51
|
Picard F, Bruel D, Servent D, Saba W, Fruchart-Gaillard C, Schöllhorn-Peyronneau MA, Roumenov D, Brodtkorb E, Zuberi S, Gambardella A, Steinborn B, Hufnagel A, Valette H, Bottlaender M. Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study. ACTA ACUST UNITED AC 2006; 129:2047-60. [PMID: 16815873 DOI: 10.1093/brain/awl156] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are involved in a familial form of frontal lobe epilepsy, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In several ADNFLE families, mutations were identified in the nAChR alpha4 or beta2 subunit, which together compose the main cerebral nAChR. Electrophysiological assessment using in vitro expression systems indicated a gain of function of the mutant receptors. However the precise mechanisms by which they contribute to the pathogenesis of a focal epilepsy remain obscure, especially since alpha4beta2 nAChRs are known to be widely distributed within the entire brain. PET study using [18F]-F-A-85380, a high affinity agonist at the alpha4beta2 nAChRs, allows the determination of the regional distribution and density of the nAChRs in healthy volunteers and in ADNFLE patients, thus offering a unique opportunity to investigate some in vivo consequences of the molecular defect. We have assessed nAChR distribution in eight non-smoking ADNFLE patients (from five families) bearing an identified mutation in nAChRs and in seven age-matched non-smoking healthy volunteers using PET and [(18)F]-F-A-85380. Parametric images of volume of distribution (Vd) were generated as the ratio of tissue to plasma radioactivities. The images showed a clear difference in the pattern of the nAChR density in the brains of the patients compared to the healthy volunteers. Vd values revealed a significant increase (between 12 and 21%, P < 0.05) in the ADNFLE patients in the mesencephalon, the pons and the cerebellum when compared to control subjects. Statistical parametric mapping (SPM) was then used to better analyse subtle regional differences. This analysis confirmed clear regional differences between patients and controls: patients had increased nAChR density in the epithalamus, ventral mesencephalon and cerebellum, but decreased nAChR density in the right dorsolateral prefrontal region. In five patients who underwent an additional [(18)F]-fluorodeoxyglucose (FDG) PET experiment, hypometabolism was observed in the neighbouring area of the right orbitofrontal cortex. The demonstration of a regional nAChR density decrease in the prefrontal cortex, despite the known distribution of these receptors throughout the cerebral cortex, is consistent with a focal epilepsy involving the frontal lobe. We also propose that the nAChR density increase in mesencephalon is involved in the pathophysiology of ADNFLE through the role of brainstem ascending cholinergic systems in arousal.
Collapse
Affiliation(s)
- F Picard
- Department of Neurology, University Hospital and Medical School of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Fonck C, Cohen BN, Nashmi R, Whiteaker P, Wagenaar DA, Rodrigues-Pinguet N, Deshpande P, McKinney S, Kwoh S, Munoz J, Labarca C, Collins AC, Marks MJ, Lester HA. Novel seizure phenotype and sleep disruptions in knock-in mice with hypersensitive alpha 4* nicotinic receptors. J Neurosci 2006; 25:11396-411. [PMID: 16339034 PMCID: PMC6725918 DOI: 10.1523/jneurosci.3597-05.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A leucine to alanine substitution (L9'A) was introduced in the M2 region of the mouse alpha4 neuronal nicotinic acetylcholine receptor (nAChR) subunit. Expressed in Xenopus oocytes, alpha4(L9'A)beta2 nAChRs were > or =30-fold more sensitive than wild type (WT) to both ACh and nicotine. We generated knock-in mice with the L9'A mutation and studied their cellular responses, seizure phenotype, and sleep-wake cycle. Seizure studies on alpha4-mutated animals are relevant to epilepsy research because all known mutations linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) occur in the M2 region of alpha4or beta2 subunits. Thalamic cultures and synaptosomes from L9'A mice were hypersensitive to nicotine-induced ion flux. L9'A mice were approximately 15-fold more sensitive to seizures elicited by nicotine injection than their WT littermates. Seizures in L9'A mice differed qualitatively from those in WT: L9'A seizures started earlier, were prevented by nicotine pretreatment, lacked EEG spike-wave discharges, and consisted of fast repetitive movements. Nicotine-induced seizures in L9'A mice were partial, whereas WT seizures were generalized. When L9'A homozygous mice received a 10 mg/kg nicotine injection, there was temporal and phenomenological separation of mutant and WT-like seizures: an initial seizure approximately 20 s after injection was clonic and showed no EEG changes. A second seizure began 3-4 min after injection, was tonic-clonic, and had EEG spike-wave activity. No spontaneous seizures were detected in L9'A mice during chronic video/EEG recordings, but their sleep-wake cycle was altered. Our findings show that hypersensitive alpha4* nicotinic receptors in mice mediate changes in the sleep-wake cycle and nicotine-induced seizures resembling ADNFLE.
Collapse
Affiliation(s)
- Carlos Fonck
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Viitmaa R, Cizinauskas S, Bergamasc LA, Kuusela E, Pascoe P, Teppo AM, Jokinen T, Kivisaari L, Snellman M. Magnetic Resonance Imaging Findings in Finnish Spitz Dogs with Focal Epilepsy. J Vet Intern Med 2006. [DOI: 10.1111/j.1939-1676.2006.tb02861.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
54
|
Andermann F, Kobayashi E, Andermann E. Genetic Focal Epilepsies: State of the Art and Paths to the Future. Epilepsia 2005; 46 Suppl 10:61-7. [PMID: 16359475 DOI: 10.1111/j.1528-1167.2005.00361.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The concept of genetic focal epilepsies is relatively new as compared to awareness of the importance of genetic factors in the generalized epilepsies. However, in the past decade, there has been increasing recognition of families with dominantly inherited partial epilepsies. Better definition of the phenotypes allows identification of distinct syndromes. The main familial focal epilepsies are autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE), familial mesial TLE (FMTLE), familial lateral TLE (FLTLE), and familial partial epilepsy with variable foci (FPEVF). The only genes identified so far are those for ADNFLE and FLTLE. In these disorders, functional studies are the next step and could provide advances leading to clarification of the pathophysiology as well as to new therapeutic strategies. At present, we can provide genetic counseling and a more accurate prognosis for most of the familial focal epilepsies. Greater awareness of the genetic basis in this group of disorders by the treating physicians is essential for identification of new families. This will allow further linkage studies, candidate gene screening, and identification of new genes, which will hopefully result in genetically based prevention and treatment.
Collapse
Affiliation(s)
- Frederick Andermann
- Montreal Neurological Institute and Hospital McGill University, Montreal, Canada.
| | | | | |
Collapse
|
55
|
Abstract
Despite the fact that clinical characteristics of frontal lobe seizures have been recently described better, differentiating seizures of frontal lobe origin from NES on clinical grounds alone is difficult. The difficulty has been compounded by the fact that both inter-ictal and ictal EEG can be normal or nonspecific, and the same is true of imaging studies. A detailed clinical history as well as video monitoring can be helpful diagnostic tools. A multidisciplinary approach is warranted and is at times essential to improve the diagnosis and care of these difficult patients.
Collapse
Affiliation(s)
- Barbara C Jobst
- Section of Neurology, Dartmouth Epilepsy Program, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | |
Collapse
|
56
|
Turnbull J, Lohi H, Kearney JA, Rouleau GA, Delgado-Escueta AV, Meisler MH, Cossette P, Minassian BA. Sacred disease secrets revealed: the genetics of human epilepsy. Hum Mol Genet 2005; 14:2491-500. [PMID: 16049035 DOI: 10.1093/hmg/ddi250] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurons throughout the brain suddenly discharging synchronously and recurrently cause primarily generalized seizures. Discharges localized awhile in one part of the brain cause focal-onset seizures. A genetically determined generalized hyperexcitability had been predicted in primarily generalized seizures, but surprisingly the first epilepsy gene discovered, CHRNA4, was in a focal (frontal lobe)-onset syndrome. Another surprise with CHRNA4 was its encoding of an ion channel present throughout the brain. The reason why CHRNA4 causes focal-onset seizures is unknown. Recently, the second focal (temporal lobe)-onset epilepsy gene, LGI1 (unknown function), was discovered. CHRNA4 led the way to mutation identifications in 15 ion channel genes, most causing primarily generalized epilepsies. Potassium channel mutations cause benign familial neonatal convulsions. Sodium channel mutations cause generalized epilepsy with febrile seizures plus or, if more severe, severe myoclonic epilepsy of infancy. Chloride and calcium channel mutations are found in rare families with the common syndromes childhood absence epilepsy and juvenile myoclonic epilepsy (JME). Mutations in the EFHC1 gene (unknown function) occur in other rare JME families, and yet in other families, associations are present between JME (or other generalized epilepsies) and single nucleotide polymorphisms in the BRD2 gene (unknown function) and the malic enzyme 2 (ME2) gene. Hippocrates predicted the genetic nature of the 'sacred' disease. Genes underlying the 'malevolent' forces seizing 1% of humans have now been revealed. These, however, still account for a mere fraction of the genetic contribution to epilepsy. Exciting years are ahead, in which the genetics of this extremely common, and debilitating, neurological disorder will be solved.
Collapse
Affiliation(s)
- Julie Turnbull
- The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Rodrigues-Pinguet NO, Pinguet TJ, Figl A, Lester HA, Cohen BN. Mutations Linked to Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Affect Allosteric Ca2+ Activation of the α4β2 Nicotinic Acetylcholine Receptor. Mol Pharmacol 2005; 68:487-501. [DOI: 10.1124/mol.105.011155] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
58
|
Tsuneki H, You Y, Toyooka N, Sasaoka T, Nemoto H, Dani JA, Kimura I. Marine Alkaloids (-)-Pictamine and (-)-Lepadin B Block Neuronal Nicotinic Acetylcholine Receptors. Biol Pharm Bull 2005; 28:611-4. [PMID: 15802796 DOI: 10.1248/bpb.28.611] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ascidians (sea squirts) contain a wealth of alkaloids, but their influence over neuronal nicotinic acetylcholine receptors (nAChRs) has not been evaluated. In this study, we examined the effects of two synthetic compounds, (-)-pictamine, a quinolizidine alkaloid from Clavelina picta, and (-)-lepadin B, a decahydroquinoline alkaloid from Clavelina lepadiformis, on major types of neuronal nicotinic receptors (alpha4beta2 and alpha7) expressed in Xenopus oocytes. We found that these alkaloids are potent blockers at these receptors: acetylcholine-elicited currents through alpha4beta2 and alpha7 receptors were blocked by (-)-pictamine with IC(50) values of 1.5 microM and 1.3 microM, respectively, and by (-)-lepadin B with IC(50) values of 0.9 microM and 0.7 microM, respectively. Interestingly, no recovery was observed after the removal of (-)-pictamine in oocytes expressing alpha4beta2 receptors, whereas the inhibited alpha7 currents quickly recovered after the removal of (-)-pictamine. Since there are few compounds that elicit irreversible blocks of alpha4beta2 receptors, (-)-pictamine will be a novel, valuable tool to remove the alpha4beta2-nAChR action from neuronal activities mediated by these two major types of nAChRs.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, Toyama Medical and Pharmaceutical University, Japan.
| | | | | | | | | | | | | |
Collapse
|
59
|
di Corcia G, Blasetti A, De Simone M, Verrotti A, Chiarelli F. Recent advances on autosomal dominant nocturnal frontal lobe epilepsy: "understanding the nicotinic acetylcholine receptor (nAChR)". Eur J Paediatr Neurol 2005; 9:59-66. [PMID: 15843070 DOI: 10.1016/j.ejpn.2004.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 12/09/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is characterized by clusters of nocturnal motor seizures, which are often stereotyped and brief. They vary from simple arousals during sleep to dramatic, bizarre, hyperkinetic events with tonic or dystonic features. A minority of patients may experience aura. This disease is caused by various mutations of genes coding for subunits of neuronal acetylcholine receptor comprising the sodium/potassium ion channel. Recent advances in molecular genetics have provided the means for a better understanding of human epileptogenesis at a molecular level, which can facilitate clinical diagnosis and provides a more rational basis of therapy of this form of epilepsy. In this review, we report the recent data in the genetics of ADNFLE.
Collapse
Affiliation(s)
- G di Corcia
- Department of Pediatrics, Policlinico SS Annunziata, University of Chieti, Via dei Vestini 5, 66013 Chieti, Italy
| | | | | | | | | |
Collapse
|
60
|
Gourfinkel-An I, Baulac S, Nabbout R, Ruberg M, Baulac M, Brice A, LeGuern E. Monogenic idiopathic epilepsies. Lancet Neurol 2004; 3:209-18. [PMID: 15039033 DOI: 10.1016/s1474-4422(04)00706-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Major advances have recently been made in our understanding of the genetic bases of monogenic inherited epilepsies. Direct molecular diagnosis is now possible in numerous inherited symptomatic epilepsies. Progress has also been spectacular with respect to several idiopathic epilepsies that are caused by mutations in genes encoding subunits of ion channels or neurotransmitter receptors. Although these findings concern only a few families and sporadic cases, their potential importance is great, because these genes are implicated in a wide range of more common epileptic disorders and seizure types as well as some rare syndromes. Functional studies of these mutations, while leading to further progress in the neurobiology of the epilepsies, will help to refine genotype-phenotype relations and increase our understanding of responses to antiepileptic drugs. In this article, we review the clinical and genetic data on most of the idiopathic human epilepsies and epileptic contexts in which the association of epilepsy and febrile convulsions is genetically determined.
Collapse
Affiliation(s)
- Isabelle Gourfinkel-An
- Unité d'Epileptologie, Assistace Publique Hôpitaux, and INSERM U 289, Hôpital de la Pitié-Salpêtrière, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
61
|
|
62
|
Abstract
Ion channels are critical for neuronal excitability and provide important targets for anticonvulsant drugs. In the past few years, several monogenetic epilepsies have been linked to mutations in genes encoding either voltage-gated or ligand-gated channels. The recognition that certain epilepsy syndromes are "channelopathies" initiates a new era in understanding the molecular pathophysiology of seizure disorders. This review summarizes recent advances related to this exciting area of investigation.
Collapse
Affiliation(s)
- Alfred L George
- Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|