. To understand the mechanisms of this regulation, we studied photoreceptor gap junction proteins. We found that two connexins were expressed in bass cone photoreceptors. Connexin 35 (Cx35) mRNA was present in many cell types, including photoreceptors and amacrine, bipolar, and a few ganglion cells. Antibodies to Cx35 labeled abundant gap junctions in both the inner and outer plexiform layers. In the outer plexiform layer, numerous plaques colocalized with cone telodendria at crossing contacts and tip-to-tip contacts. Cx34.7 mRNA was found predominantly in the photoreceptor layer, primarily in cones. Cx34.7 immunolabeling was limited to small plaques immediately beneath cone pedicles and did not colocalize with Cx35. Cx34.7 plaques were associated with a dense complex of cone membrane beneath the pedicles, including apparent contacts between telodendria and cone pedicles. Tracer coupling studies of the connexins expressed in HeLa cells showed that coupling through Cx35 gap junctions was reduced by protein kinase A (PKA) activation and enhanced by PKA inhibition through a greater than fivefold activity range. Cx34.7 was too poorly expressed to study. PKA regulation suggests that coupling through Cx35 gap junctions can be controlled dynamically through dopamine receptor pathways during light adaptation. If Cx34.7 forms functional cell-cell channels between cones, it would provide a physically separate pathway for electrical coupling.
Collapse
Affiliation(s)
- John O'Brien
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
61
|
Solessio E, Scheraga D, Engbretson GA, Knox BE, Barlow RB. Circadian Modulation of Temporal Properties of the Rod Pathway in LarvalXenopus. J Neurophysiol 2004; 92:2672-84. [PMID: 15486422 DOI: 10.1152/jn.00344.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian clocks are integral components of visual systems. They help adjust an animal's vision to diurnal changes in ambient illumination. To understand how circadian clocks may adapt visual sensitivity, we investigated the spatial and temporal properties of optomotor responses of young Xenopus laevis tadpoles (Nieuwkoop and Faber, developmental stage 48) using a modified 2-alternative preferential-viewing method. We maintained animals in constant darkness and measured temporal sensitivity during their subjective day and night. We found that their behavioral responses can be explained in terms of 2 mechanisms with different temporal properties. The more sensitive mechanism operates at low temporal frequencies and intermediate wavelengths (λmax= 520 nm), properties consistent with rod signals. Threshold for this mechanism is approximately 0.04 photoisomerizations rod−1s−1, consistent with single-photon detection. A less-sensitive mechanism responds to higher temporal frequencies (cutoff = 12 Hz) and has broad spectral sensitivity (370–720 nm), consistent with multiple classes of cone signals. This cone mechanism does not change, but the cutoff frequency of the more sensitive rod mechanism shifts from 0.35 Hz at night to 1.1 Hz during the subjective day, thereby enhancing the animal's sensitivity to dim rapidly changing stimuli. This day–night shift in rod temporal cutoff frequency cycles in complete darkness, characteristic of an endogenous circadian rhythm. The temporal properties of the behaviorally measured rod mechanism correspond closely with those of the electrophysiologically measured retinal response, indicating that the rod signals are modulated at the level of the outer retina.
Collapse
Affiliation(s)
- Eduardo Solessio
- Department of Ophthalmology and Center for Vision Research, Weiskotten Hall, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
62
|
Ren JQ, Li L. A circadian clock regulates the process of ERG b- and d-wave dominance transition in dark-adapted zebrafish. Vision Res 2004; 44:2147-52. [PMID: 15183681 DOI: 10.1016/j.visres.2004.03.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 03/04/2004] [Indexed: 11/27/2022]
Abstract
In zebrafish, during dark adaptation following bright light adaptation, the dominance of electroretinogram (ERG) b- and d-waves switches. In the early dark adaptation, when visual sensitivity is cone-dominant, both the b- and d-waves are readily recorded. In the late dark adaptation, along with the increase of rod sensitivity, the b-wave becomes dominant whereas the d-wave is gradually lost. The time for the ERG b- and d-wave dominance transition varies between the day and night. The transition requires a longer amount of time in the night and early morning than in the afternoon. This pattern of timing for ERG b- and d-wave dominance transition persists in constant light and can be reversed after exposure to a reversed light-dark cycle. The data suggest that the transition of the dominance of ERG b- and d-waves is regulated by an endogenous circadian clock.
Collapse
Affiliation(s)
- Jason Q Ren
- Department of Physiology, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | | |
Collapse
|
63
|
Hong S, Grossberg S. A neuromorphic model for achromatic and chromatic surface representation of natural images. Neural Netw 2004; 17:787-808. [PMID: 15288898 DOI: 10.1016/j.neunet.2004.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 02/13/2004] [Indexed: 12/01/2022]
Abstract
This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an unsolved problem. Such a process, called 'anchoring' of lightness, has properties including articulation, insulation, configuration, and area effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, and lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism, called the Blurred-Highest-Luminance-As-White rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular RETINEX model.
Collapse
Affiliation(s)
- Simon Hong
- Department of Cognitive and Neural Systems, Center for Adaptive Systems, Boston University, 677 Beacon Street, Boston, MA 02215, USA
| | | |
Collapse
|
64
|
Fan SF, Yazulla S. Inhibitory interaction of cannabinoid CB1 receptor and dopamine D2 receptor agonists on voltage-gated currents of goldfish cones. Vis Neurosci 2004; 21:69-77. [PMID: 15137583 DOI: 10.1017/s0952523804041070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dopamine is a light-adaptive signal that desensitizes the retina, while cannabinoids reportedly increase photosensitivity. The presynaptic membrane of goldfish retinal cones has dopamine D2 receptors and cannabinoid CB1 receptors. This work focused on whether dopamine D2 receptor agonist quinpirole and cannabinoid CB1 receptor agonist WIN 55212-2 (WIN) interacted to modulate voltage-dependent membrane currents of cones. A conventional patch-clamp method was used to record depolarization evoked whole-cell outward currents (Iout) and an inward calcium current (ICa) from the inner segment of cones in goldfish retinal slices. WIN had biphasic actions: low concentrations (<1 μM) increased the currentsviaGs, while higher concentrations (>1 μM) decreased the currentsviaGi/Go. Neither dopamine nor the D2 agonist quinpirole (1–20 μM) had a significant effect on eitherIoutorICa. Quinpirole at 50 μM had a mild suppressive (∼20%) effect onIout. However, quinpirole (<10 μM) completely blocked the enhancement of both currents seen with 0.7 μM WIN. The effect of quinpirole was blocked by sulpiride and by pertussis toxin, indicating that quinpirole was actingviaa D2 receptor-Gi/o coupled mechanism. The suppressive action of 50 μM quinpirole (∼20%) was not additive with the suppressive effect of 3 μM WIN (∼40%). D2 agonistsviaGi/o oppose the action of low concentrations of CB1 agonists actingviaGs to modulate cone membrane currents, suggesting a role in shaping the cone light response and/or sensitivity to changes in ambient light conditions. The nonadditive effect of high concentrations of WIN and quinpirole suggests that both decrease membrane currentsviathe same transduction pathway, Gi/Go protein kinase A (PKA).
Collapse
Affiliation(s)
- Shih-Fang Fan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | | |
Collapse
|
65
|
Ribelayga C, Mangel SC. Absence of circadian clock regulation of horizontal cell gap junctional coupling reveals two dopamine systems in the goldfish retina. J Comp Neurol 2003; 467:243-53. [PMID: 14595771 DOI: 10.1002/cne.10927] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In fish and other vertebrate retinas, although dopamine release is regulated by both light and an endogenous circadian (24-hour) clock, light increases dopamine release to a greater extent than the clock. The clock increases dopamine release during the subjective day so that D2-like receptors are activated. It is not known, however, whether the retinal clock also activates D1 receptors, which display a much lower sensitivity to dopamine in intact tissue. Because activation of the D1 receptors on fish cone horizontal (H1) cells uncouples the gap junctions between the cells, we studied whether the clock regulates the extent of biocytin tracer coupling in the goldfish retina. Tracer coupling between H1 cells was extensive under dark-adapted conditions (low scotopic range) and similar in the subjective day, subjective night, day, and night. An average of approximately 180 cells were coupled in each dark-adapted condition. However, bright light stimulation or application of the D1 agonist SKF38393 (10 microM) dramatically reduced H1 cell coupling. The D2 agonist quinpirole (1 microM) or application of the D1 antagonist SCH23390 (10 microM) and/or the D2 antagonist spiperone (10 microM) had no effect on H1 cell coupling in dark-adapted retinas. These observations demonstrate that H1 cell gap junctional coupling and thus D1 receptor activity are not affected by endogenous dopamine under dark-adapted conditions. The results suggest that two different dopamine systems are present in the goldfish retina. One system is controlled by an endogenous clock that activates low threshold D2-like receptors in the day, whereas the second system is controlled by light and involves activation of higher threshold D1 receptors.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neurobiology, Civitan International Research Center, University of Alabama School of Medicine, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
66
|
Ribelayga C, Wang Y, Mangel SC. A circadian clock in the fish retina regulates dopamine release via activation of melatonin receptors. J Physiol 2003; 554:467-82. [PMID: 14565990 PMCID: PMC1664774 DOI: 10.1113/jphysiol.2003.053710] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although many biochemical, morphological and physiological processes in the vertebrate retina are controlled by a circadian (24 h) clock, the location of the clock and how the clock alters retinal function are unclear. For instance, several observations have suggested that dopamine, a retinal neuromodulator, may play an important role in retinal rhythmicity but the link between dopamine and a clock located within or outside the retina remains to be established. We found that endogenous dopamine release from isolated goldfish retinae cultured in continuous darkness for 56 h clearly exhibited a circadian rhythm with high values during the subjective day. The continuous presence of melatonin (1 nM) in the culture medium abolished the circadian rhythm of dopamine release and kept values constantly low and equal to the night-time values. The selective melatonin antagonist luzindole (1 microM) also abolished the dopamine rhythm but the values were high and equal to the daytime values. Melatonin application during the late subjective day introduced rod input and reduced cone input to fish cone horizontal cells, a state usually observed during the subjective night. In contrast, luzindole application during the subjective night decreased rod input and increased cone input. Prior application of dopamine or spiperone, a selective dopamine D(2)-like antagonist, blocked the above effects of melatonin and luzindole, respectively. These findings indicate that a circadian clock in the vertebrate retina regulates dopamine release by the activation of melatonin receptors and that endogenous melatonin modulates rod and cone pathways through dopamine-mediated D(2)-like receptor activation.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neurobiology, Civitan International Research Center, University of Alabama School of Medicine, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
67
|
Jenkins A, Muñoz M, Tarttelin EE, Bellingham J, Foster RG, Hankins MW. VA opsin, melanopsin, and an inherent light response within retinal interneurons. Curr Biol 2003; 13:1269-78. [PMID: 12906786 DOI: 10.1016/s0960-9822(03)00509-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Although photoreception is best understood in rods and cones, it is increasingly clear that these are not the only photoreceptive cells of the vertebrate retina. While considerable attention has been paid to the role of melanopsin in the generation of intrinsic light sensitivity in the retinal ganglion cells of mammals, nothing is known about the photoreceptive capacity of the horizontal cells of the fish retina in which both VA opsin and melanopsin are expressed. As yet, there has been little more than speculation as to the physiological function of these opsins within local retinal circuit neurons. RESULTS VA opsin and melanopsin have been isolated and localized within the well-characterized cyprinid retina of the roach (Rutilus rutilus). Parallel electrophysiological studies identified a novel subtype of horizontal cell (HC-RSD) characterized by a depolarizing response that fits an opsin photopigment with a lambda(max) of 477 nm. The HC-RSD cells mediate responses to light that are characterized by long integration times, well beyond those observed for rods and cones. Significantly, HC-RSD responses persist when the conventional photoreceptor inputs are saturated by background light. CONCLUSIONS The syncytium of coupled horizontal cells has long been considered to provide a signal of overall retinal irradiance. Our data suggest that this light information is, at least in part, derived from a population of intrinsically photosensitive VA opsin and/or melanopsin horizontal cells.
Collapse
Affiliation(s)
- Aaron Jenkins
- Department of Integrative and Molecular Neuroscience, Division of Neuroscience and Psychological Medicine, Imperial College Faculty of Medicine, Charing Cross Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
68
|
Maaswinkel H, Li L. Olfactory input increases visual sensitivity in zebrafish: a possible function for the terminal nerve and dopaminergic interplexiform cells. J Exp Biol 2003; 206:2201-9. [PMID: 12771169 DOI: 10.1242/jeb.00397] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Centrifugal innervation of the neural retina has been documented in many species. In zebrafish Danio rerio, the only so-far described centrifugal pathway originates from terminal nerve (TN) cell bodies that are located in the olfactory bulb. Most of the TN axons terminate in the forebrain and midbrain, but some project via the optic nerve to the neural retina, where they synapse onto dopaminergic interplexiform cells (DA-IPCs). While the anatomical pathway between the olfactory and visual organs has been described, it is unknown if and how olfactory signals influence visual system functions. We demonstrate here that olfactory input is involved in the modulation of visual sensitivity in zebrafish. As determined by a behavioral assay and by electroretinographic (ERG) recording, zebrafish visual sensitivity was increased upon presentation of amino acids as olfactory stimuli. This effect, however, was observed only in the early morning hours when zebrafish are least sensitive to light. The effect of olfactory input on vision was eliminated after lesion of the olfactory bulbs or after the destruction of DA-IPCs. Intraocular injections of a dopamine D(2) but not a D(1) receptor antagonist blocked the effect of olfactory input on visual sensitivity. Although we cannot exclude the involvement of other anatomical pathways, our data suggest that the TN and DA-IPCs are the prime candidates for olfactory modulation of visual sensitivity.
Collapse
Affiliation(s)
- Hans Maaswinkel
- Departments of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | |
Collapse
|
69
|
Liu Y, Luo FJ, Liang PJ. Dopamine effect on the stimulus pattern related changes in response characteristics of R/G horizontal cells in carp retina. Brain Res 2003; 973:190-5. [PMID: 12738062 DOI: 10.1016/s0006-8993(03)02477-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Repetitive red flashes increased the R/G horizontal cells' red response amplitude and induced a hyperpolarization of the cells' dark membrane potential. These phenomena were eliminated in 6-OHDA pretreated retinas and restored by exogenous dopamine, which suggests the involvement of dopamine receptor activity changes instead of dopamine release changes. Furthermore, the phenomena persisted on D(1) receptor antagonist (SKF-83566) application, whereas they diminished on D(2) receptor antagonist (eticlopride) application, indicating that the mechanism is related to a D(2) receptor, possibly located on photoreceptors.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adrenergic Agents/pharmacology
- Animals
- Carps
- Dopamine/pharmacology
- Dopamine Antagonists/pharmacology
- Drug Interactions
- In Vitro Techniques
- Light
- Membrane Potentials/drug effects
- Neurons/drug effects
- Neurons/physiology
- Oxidopamine/pharmacology
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Retina/cytology
- Retina/drug effects
- Retina/physiology
- Salicylamides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | |
Collapse
|
70
|
Circadian phase-dependent modulation of cGMP-gated channels of cone photoreceptors by dopamine and D2 agonist. J Neurosci 2003. [PMID: 12716922 DOI: 10.1523/jneurosci.23-08-03145.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The affinity of cGMP-gated ion channels (CNGCs) for cGMP in chick retinal cone photoreceptors is under circadian control. Here we report that dopamine (DA) and D2 receptor agonists evoke phase-dependent shifts in the affinity of CNGCs for activating ligand. Inside-out patch recordings from cultured chick cones were performed at circadian time (CT) 4-7 and CT 16-19 on the second day of constant darkness. Exposing intact cells to DA or the D2 agonist quinpirole for 2 hr before patch excision caused a significant increase in the K(D) for cGMP during the night (CT 16-19) but had no effect during the day (CT 4-7). DA or quinpirole treatment had no effect on the Hill slope or the average number of channels per patch. The effect of DA was blocked by the D2 antagonist eticlopride and was not mimicked by D1 agonists or blocked by D1 antagonists. By contrast, a brief (15 min) exposure to DA or quinpirole caused a decrease in K(D) during the subjective day and had no effect during the subjective night. Thus, the effect of D2 agonists depends on both the duration of agonist exposure and the time of day. Application of DA or quinpirole evoked a transient activation of the MAP kinase Erk (extracellular signal-related kinase) during the day but caused a sustained inhibition during the night. Conversely, D2 agonists caused activation of Ca2+/calmodulin-dependent protein kinase II during the night and inhibited this enzyme during the day. A circadian oscillator in cones appears to regulate the nature of the transduction cascade used by D2 receptors.
Collapse
|
71
|
Ko GYP, Ko ML, Dryer SE. Circadian phase-dependent modulation of cGMP-gated channels of cone photoreceptors by dopamine and D2 agonist. J Neurosci 2003; 23:3145-53. [PMID: 12716922 PMCID: PMC2667621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The affinity of cGMP-gated ion channels (CNGCs) for cGMP in chick retinal cone photoreceptors is under circadian control. Here we report that dopamine (DA) and D2 receptor agonists evoke phase-dependent shifts in the affinity of CNGCs for activating ligand. Inside-out patch recordings from cultured chick cones were performed at circadian time (CT) 4-7 and CT 16-19 on the second day of constant darkness. Exposing intact cells to DA or the D2 agonist quinpirole for 2 hr before patch excision caused a significant increase in the K(D) for cGMP during the night (CT 16-19) but had no effect during the day (CT 4-7). DA or quinpirole treatment had no effect on the Hill slope or the average number of channels per patch. The effect of DA was blocked by the D2 antagonist eticlopride and was not mimicked by D1 agonists or blocked by D1 antagonists. By contrast, a brief (15 min) exposure to DA or quinpirole caused a decrease in K(D) during the subjective day and had no effect during the subjective night. Thus, the effect of D2 agonists depends on both the duration of agonist exposure and the time of day. Application of DA or quinpirole evoked a transient activation of the MAP kinase Erk (extracellular signal-related kinase) during the day but caused a sustained inhibition during the night. Conversely, D2 agonists caused activation of Ca2+/calmodulin-dependent protein kinase II during the night and inhibited this enzyme during the day. A circadian oscillator in cones appears to regulate the nature of the transduction cascade used by D2 receptors.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Biology and Biochemistry and Biological Clocks Program, University of Houston, Houston, Texas 77204-5001, USA
| | | | | |
Collapse
|