51
|
Pajski ML, Venton BJ. Adenosine Release Evoked by Short Electrical Stimulations in Striatal Brain Slices is Primarily Activity Dependent. ACS Chem Neurosci 2010; 1:775-787. [PMID: 21218131 DOI: 10.1021/cn100037d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adenosine is an important neuromodulator in the brain. Traditionally, adenosine is thought to arise in the extracellular space by either an extracellular mechanism, where it is formed outside the cell by the breakdown of released ATP, or an intracellular mechanism, where adenosine made inside the cell is transported out. Recently, a proposed third mechanism of activity dependent adenosine release has also been proposed. Here, we used fast-scan cyclic voltammetry to compare the time course and mechanism of adenosine formation evoked by either low- or high-frequency stimulations in striatal rat brain slices. Low-frequency stimulations (5 pulses at 10 Hz) resulted in an average adenosine efflux of 0.22 ± 0.02 μM, while high-frequency stimulations (5 pulses, 60 Hz) evoked 0.36 ± 0.04 μM. Blocking intracellular formation by inhibiting adenosine transporters with S-(4-nitrobenzyl)-6-thioinosine (NBTI) or propentofylline did not decrease release for either frequency, indicating that the release was not due to the intracellular mechanism. Blocking extracellular formation with ARL-67156 reduced low-frequency release about 60%, but did not affect high-frequency release. Both low- and high-frequency stimulated release were almost completely blocked by removal of calcium, indicating activity dependence. Reducing dopamine efflux did not affect adenosine release but inhibiting ionotropic glutamate receptors did, indicating that adenosine release is dependent on downstream effects of glutamate. Therefore, adenosine release after short, high-frequency physiological stimulations is independent of transporter activity or ATP metabolism, and may be due to direct release of adenosine after glutamate receptor activation.
Collapse
Affiliation(s)
- Megan L. Pajski
- Chemistry Department, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - B. Jill Venton
- Chemistry Department, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
52
|
|
53
|
Dale N, Frenguelli BG. Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 2010; 7:160-79. [PMID: 20190959 PMCID: PMC2769001 DOI: 10.2174/157015909789152146] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/15/2009] [Accepted: 05/01/2009] [Indexed: 12/17/2022] Open
Abstract
Eighty years ago Drury & Szent-Györgyi described the actions of adenosine, AMP (adenylic acid) and ATP (pyrophosphoric or diphosphoric ester of adenylic acid) on the mammalian cardiovascular system, skeletal muscle, intestinal and urinary systems. Since then considerable insight has been gleaned on the means by which these compounds act, not least of which in the distinction between the two broad classes of their respective receptors, with their many subtypes, and the ensuing diversity in cellular consequences their activation invokes. These myriad actions are of course predicated on the release of the purines into the extracellular milieu, but, surprisingly, there is still considerable ambiguity as to how this occurs in various physiological and pathophysiological conditions. In this review we summarise the release of ATP and adenosine during seizures and cerebral ischemia and discuss mechanisms by which the purines adenosine and ATP may be released from cells in the CNS under these conditions.
Collapse
Affiliation(s)
- Nicholas Dale
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
54
|
Wall M, Dale N. Activity-dependent release of adenosine: a critical re-evaluation of mechanism. Curr Neuropharmacol 2010; 6:329-37. [PMID: 19587854 PMCID: PMC2701281 DOI: 10.2174/157015908787386087] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/18/2008] [Accepted: 07/31/2008] [Indexed: 12/13/2022] Open
Abstract
Adenosine is perhaps the most important and universal modulator in the brain. The current consensus is that it is primarily produced in the extracellular space from the breakdown of previously released ATP. It is also accepted that it can be released directly, as adenosine, during pathological events primarily by equilibrative transport. Nevertheless, there is a growing realization that adenosine can be rapidly released from the nervous system in a manner that is dependent upon the activity of neurons. We consider three competing classes of mechanism that could explain neuronal activity dependent adenosine release (exocytosis of ATP followed by extracellular conversion to adenosine; exocytotic release of an unspecified transmitter followed by direct non-exocytotic adenosine release from an interposed cell; and direct exocytotic release of adenosine) and outline discriminatory experimental tests to decide between them. We review several examples of activity dependent adenosine release and explore their underlying mechanisms where these are known. We discuss the limits of current experimental techniques in definitively discriminating between the competing models of release, and identify key areas where technologies need to advance to enable definitive discriminatory tests. Nevertheless, within the current limits, we conclude that there is evidence for a mechanism that strongly resembles direct exocytosis of adenosine underlying at least some examples of neuronal activity dependent adenosine release.
Collapse
Affiliation(s)
- Mark Wall
- The Neuroscience Research Group, Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
55
|
Wall M, Eason R, Dale N. Biosensor measurement of purine release from cerebellar cultures and slices. Purinergic Signal 2010; 6:339-48. [PMID: 21103217 PMCID: PMC2947654 DOI: 10.1007/s11302-010-9185-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/05/2010] [Indexed: 02/08/2023] Open
Abstract
We have previously described an action-potential and Ca2+-dependent form of adenosine release in the molecular layer of cerebellar slices. The most likely source of the adenosine is the parallel fibres, the axons of granule cells. Using microelectrode biosensors, we have therefore investigated whether cultured granule cells (from postnatal day 7–8 rats) can release adenosine. Although no purine release could be detected in response to focal electrical stimulation, purine (adenosine, inosine or hypoxanthine) release occurred in response to an increase in extracellular K+ concentration from 3 to 25 mM coupled with addition of 1 mM glutamate. The mechanism of purine release was transport from the cytoplasm via an ENT transporter. This process did not require action-potential firing but was Ca2+dependent. The major purine released was not adenosine, but was either inosine or hypoxanthine. In order for inosine/hypoxanthine release to occur, cultures had to contain both granule cells and glial cells; neither cellular component was sufficient alone. Using the same stimulus in cerebellar slices (postnatal day 7–25), it was possible to release purines. The release however was not blocked by ENT blockers and there was a shift in the Ca2+ dependence during development. This data from cultures and slices further illustrates the complexities of purine release, which is dependent on cellular composition and developmental stage.
Collapse
Affiliation(s)
- Mark Wall
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL UK
| | | | | |
Collapse
|
56
|
Neuromodulation at single presynaptic boutons of cerebellar parallel fibers is determined by bouton size and basal action potential-evoked Ca transient amplitude. J Neurosci 2010; 29:15586-94. [PMID: 20007482 DOI: 10.1523/jneurosci.3793-09.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most presynaptic terminals in the brain contain G-protein-coupled receptors that function to reduce action potential-evoked neurotransmitter release. These neuromodulatory receptors, including those for glutamate, GABA, endocannabinoids, and adenosine, exert a substantial portion of their effect by reducing evoked presynaptic Ca(2+) transients. Many axons form synapses with multiple postsynaptic neurons, but it is unclear whether presynaptic attenuation in these synapses is homogeneous, as suggested by population-level Ca(2+) imaging. We loaded Ca(2+)-sensitive dyes into cerebellar parallel fiber axons and imaged action potential-evoked Ca(2+) transients in individual presynaptic boutons with application of three different neuromodulators and found that adjacent boutons on the same axon showed striking heterogeneity in their strength of attenuation. Moreover, attenuation was predicted by bouton size or basal Ca(2+) response: smaller boutons were more sensitive to adenosine A1 agonist but less sensitive to CB1 agonist, while boutons with high basal action potential-evoked Ca(2+) transient amplitude were more sensitive to mGluR4 agonist. These results suggest that boutons within brief segment of a single parallel fiber axon can have different sensitivities toward neuromodulators and may have different capacities for both short-term and long-term plasticities.
Collapse
|
57
|
Xia J, Chen F, Ye J, Yan J, Wang H, Duan S, Hu Z. Activity-dependent release of adenosine inhibits the glutamatergic synaptic transmission and plasticity in the hypothalamic hypocretin/orexin neurons. Neuroscience 2009; 162:980-8. [DOI: 10.1016/j.neuroscience.2009.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/26/2009] [Accepted: 05/16/2009] [Indexed: 10/20/2022]
|
58
|
Atterbury A, Wall MJ. Adenosine signalling at immature parallel fibre-Purkinje cell synapses in rat cerebellum. J Physiol 2009; 587:4497-508. [PMID: 19651764 DOI: 10.1113/jphysiol.2009.176420] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The purine adenosine is an extracellular signalling molecule involved in a large number of physiological and pathological conditions throughout the mammalian brain. However little is known about how adenosine release and its subsequent clearance change during brain development. We have combined electrophysiology and microelectrode biosensor measurements to investigate the properties of adenosine signalling at early stages of cerebellar development, when parallel fibre-Purkinje cell synapses have recently been formed (postnatal days 9-12). At this stage of development, we could detect little or no inhibitory A(1) receptor tone in basal conditions and during trains of stimuli. Addition of pharmacological agents, to inhibit adenosine clearance, had only minor effects on synaptic transmission suggesting that under basal conditions, the concentration of adenosine moving in and out of the extracellular space is small. Active adenosine release was stimulated with hypoxia and trains of electrical stimuli. Although hypoxia released significant concentrations of adenosine, the release was delayed and slow. No adenosine release could be detected following electrical stimulation in the molecular layer. In conclusion, at this stage of development, although adenosine receptors and the mechanisms of adenosine clearance are present there is very little adenosine release.
Collapse
Affiliation(s)
- Alison Atterbury
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
59
|
Rex CS, Chen LY, Sharma A, Liu J, Babayan AH, Gall CM, Lynch G. Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. ACTA ACUST UNITED AC 2009; 186:85-97. [PMID: 19596849 PMCID: PMC2712993 DOI: 10.1083/jcb.200901084] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The releasable factor adenosine blocks the formation of long-term potentiation (LTP). These experiments used this observation to uncover the synaptic processes that stabilize the potentiation effect. Brief adenosine infusion blocked stimulation-induced actin polymerization within dendritic spines along with LTP itself in control rat hippocampal slices but not in those pretreated with the actin filament stabilizer jasplakinolide. Adenosine also blocked activity-driven phosphorylation of synaptic cofilin but not of synaptic p21-activated kinase (PAK). A search for the upstream origins of these effects showed that adenosine suppressed RhoA activity but only modestly affected Rac and Cdc42. A RhoA kinase (ROCK) inhibitor reproduced adenosine's effects on cofilin phosphorylation, spine actin polymerization, and LTP, whereas a Rac inhibitor did not. However, inhibitors of Rac or PAK did prolong LTP's vulnerability to reversal by latrunculin, a toxin which blocks actin filament assembly. Thus, LTP induction initiates two synaptic signaling cascades: one (RhoA-ROCK-cofilin) leads to actin polymerization, whereas the other (Rac-PAK) stabilizes the newly formed filaments.
Collapse
Affiliation(s)
- Christopher S Rex
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
60
|
Kuo JS, Huang YP, Chiu YT, Lin NN, Cheng CC, Hung YW, Lee TJF, Gong CL. Glutamate release upon purinergic action in the dorsal facial area of the medulla increases blood flow in the common carotid artery in cats. Neuroscience 2009; 163:898-908. [PMID: 19559757 DOI: 10.1016/j.neuroscience.2009.06.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/22/2009] [Accepted: 06/20/2009] [Indexed: 11/16/2022]
Abstract
Interactions of glutamatergic and purinergic actions in the medulla regulate important cardiovascular functions. The glutamatergic action in dorsal facial area (DFA) of the medulla increases blood flow of common carotid artery (CCA) in cats. We hypothesized that interactions of glutamatergic and purinergic actions in the DFA may regulate the CCA blood flow. Purinergic and glutamatergic agonists and antagonists were microinjected into the DFA through a four-barrel tubing in anesthetized cats. Drug effects were evaluated by changes in the CCA blood flow. Microinjection with 20 nmol ATP or alpha,beta-methyleneATP (alpha,beta-MeATP, a P2 purinergic receptor agonist) induced an increase of the CCA blood flow. This increase was dose-dependently reduced by prior administration with 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX, a specific P1 purinergic receptor antagonist), or pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, a selective P2 purinergic receptor antagonist) as well as with MK-801 (a non-competitive NMDA receptor antagonist) or glutamate diethyl ester (GDEE, a competitive AMPA/kainate receptor antagonist). It was almost completely blocked by administrations with combined maximal doses of P1 and P2 receptor antagonists as well as NMDA and AMPA receptor antagonists. Nevertheless, P1 receptor agonist induced only mild and poorly reproducible increase in the CCA blood flow. In conclusion, prominent P2 and minor P1 purinergic receptors appear to be present in the DFA; the purinergic activation can mediate a release of glutamate that stimulates NMDA and AMPA to induce the increase of the CCA blood flows. These findings may provide important information for developing therapeutic strategy for diseases involving the CCA blood flow, such as hypertensive disease and cerebral ischemia.
Collapse
Affiliation(s)
- J-S Kuo
- Neuro-Medical Scientific Center and Center for Vascular Medicine, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Courjaret R, Tröger M, Deitmer JW. Suppression of GABA input by A1 adenosine receptor activation in rat cerebellar granule cells. Neuroscience 2009; 162:946-58. [PMID: 19477241 DOI: 10.1016/j.neuroscience.2009.05.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/07/2009] [Accepted: 05/21/2009] [Indexed: 12/01/2022]
Abstract
Synaptic transmission has been shown to be modulated by purinergic receptors. In the cerebellum, spontaneous inhibitory input to Purkinje neurons is enhanced by ATP via P2 receptors, while evoked excitatory input via the granule cell parallel fibers is reduced by presynaptic P1 (A1) adenosine receptors. We have now studied the modulation of the complex GABAergic input to granule cells by the purinergic receptor agonists ATP and adenosine in acute rat cerebellar tissue slices using the whole-cell patch-clamp technique. Our experiments indicate that ATP and adenosine substantially reduce the bicuculline- and gabazine-sensitive GABAergic input to granule cells. Both phasic and tonic inhibitory components were reduced leading to an increased excitability of granule cells. The effect of ATP and adenosine could be blocked by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), but not by other P1 and P2 receptor antagonists, indicating that it was mediated by activation of A1 adenosine receptors. Our results suggest that, in the cerebellar network, A1 receptor activation, known to decrease the excitatory output of granule cells, also increases their excitability by reducing their complex GABAergic input. These findings extend our knowledge on purinergic receptors, mediating multiple modulations at both inhibitory and excitatory input and output sites in the cerebellar network.
Collapse
Affiliation(s)
- R Courjaret
- Abteilung für Allgemeine Zoologie, Fachbereich Biologie, Universität Kaiserslautern, Postfach 3049, Erwin-Schrödinger-strasse 13, D-67653, Kaiserslautern, Germany.
| | | | | |
Collapse
|
62
|
Etherington LAV, Patterson GE, Meechan L, Boison D, Irving AJ, Dale N, Frenguelli BG. Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology 2009; 56:429-37. [PMID: 18957298 PMCID: PMC9972962 DOI: 10.1016/j.neuropharm.2008.09.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 09/16/2008] [Accepted: 09/22/2008] [Indexed: 12/20/2022]
Abstract
Adenosine is an endogenous inhibitor of excitatory synaptic transmission with potent anticonvulsant properties in the mammalian brain. Given adenosine's important role in modulating synaptic transmission, several mechanisms exist to regulate its extracellular availability. One of these is the intracellular enzyme adenosine kinase (ADK), which phosphorylates adenosine to AMP. We have investigated the role that ADK plays in regulating the presence and effects of extracellular adenosine in area CA1 of rat hippocampal slices. Inhibition of ADK activity with 5'-iodotubercidin (IODO; 5 muM) raised extracellular adenosine, as measured with adenosine biosensors, and potently inhibited field excitatory post-synaptic potentials (fEPSPs) in an adenosine A(1)R-dependent manner. In nominally Mg(2+)-free aCSF, which facilitated the induction of electrically-evoked epileptiform activity, adenosine biosensor recordings revealed that seizures were accompanied by the transient release of adenosine. Under these conditions, IODO also inhibited the fEPSP and greatly suppressed epileptiform activity evoked by brief, high-frequency stimulation. During spontaneous seizures evoked by the A(1)R antagonist CPT, adenosine release was unaffected by IODO. This suggests that ADK activity does not limit activity-dependent adenosine release. On the basis of strong ADK immunoreactivity in GFAP-positive cells, astrocytes are likely to play a key role in regulating basal adenosine levels. It is this action of ADK on the basal adenosine tone that is permissive to seizure activity, and, by extension, other forms of activity-dependent neuronal activity such as synaptic plasticity.
Collapse
Affiliation(s)
- Lori-An V. Etherington
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK
| | - Graham E. Patterson
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK
| | - Louise Meechan
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK
| | - Detlev Boison
- RS Dow Neurobiology Laboratories, Legacy Research, 1225 NE 2nd Avenue, Portland, OR 97232-2003, USA
| | - Andrew J. Irving
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK
| | - Nicholas Dale
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Bruno G. Frenguelli
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK,Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK,Correspondence to: Bruno G. Frenguelli, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK. Tel.: +44 02476 150591; fax: +44 02476 523701. (B.G. Frenguelli)
| |
Collapse
|
63
|
Kramár EA, Chen LY, Rex CS, Gall CM, Lynch G. Estrogen's Place in the Family of Synaptic Modulators. MOLECULAR AND CELLULAR PHARMACOLOGY 2009; 1:258-262. [PMID: 20419049 PMCID: PMC2858427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Estrogen, in addition to its genomic effects, triggers rapid synaptic changes in hippocampus and cortex. Here we summarize evidence that the acute actions of the steroid arise from actin signaling cascades centrally involved in long-term potentiation (LTP). A 10-min infusion of E2 reversibly increased fast EPSPs and promoted theta burst-induced LTP within adult hippocampal slices. The latter effect reflected a lowered threshold and an elevated ceiling for the potentiation effect. E2's actions on transmission and plasticity were completely blocked by latrunculin, a toxin that prevents actin polymerization. E2 also caused a reversible increase in spine concentrations of filamentous (F-) actin and markedly enhanced polymerization caused by theta burst stimulation (TBS). Estrogen activated the small GTPase RhoA, but not the related GTPase Rac, and phosphorylated (inactivated) synaptic cofilin, an actin severing protein targeted by RhoA. An inhibitor of RhoA kinase (ROCK) thoroughly suppressed the synaptic effects of E2. Collectively, these results indicate that E2 engages a RhoA >ROCK> cofilin> actin pathway also used by brain-derived neurotrophic factor and adenosine, and therefore belongs to a family of 'synaptic modulators' that regulate plasticity. Finally, we describe evidence that the acute signaling cascade is critical to the depression of LTP produced by ovariectomy.
Collapse
Affiliation(s)
- Enikö A. Kramár
- Department of Psychiatry and Human Behavior, University of California, Irvine, California
| | - Lulu Y. Chen
- Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Christopher S. Rex
- Department of Psychiatry and Human Behavior, University of California, Irvine, California
| | - Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, California
- Department of Anatomy and Neurobiology, University of California, Irvine, California
| |
Collapse
|
64
|
Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci 2008; 32:19-29. [PMID: 19008000 DOI: 10.1016/j.tins.2008.10.001] [Citation(s) in RCA: 612] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 12/15/2022]
Abstract
Purinergic receptors, represented by several families, are arguably the most abundant receptors in living organisms and appeared early in evolution. After slow acceptance, purinergic signalling in both peripheral and central nervous systems is a rapidly expanding field. Here, we emphasize purinergic co-transmission, mechanisms of release and breakdown of ATP, ion channel and G-protein-coupled-receptor subtypes for purines and pyrimidines, the role of purines and pyrimidines in neuron-glial communication and interactions of this system with other transmitter systems. We also highlight recent data involving purinergic signalling in pathological conditions, including pain, trauma, ischaemia, epilepsy, migraine, psychiatric disorders and drug addiction, which we expect will lead to the development of therapeutic strategies for these disorders with novel mechanisms of action.
Collapse
Affiliation(s)
- Maria P Abbracchio
- Department of Pharmacological Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, via Balzaretti 9, University of Milan, 20133-Milan, Italy
| | | | | | | |
Collapse
|
65
|
Wall MJ, Wigmore G, Lopatár J, Frenguelli BG, Dale N. The novel NTPDase inhibitor sodium polyoxotungstate (POM-1) inhibits ATP breakdown but also blocks central synaptic transmission, an action independent of NTPDase inhibition. Neuropharmacology 2008; 55:1251-8. [PMID: 18768144 DOI: 10.1016/j.neuropharm.2008.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/07/2008] [Accepted: 08/06/2008] [Indexed: 11/25/2022]
Abstract
Understanding the mechanisms and properties of purinergic signalling would be greatly assisted by the discovery of subtype selective and potent inhibitors of the NTPDase enzymes, which metabolise nucleotides such as ATP and ADP in the extracellular space. Currently ARL 67156 is the best available NTPDase inhibitor, but its relatively poor efficacy means that negative results are difficult to interpret. POM-1 (sodium polyoxotungstate) is a novel NTPDase inhibitor, which has shown promising results with the inhibition of recombinant NTPDases 1, 2 and 3. We have tested the effectiveness and physiological effects of POM-1 with cerebellar and hippocampal slices. Using the malachite green phosphate assay, HPLC and biosensor measurements we have found that POM-1 is more effective at blocking ATP breakdown in cerebellar slices than ARL 67156. The site of inhibition is at the first step of the breakdown cascade (conversion of ATP to ADP) and the effects of POM-1 appear readily reversible. However, POM-1 has multiple effects on synaptic transmission. At the cerebellar parallel fibre-Purkinje cell (PF) synapse POM-1 produced a long lasting inhibition of transmission, which was preceded in a minority of synapses by a transient increase in PF excitatory postsynaptic potential (EPSP) amplitude (approximately 20%). This increase in PF EPSP amplitude appears to result from a reduction in the tonic activation of presynaptic A1 receptors, consistent with POM-1 preventing the breakdown of ATP to adenosine. The reduction in PF EPSP amplitude does not however appear to result from NTPDase inhibition as it persists when both adenosine and ATP (P2Y and P2X) receptors are blocked. An increase in paired pulse ratio and a reduction in presynaptic volley amplitude suggest that there is a presynaptic component of POM-1 action which reduces glutamate release. POM-1 produced similar inhibition at climbing fibre synapses and at hippocampal CA1 pyramidal synapses. Thus although POM-1 is more effective than ARL 67156 at blocking ATP breakdown its usefulness is limited by off-target actions on synaptic transmission.
Collapse
Affiliation(s)
- Mark J Wall
- Department of Biological Sciences, University of Warwick, Gibbet Hill, Warwickshire, Coventry CV4 7AL, United Kingdom.
| | | | | | | | | |
Collapse
|
66
|
Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 2008; 7:575-90. [PMID: 18591979 DOI: 10.1038/nrd2605] [Citation(s) in RCA: 460] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purines have key roles in neurotransmission and neuromodulation, with their effects being mediated by the purine and pyrimidine receptor subfamilies, P1, P2X and P2Y. Recently, purinergic mechanisms and specific receptor subtypes have been shown to be involved in various pathological conditions including brain trauma and ischaemia, neurodegenerative diseases involving neuroimmune and neuroinflammatory reactions, as well as in neuropsychiatric diseases, including depression and schizophrenia. This article reviews the role of purinergic signalling in CNS disorders, highlighting specific purinergic receptor subtypes, most notably A(2A), P2X(4) and P2X(7), that might be therapeutically targeted for the treatment of these conditions.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
67
|
Lauro C, Di Angelantonio S, Cipriani R, Sobrero F, Antonilli L, Brusadin V, Ragozzino D, Limatola C. Activity of adenosine receptors type 1 Is required for CX3CL1-mediated neuroprotection and neuromodulation in hippocampal neurons. THE JOURNAL OF IMMUNOLOGY 2008; 180:7590-6. [PMID: 18490761 DOI: 10.4049/jimmunol.180.11.7590] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The chemokine fractalkine (CX(3)CL1) is constitutively expressed by central neurons, regulating microglial responses including chemotaxis, activation, and toxicity. Through the activation of its own specific receptor, CX(3)CR1, CX(3)CL1 exerts both neuroprotection against glutamate (Glu) toxicity and neuromodulation of the glutamatergic synaptic transmission in hippocampal neurons. Using cultured hippocampal neuronal cell preparations, obtained from CX(3)CR1(-/-) (CX(3)CR1(GFP/GFP)) mice, we report that these same effects are mimicked by exposing neurons to a medium conditioned with CX(3)CL1-treated mouse microglial cell line BV2 (BV2-st medium). Furthermore, CX(3)CL1-induced neuroprotection from Glu toxicity is mediated through the adenosine receptor 1 (AR(1)), being blocked by neuronal cell preparations treatment with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a specific inhibitor of AR(1), and mimicked by both adenosine and the specific AR(1) agonist 2-chloro-N(6)-cyclopentyladenosine. Similarly, experiments from whole-cell patch-clamped hippocampal neurons in culture, obtained from CX(3)CR1(+/+) mice, show that CX(3)CL1-induced depression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- (AMPA-) type Glu receptor-mediated current (AMPA-current), is associated with AR(1) activity being blocked by DPCPX and mimicked by adenosine. Furthermore, BV2-st medium induced a similar AMPA-current depression in CX(3)CR1(GFP/GFP) hippocampal neurons and this depression was again blocked by DPCPX. We also report that CX(3)CL1 induced a significant release of adenosine from microglial BV2 cells, as measured by HPLC analysis. We demonstrate that (i) CX(3)CL1, along with AR(1), are critical players for counteracting Glu-mediated neurotoxicity in the brain and (ii) AR(1) mediates neuromodulatory action of CX(3)CL1 on hippocampal neurons.
Collapse
Affiliation(s)
- Clotilde Lauro
- Istituto Pasteur-Fondazione Cenci Bolognetti & Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza BEMM, Università Sapienza, Roma
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J, Bakos R, Nedergaard M. Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 2007; 14:75-80. [PMID: 18157140 DOI: 10.1038/nm1693] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 11/29/2007] [Indexed: 12/11/2022]
Abstract
Deep brain stimulation (DBS) is a widely used neurosurgical approach to treating tremor and other movement disorders. In addition, the use of DBS in a number of psychiatric diseases, including obsessive-compulsive disorders and depression, is currently being tested. Despite the rapid increase in the number of individuals with surgically implanted stimulation electrodes, the cellular pathways involved in mediating the effects of DBS remain unknown. Here we show that DBS is associated with a marked increase in the release of ATP, resulting in accumulation of its catabolic product, adenosine. Adenosine A1 receptor activation depresses excitatory transmission in the thalamus and reduces both tremor- and DBS-induced side effects. Intrathalamic infusion of A1 receptor agonists directly reduces tremor, whereas adenosine A1 receptor-null mice show involuntary movements and seizure at stimulation intensities below the therapeutic level. Furthermore, our data indicate that endogenous adenosine mechanisms are active in tremor, thus supporting the clinical notion that caffeine, a nonselective adenosine receptor antagonist, can trigger or exacerbate essential tremor. Our findings suggest that nonsynaptic mechanisms involving the activation of A1 receptors suppress tremor activity and limit stimulation-induced side effects, thereby providing a new pharmacological target to replace or improve the efficacy of DBS.
Collapse
Affiliation(s)
- Lane Bekar
- Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester, Rochester, New York 14642, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
To re-examine how the basal extracellular concentration of adenosine is regulated in acutely isolated cerebellar slices we have combined electrophysiological and microelectrode biosensor measurements. In almost all cases, synaptic transmission was tonically inhibited by adenosine acting via A1 receptors. By contrast, in most slices, the biosensors did not measure an adenosine tone but did record a spatially non-uniform extracellular tone of the downstream metabolites (inosine and hypoxanthine). Most of the extracellular hypoxanthine arose from the metabolism of inosine by ecto-purine nucleoside phosphorylase (PNP). Adenosine kinase was the major determinant of adenosine levels, as its inhibition increased both adenosine concentration and A1 receptor-mediated synaptic inhibition. Breakdown of adenosine by adenosine deaminase was the major source of the inosine/hypoxanthine tone. However adenosine deaminase played a minor role in determining the level of adenosine at synapses, suggesting a distal location. Blockade of adenosine transport (by NBTI/dipyridamole) had inconsistent effects on basal levels of adenosine and synaptic transmission. Unexpectedly, application of NBTI/dipyridamole prevented the efflux of adenosine resulting from block of adenosine kinase at only a subset of synapses. We conclude that there is spatial variation in the functional expression of NBTI/dipyridamole-sensitive transporters. The increased spatial and temporal resolution of the purine biosensor measurements has revealed the complexity of the control of adenosine and purine tone in the cerebellum.
Collapse
Affiliation(s)
- Mark J Wall
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | | | |
Collapse
|