51
|
STEFANELLI LUCAS, LOCKYER EVANJ, COLLINS BRANDONW, SNOW NICHOLASJ, CROCKER JULIE, KENT CHRISTOPHER, POWER KEVINE, BUTTON DUANEC. Delayed-Onset Muscle Soreness and Topical Analgesic Alter Corticospinal Excitability of the Biceps Brachii. Med Sci Sports Exerc 2019; 51:2344-2356. [DOI: 10.1249/mss.0000000000002055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
52
|
Murphy S, Durand M, Negro F, Farina D, Hunter S, Schmit B, Gutterman D, Hyngstrom A. The Relationship Between Blood Flow and Motor Unit Firing Rates in Response to Fatiguing Exercise Post-stroke. Front Physiol 2019; 10:545. [PMID: 31133877 PMCID: PMC6524339 DOI: 10.3389/fphys.2019.00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
Abstract
We quantified the relationship between the change in post-contraction blood flow with motor unit firing rates and metrics of fatigue during intermittent, sub-maximal fatiguing contractions of the knee extensor muscles after stroke. Ten chronic stroke survivors (>1-year post-stroke) and nine controls participated. Throughout fatiguing contractions, the discharge timings of individual motor units were identified by decomposition of high-density surface EMG signals. After five consecutive contractions, a blood flow measurement through the femoral artery was obtained using an ultrasound machine and probe designed for vascular measurements. There was a greater increase of motor unit firing rates from the beginning of the fatigue protocol to the end of the fatigue protocol for the control group compared to the stroke group (14.97 ± 3.78% vs. 1.99 ± 11.90%, p = 0.023). While blood flow increased with fatigue for both groups (p = 0.003), the magnitude of post-contraction blood flow was significantly greater for the control group compared to the stroke group (p = 0.004). We found that despite the lower magnitude of muscle perfusion through the femoral artery in the stroke group, blood flow has a greater impact on peripheral fatigue for the control group; however, we observed a significant correlation between change in blood flow and motor unit firing rate modulation (r2 = 0.654, p = 0.004) during fatigue in the stroke group and not the control group (r2 = 0.024, p < 0.768). Taken together, this data showed a disruption between motor unit firing rates and post-contraction blood flow in the stroke group, suggesting that there may be a disruption to common inputs to both the reticular system and the corticospinal tract. This study provides novel insights in the relationship between the hyperemic response to exercise and motor unit firing behavior for post-stroke force production and may provide new approaches for recovery by improving both blood flow and muscle activation simultaneously.
Collapse
Affiliation(s)
- Spencer Murphy
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - Matthew Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli studi di Brescia, Brescia, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sandra Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Brian Schmit
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - David Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Allison Hyngstrom
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States.,Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
53
|
Kennefick M, Burma JS, van Donkelaar P, McNeil CJ. The Time Course of Motoneuronal Excitability during the Preparation of Complex Movements. J Cogn Neurosci 2019; 31:781-790. [PMID: 30883285 DOI: 10.1162/jocn_a_01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For a simple RT task, movement complexity increases RT and also corticospinal excitability, as measured by the motor evoked potential (MEP) elicited by TMS of the motor cortex. However, it is unknown if complexity-related increases in corticospinal excitability during the preparation of movement are mediated at the cortical or spinal level. The purposes of this study were to establish a time course of motoneuronal excitability before prime mover activation and to assess task-dependent effects of complex movements on motoneuronal and cortical excitability in a simple RT paradigm. It was hypothesized that motoneuronal and cortical excitability would increase before prime mover activation and in response to movement complexity. In a seated position, participants completed ballistic elbow extension/flexion movements with their dominant arm to one, two, or three targets. TMS and transmastoid stimulation (TS) were delivered at 0%, 70%, 80% or 90% of mean premotor RT for each complexity level. Stimulus intensities were set to elicit MEPs and cervicomedullary MEPs (CMEPs) of ∼10% of the maximal M-wave in the triceps brachii. Compared with 0% RT, motoneuronal excitability (CMEP amplitude) was already 10% greater at 70% RT. CMEP amplitude also increased with movement complexity as both the two- and three-movement conditions had greater motoneuronal excitability than the one-movement condition (p < .038). Importantly, when normalized to the CMEP, there was no increase in MEP amplitude. This suggests that complexity-related increases in corticospinal excitability are likely to be mediated more by increased excitability at a motoneuronal than cortical level.
Collapse
|
54
|
Kennefick M, Burma JS, van Donkelaar P, McNeil CJ. Corticospinal excitability is enhanced while preparing for complex movements. Exp Brain Res 2019; 237:829-837. [DOI: 10.1007/s00221-018-05464-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
|
55
|
Collins BW, Pearcey GE, Buckle NC, Power KE, Button DC. Neuromuscular fatigue during repeated sprint exercise: underlying physiology and methodological considerations. Appl Physiol Nutr Metab 2018; 43:1166-1175. [DOI: 10.1139/apnm-2018-0080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neuromuscular fatigue occurs when an individual’s capacity to produce force or power is impaired. Repeated sprint exercise requires an individual to physically exert themselves at near-maximal to maximal capacity for multiple short-duration bouts, is extremely taxing on the neuromuscular system, and consequently leads to the rapid development of neuromuscular fatigue. During repeated sprint exercise the development of neuromuscular fatigue is underlined by a combination of central and peripheral fatigue. However, there are a number of methodological considerations that complicate the quantification of the development of neuromuscular fatigue. The main goal of this review is to synthesize the results from recent investigations on the development of neuromuscular fatigue during repeated sprint exercise. Hence, we summarize the overall development of neuromuscular fatigue, explain how recovery time may alter the development of neuromuscular fatigue, outline the contributions of peripheral and central fatigue to neuromuscular fatigue, and provide some methodological considerations for quantifying neuromuscular fatigue during repeated sprint exercise.
Collapse
Affiliation(s)
- Brandon W. Collins
- BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Gregory E.P. Pearcey
- Rehabilitation Neuroscience Laboratory and Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| | - Natasha C.M. Buckle
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Kevin E. Power
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Duane C. Button
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
56
|
Davies RW, Carson BP, Bass JJ, Holohan S, Jakeman PM. Acute reduction of lower-body contractile function following a microbiopsy of m. vastus lateralis. Scand J Med Sci Sports 2018; 28:2638-2642. [PMID: 30203871 DOI: 10.1111/sms.13295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 09/07/2018] [Indexed: 11/24/2022]
Abstract
Twenty-three resistance trained men 18-35 years (23 [3] years, 1.8 [0.1] m, 81 [10] kg body mass, 2.3 [1.1] years resistance training experience; mean [SD]) performed repeated maximal voluntary isometric squats (ISQ) and countermovement jumps (CMJ) pre- and +30 minutes post a unilateral microbiopsy of m. vastus lateralis. ISQ and CMJ were simultaneously measured by two force plates sampling ipsilateral (biopsied) and contralateral (non-biopsied) limb force. Bilateral limb force (ipsilateral + contralateral) and imbalance (ipsilateral/bilateral) data are reported as % change from pre-biopsy (mean [95% CI]). A post-biopsy reduction in bilateral ISQ peak force (-17 [-23, -11] %; P < 0.001), ISQ rate of force development (RFD; -28 [-41, -15] %, P = 0.002) and CMJ peak take-off force (-7 [-13, -1]%, P = 0.019) occurred. Imbalance was observed for ISQ peak force (3.2 [2.1, 4.3] %, P < 0.001), RFD (2.8 [1.6, 4.0] %, P < 0.001) and CMJ landing (3.3 [1.0, 5.6] %, P = 0.009), resultant of a force transfer from the ipsilateral (biopsied) to the contralateral (non-biopsied) limb. These data suggest that in young, resistance trained men a modulatory influence on maximal voluntary static and dynamic lower-body contractile function is evoked acutely (+30 minutes) following a microbiopsy of m. vastus lateralis.
Collapse
Affiliation(s)
- Robert W Davies
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.,Food for Health Ireland, Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| | - Brian P Carson
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.,Food for Health Ireland, Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| | - Joseph J Bass
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.,Food for Health Ireland, Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland.,MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Sorcha Holohan
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| | - Philip M Jakeman
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland.,Food for Health Ireland, Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| |
Collapse
|
57
|
Sidhu SK, Weavil JC, Thurston TS, Rosenberger D, Jessop JE, Wang E, Richardson RS, McNeil CJ, Amann M. Fatigue-related group III/IV muscle afferent feedback facilitates intracortical inhibition during locomotor exercise. J Physiol 2018; 596:4789-4801. [PMID: 30095164 DOI: 10.1113/jp276460] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/25/2018] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS This study investigated the influence of group III/IV muscle afferents on corticospinal excitability during cycling exercise and focused on GABAB neuron-mediated inhibition as a potential underlying mechanism. The study provides novel evidence to demonstrate that group III/IV muscle afferent feedback facilitates inhibitory intracortical neurons during whole body exercise. Firing of these interneurons probably contributes to the development of central fatigue during physical activity. ABSTRACT We investigated the influence of group III/IV muscle afferents in determining corticospinal excitability during cycling exercise and focused on GABAB neuron-mediated inhibition as a potential underlying mechanism. Both under control conditions (CTRL) and with lumbar intrathecal fentanyl (FENT) impairing feedback from group III/IV leg muscle afferents, subjects (n = 11) cycled at a comparable vastus-lateralis EMG signal (∼0.26 mV) before (PRE; 100 W) and immediately after (POST; 90 ± 2 W) fatiguing constant-load cycling exercise (80% Wpeak; 221 ± 10 W; ∼8 min). During, PRE and POST cycling, single and paired-pulse (100 ms interstimulus interval) transcranial magnetic stimulations (TMS) were applied to elicit unconditioned and conditioned motor-evoked potentials (MEPs), respectively. To distinguish between cortical and spinal contributions to the MEPs, cervicomedullary stimulations (CMS) were used to elicit unconditioned (CMS only) and conditioned (TMS+CMS, 100 ms interval) cervicomedullary motor-evoked potentials (CMEPs). While unconditioned MEPs were unchanged from PRE to POST in CTRL, unconditioned CMEPs increased significantly, resulting in a decrease in unconditioned MEP/CMEP (P < 0.05). This paralleled a reduction in conditioned MEP (P < 0.05) and no change in conditioned CMEP. During FENT, unconditioned and conditioned MEPs and CMEPs were similar and comparable during PRE and POST (P > 0.2). These findings reveal that feedback from group III/IV muscle afferents innervating locomotor muscle decreases the excitability of the motor cortex during fatiguing cycling exercise. This impairment is, at least in part, determined by the facilitating effect of these sensory neurons on inhibitory GABAB intracortical interneurons.
Collapse
Affiliation(s)
- Simranjit K Sidhu
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Adelaide Medical School, Discipline of Physiology, The University of Adelaide, Australia
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, VAMC, Salt Lake City, UT, USA
| | - Taylor S Thurston
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | | | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Eivind Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Russell S Richardson
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, VAMC, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Chris J McNeil
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Markus Amann
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, VAMC, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
58
|
Temporal Profile and Limb-specificity of Phasic Pain-Evoked Changes in Motor Excitability. Neuroscience 2018; 386:240-255. [DOI: 10.1016/j.neuroscience.2018.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 12/17/2022]
|
59
|
Weavil JC, Hureau TJ, Thurston TS, Sidhu SK, Garten RS, Nelson AD, McNeil CJ, Richardson RS, Amann M. Impact of age on the development of fatigue during large and small muscle mass exercise. Am J Physiol Regul Integr Comp Physiol 2018; 315:R741-R750. [PMID: 29995457 DOI: 10.1152/ajpregu.00156.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To examine the impact of aging on neuromuscular fatigue following cycling (CYC; large active muscle mass) and single-leg knee-extension (KE; small active muscle mass) exercise, 8 young (25 ± 4 years) and older (72 ± 6 years) participants performed CYC and KE to task failure at a given relative intensity (80% of peak power output). The young also matched CYC and KE workload and duration of the old (iso-work comparison). Peripheral and central fatigue were quantified via pre-/postexercise decreases in quadriceps twitch torque (∆Qtw, electrical femoral nerve stimulation) and voluntary activation (∆VA). Although young performed 77% and 33% more work during CYC and KE, respectively, time to task failure in both modalities was similar to the old (~9.5 min; P > 0.2). The resulting ΔQtw was also similar between groups (CYC ~40%, KE ~55%; P > 0.3); however, ∆VA was, in both modalities, approximately double in the young (CYC ~6%, KE ~9%; P < 0.05). While causing substantial peripheral and central fatigue in both exercise modalities in the old, ∆Qtw in the iso-work comparison was not significant (CYC; P = 0.2), or ~50% lower (KE; P < 0.05) in the young, with no central fatigue in either modality ( P > 0.4). Based on iso-work comparisons, healthy aging impairs fatigue resistance during aerobic exercise. Furthermore, comparisons of fatigue following exercise at a given relative intensity mask the age-related difference observed following exercise performed at the same workload. Finally, although active muscle mass has little influence on the age-related difference in the rate of fatigue at a given relative intensity, it substantially impacts the comparison during exercise at a given absolute intensity.
Collapse
Affiliation(s)
- Joshua C Weavil
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Thomas J Hureau
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Taylor S Thurston
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Simranjit K Sidhu
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Ryan S Garten
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Ashley D Nelson
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Chris J McNeil
- School of Health and Exercise Sciences, University of British Columbia , Kelowna , Canada
| | - Russell S Richardson
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Markus Amann
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center , Salt Lake City, Utah.,Department of Anesthesiology, University of Utah , Salt Lake City, Utah
| |
Collapse
|
60
|
Moyne-Bressand S, Dhieux C, Decherchi P, Dousset E. Effectiveness of Foot Biomechanical Orthoses to Relieve Patients' Knee Pain: Changes in Neural Strategy After 9 Weeks of Treatment. J Foot Ankle Surg 2018; 56:1194-1204. [PMID: 29079236 DOI: 10.1053/j.jfas.2017.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Indexed: 02/03/2023]
Abstract
Knee pain is one of the most common lower leg complaints. It is often treated with plantar orthoses to provide cushioning and correct locomotion, imbalances of the foot, and postural deficits. However, the published scientific data are poor concerning the mechanisms involved in pain reduction after wearing foot orthoses, and, to the best of our knowledge, no trial has investigated the mid-term effectiveness. The aim of the present study was to evaluate the effectiveness of foot orthoses according to sound biomechanical principles in the treatment of knee pain. Attention was mainly focused on changes in the central control strategies. Fifteen subjects were included in the protocol. The patients with knee pain were compared with healthy participants (control group) exhibiting no knee pain. In the patients with knee pain, pain perception, dynamic analysis of the gait, stabilometry, the soleus Hoffmann reflex at rest and during voluntary contraction, and V-wave were measured before and 3, 6, and 9 weeks after wearing orthoses. In the control group (n = 5), the same parameters were recorded at 0, 3, 6, and 9 weeks, but the subjects had not worn orthoses. In the patient group (n = 10), the results indicated that pain had significantly decreased from the third week onward, although the parameters of gait and stabilometry remained unchanged. From the sixth week, the soleus Hoffmann reflex during voluntary contraction wave was significantly reduced, suggesting an increase in motoneuronal presynaptic inhibition by non-nociceptive afferents. The V-wave amplitude increased throughout the 9 weeks of the experiment, suggesting a progressive increase in corticospinal and/or extrapyramidal descending pathway inputs, probably due to pain reduction. In the control group, no change was observed throughout the experimental sessions. Our data indicated that foot orthoses relieved patients' knee pain and reduced the descending motor inhibition. Changes in spinal modulation could contribute to a better quality of life. However, this treatment failed to change the altered gait, despite changes in spinal and supraspinal modulation.
Collapse
Affiliation(s)
- Sébastien Moyne-Bressand
- Podiatrist, Aix-Marseille Université, Centre National de la Recherche Scientifique, L'Institut des Sciences du Mouvement Etienne-Jules Marey est une Unité Mixte de Recherche (UMR 7287), Equipe "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, Marseille, France
| | - Carole Dhieux
- Podiatrist, Aix-Marseille Université, Centre National de la Recherche Scientifique, L'Institut des Sciences du Mouvement Etienne-Jules Marey est une Unité Mixte de Recherche (UMR 7287), Equipe "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, Marseille, France
| | - Patrick Decherchi
- Professor, Aix-Marseille Université, Centre National de la Recherche Scientifique, L'Institut des Sciences du Mouvement Etienne-Jules Marey est une Unité Mixte de Recherche (UMR 7287), Equipe "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, Marseille, France.
| | - Erick Dousset
- Assistant Professor, Aix-Marseille Université, Centre National de la Recherche Scientifique, L'Institut des Sciences du Mouvement Etienne-Jules Marey est une Unité Mixte de Recherche (UMR 7287), Equipe "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, Marseille, France
| |
Collapse
|
61
|
Abstract
Performance fatigability is characterized as an acute decline in motor performance caused by an exercise-induced reduction in force or power of the involved muscles. Multiple mechanisms contribute to performance fatigability and originate from neural and muscular processes, with the task demands dictating the mechanisms. This review highlights that (1) inadequate activation of the motoneuron pool can contribute to performance fatigability, and (2) the demands of the task and the physiological characteristics of the population assessed, dictate fatigability and the involved mechanisms. Examples of task and population differences in fatigability highlighted in this review include contraction intensity and velocity, stability and support provided to the fatiguing limb, sex differences, and aging. A future challenge is to define specific mechanisms of fatigability and to translate these findings to real-world performance and exercise training in healthy and clinical populations across the life span.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin 53201
| |
Collapse
|
62
|
Neige C, Mavromatis N, Gagné M, Bouyer LJ, Mercier C. Effect of movement-related pain on behaviour and corticospinal excitability changes associated with arm movement preparation. J Physiol 2018; 596:2917-2929. [PMID: 29855037 DOI: 10.1113/jp276011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Experimental pain or its anticipation influence motor preparation processes as well as upcoming movement execution, but the underlying physiological mechanisms remain unknown. Our results showed that movement-related pain modulates corticospinal excitability during motor preparation. In accordance with the pain adaptation theory, corticospinal excitability was higher when the muscle has an antagonist (vs. an agonist) role for the upcoming movement associated with pain. Anticipation of movement-related pain also affects motor initiation and execution, with slower movement initiation (longer reaction times) and faster movement execution compared to movements that do not evoke pain. These results confirm the implementation of protective strategies during motor preparation known to be relevant for acute pain, but which may potentially have detrimental long-term consequences and lead to the development of chronic pain. ABSTRACT When a movement repeatedly generates pain, we anticipate movement-related pain and establish self-protective strategies during motor preparation, but the underlying mechanisms remains poorly understood. The current study investigated the effect of movement-related pain anticipation on the modulation of behaviour and corticospinal excitability during the preparation of arm movements. Participants completed an instructed-delay reaction-time (RT) task consisting of elbow flexions and extensions instructed by visual cues. Nociceptive laser stimulations (unconditioned stimuli) were applied to the lateral epicondyle during movement execution in a specific direction (CS+) but not in the other (CS-), depending on experimental group. During motor preparation, transcranial magnetic stimulation was used to measure corticospinal excitability in the biceps brachii (BB). RT and peak end-point velocity were also measured. Neurophysiological results revealed an opposite modulation of corticospinal excitability in BB depending on whether it plays an agonist (i.e. flexion) or antagonist (i.e. extension) role for the CS+ movements (P < 0.001). Moreover, behavioural results showed that for the CS+ movements RT did not change relative to baseline, whereas the CS- movements were initiated more quickly (P = 0.023) and the CS+ flexion movements were faster relative to the CS- flexion movements (P < 0.001). This is consistent with the pain adaptation theory which proposes that in order to protect the body from further pain, agonist muscle activity is reduced and antagonist muscle activity is increased. If these strategies are initially relevant and lead to short-term pain alleviation, they may potentially have detrimental long-term consequences and lead to the development of chronic pain.
Collapse
Affiliation(s)
- Cécilia Neige
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada.,Department of Rehabilitation, Laval University, Québec, QC, Canada
| | - Nicolas Mavromatis
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada.,Department of Rehabilitation, Laval University, Québec, QC, Canada
| | - Martin Gagné
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada
| | - Laurent J Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada.,Department of Rehabilitation, Laval University, Québec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada.,Department of Rehabilitation, Laval University, Québec, QC, Canada
| |
Collapse
|
63
|
Broxterman RM, Hureau TJ, Layec G, Morgan DE, Bledsoe AD, Jessop JE, Amann M, Richardson RS. Influence of group III/IV muscle afferents on small muscle mass exercise performance: a bioenergetics perspective. J Physiol 2018; 596:2301-2314. [PMID: 29644702 DOI: 10.1113/jp275817] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS This investigation assessed the influence of group III/IV muscle afferents on small muscle mass exercise performance from a skeletal muscle bioenergetics perspective. Group III/IV muscle afferent feedback was attenuated with lumbar intrathecal fentanyl during intermittent isometric single-leg knee-extensor all-out exercise, while 31 P-MRS was used to assess skeletal muscle bioenergetics. Attenuation of group III/IV muscle afferent feedback improved exercise performance during the first minute of exercise, due to an increase in total ATP production with no change in the ATP cost of contraction. However, exercise performance was not altered during the remainder of the protocol, despite a sustained increase in total ATP production, due to an exacerbated ATP cost of contraction. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit of attenuating the muscle afferents is negated. ABSTRACT The direct influence of group III/IV muscle afferents on exercise performance remains equivocal. Therefore, all-out intermittent isometric single-leg knee-extensor exercise and phosphorous magnetic resonance spectroscopy (31 P-MRS) were utilized to provide a high time resolution assessment of exercise performance and skeletal muscle bioenergetics in control conditions (CTRL) and with the attenuation of group III/IV muscle afferent feedback via lumbar intrathecal fentanyl (FENT). In both conditions, seven recreationally active men performed 60 maximal voluntary quadriceps contractions (MVC; 3 s contraction, 2 s relaxation), while knee-extensor force and 31 P-MRS were assessed during each MVC. The cumulative integrated force was significantly greater (8 ± 6%) in FENT than CTRL for the first minute of the all-out protocol, but was not significantly different for the second to fifth minutes. Total ATP production was significantly greater (16 ± 21%) in FENT than CTRL throughout the all-out exercise protocol, due to a significantly greater anaerobic ATP production (11 ± 13%) in FENT than CTRL with no significant difference in oxidative ATP production. The ATP cost of contraction was not significantly different between FENT and CTRL for the first minute of the all-out protocol, but was significantly greater (29 ± 34%) in FENT than in CTRL for the second to fifth minutes. These findings reveal that group III/IV muscle afferents directly limit exercise performance during small muscle mass exercise, but, due to their critical role in maintaining skeletal muscle contractile efficiency, with time, the benefit from muscle afferent attenuation is negated.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Thomas J Hureau
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Gwenael Layec
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Center on Aging, University of Utah, Salt Lake City, UT, USA
| | - David E Morgan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Markus Amann
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Center on Aging, University of Utah, Salt Lake City, UT, USA.,Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Center on Aging, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
64
|
Bouffard J, Salomoni SE, Mercier C, Tucker K, Roy JS, van den Hoorn W, Hodges PW, Bouyer LJ. Effect of experimental muscle pain on the acquisition and retention of locomotor adaptation: different motor strategies for a similar performance. J Neurophysiol 2018; 119:1647-1657. [PMID: 29364067 DOI: 10.1152/jn.00411.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As individuals with musculoskeletal disorders often experience motor impairments, contemporary rehabilitation relies heavily on the use of motor learning principles. However, motor impairments are often associated with pain. Although there is substantial evidence that muscle pain interferes with motor control, much less is known on its impact on motor learning. The objective of the present study was to assess the effects of muscle pain on locomotor learning. Two groups (Pain and Control) of healthy participants performed a locomotor adaptation task (robotized ankle-foot orthosis perturbing ankle movements during swing) on two consecutive days. On day 1 (acquisition), hypertonic saline was injected in the tibialis anterior (TA) muscle of the Pain group participants, while Control group participants were pain free. All participants were pain free on day 2 (retention). Changes in movement errors caused by the perturbation were assessed as an indicator of motor performance. Detailed analysis of kinematic and electromyographic data provided information about motor strategies. No between-group differences were observed on motor performance measured during the acquisition and retention phases. However, Pain group participants had a residual movement error later in the swing phase and smaller early TA activation than Control group participants, thereby suggesting a reduction in the use of anticipatory motor strategies to overcome the perturbation. Muscle pain did not interfere with global motor performance during locomotor adaptation. The different motor strategies used in the presence of muscle pain may reflect a diminished ability to anticipate the consequences of a perturbation. NEW & NOTEWORTHY This study shows that experimental muscle pain does not influence global motor performance during the acquisition or next-day retention phases of locomotor learning. This contrasts with previous results obtained with cutaneous pain, emphasizing the risk of directly extrapolating from one pain modality to another. Muscle pain affected motor strategies used when performing the task, however: it reduced the ability to use increased feedforward control to overcome the force field.
Collapse
Affiliation(s)
- Jason Bouffard
- Department of Rehabilitation, Université Laval , Quebec City , Canada.,Center for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS-CN Quebec City , Canada
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences , Brisbane , Australia.,The University of Queensland, School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Catherine Mercier
- Department of Rehabilitation, Université Laval , Quebec City , Canada.,Center for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS-CN Quebec City , Canada
| | - Kylie Tucker
- The University of Queensland, NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences , Brisbane , Australia.,The University of Queensland, School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Jean-Sébastien Roy
- Department of Rehabilitation, Université Laval , Quebec City , Canada.,Center for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS-CN Quebec City , Canada
| | - Wolbert van den Hoorn
- The University of Queensland, NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences , Brisbane , Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences , Brisbane , Australia
| | - Laurent J Bouyer
- Department of Rehabilitation, Université Laval , Quebec City , Canada.,Center for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS-CN Quebec City , Canada
| |
Collapse
|
65
|
Effect of Cutaneous Heat Pain on Corticospinal Excitability of the Tibialis Anterior at Rest and during Submaximal Contraction. Neural Plast 2018; 2018:8713218. [PMID: 29853849 PMCID: PMC5944246 DOI: 10.1155/2018/8713218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/27/2018] [Indexed: 12/30/2022] Open
Abstract
Previous studies have shown that pain can interfere with motor control. The neural mechanisms underlying these effects remain largely unknown. At the upper limb, mounting evidence suggests that pain-induced reduction in corticospinal excitability is involved. No equivalent data is currently available at the lower limb. The present study therefore examined the effect of thermal pain on the corticospinal drive to tibialis anterior (TA) at rest and during an isometric submaximal dorsiflexion. Transcranial magnetic stimulation was used to induce motor-evoked potentials (MEPs) in the TA at rest and during contraction in the presence or absence of cutaneous heat pain induced by a thermode positioned above the TA (51°C during 1 s). With similar pain ratings between conditions (3.9/10 at rest and 3.6/10 during contraction), results indicate significant decreases in MEP amplitude during both rest (−9%) and active conditions (−13%) (main effect of pain, p = 0.02). These results therefore suggest that cutaneous heat pain can reduce corticospinal excitability in the TA muscle and that such reduction in corticospinal excitability could contribute to the interference of pain on motor control/motor learning.
Collapse
|
66
|
Differential Corticomotor Excitability Responses to Hypertonic Saline-Induced Muscle Pain in Forearm and Hand Muscles. Neural Plast 2018; 2018:7589601. [PMID: 29849568 PMCID: PMC5937442 DOI: 10.1155/2018/7589601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Experimental muscle pain inhibits corticomotor excitability (CE) of upper limb muscles. It is unknown if this inhibition affects overlapping muscle representations within the primary motor cortex to the same degree. This study explored CE changes of the first dorsal interosseus (FDI) and extensor carpi radialis (ECR) muscles in response to muscle pain. Participants (n = 13) attended two sessions (≥48 hours in-between). Hypertonic saline was injected in the ECR (session one) or the FDI (session two) muscle. CE, assessed by transcranial magnetic stimulation (TMS) motor-evoked potentials (MEPs), was recorded at baseline, during pain, and twenty minutes postinjection together with pain intensity ratings. Pain intensity ratings did not differ between the two pain sites (p = 0.19). In response to FDI muscle pain, the MEPs of the FDI muscle were reduced at 2 and 4 min postinjection (p ≤ 0.03), but not after ECR muscle pain. No significant MEP change was detected for the ECR muscle (p = 0.62). No associations between MEPs and pain intensity were found (p > 0.2). The present results indicate that the output from overlapping cortical representations of two muscles differentially adapts to acute muscle pain.
Collapse
|
67
|
Madeleine P, Hansen EA, Andersen RE, Kumorek M, Mroczek D, Samani A, Kawczyński A. Eccentric exercise induces spatial changes in the mechanomyographic activity of the upper trapezius muscle. Scand J Med Sci Sports 2018; 28:1661-1670. [PMID: 29394519 DOI: 10.1111/sms.13067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2018] [Indexed: 11/28/2022]
Abstract
In this study, we hypothesized that the recordings of multichannel mechanomyography (MMG) of the upper trapezius muscle would reveal spatially dependent manifestations in the presence of delayed onset muscle soreness occurring 24 hours after eccentric exercise (ECC). Sixteen participants performed high-intensity eccentric exercises (5 sets of 10 eccentric contractions at 100% of max elevation force) targeting the upper trapezius on their dominant side. Twelve accelerometers were attached to record MMG activity during submaximal exercise consisting of static and dynamic arm flexion and abduction. Measurements were taken before and 24 hours after ECC. Average rectified value (ARV), percentage of determinism (% DET), and recurrence (% REC) of the MMG signals were computed to estimate the level of muscular activity and the magnitude of regularity of the MMG. The ARV, % REC, and % DET maps revealed heterogeneous MMG activity of the upper trapezius 24 hours after ECC when compared with before. Increased ARV, % REC, and % DET were found 24 hours after ECC when compared with before. The study provides new key information on how a single muscle responds to ECC. Our findings suggest that multichannel MMG and nonlinear analyses may detect muscular and musculo-tendinous alterations due to ECC.
Collapse
Affiliation(s)
- P Madeleine
- Department of Health Science and Technology, Sport Sciences, Aalborg University, Aalborg, Denmark
| | - E A Hansen
- Department of Health Science and Technology, Sport Sciences, Aalborg University, Aalborg, Denmark
| | - R E Andersen
- Department of Health Science and Technology, Sport Sciences, Aalborg University, Aalborg, Denmark
| | - M Kumorek
- Department of Paralympics Sports, University School of Physical Education, Wrocław, Poland
| | - D Mroczek
- Department of Athletes Motor Skills, University School of Physical Education, Wrocław, Poland
| | - A Samani
- Department of Health Science and Technology, Sport Sciences, Aalborg University, Aalborg, Denmark
| | - A Kawczyński
- Department of Paralympics Sports, University School of Physical Education, Wrocław, Poland
| |
Collapse
|
68
|
Périard JD, De Pauw K, Zanow F, Racinais S. Cerebrocortical activity during self-paced exercise in temperate, hot and hypoxic conditions. Acta Physiol (Oxf) 2018; 222. [PMID: 28686002 DOI: 10.1111/apha.12916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/02/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
AIM Heat stress and hypoxia independently influence cerebrocortical activity and impair prolonged exercise performance. This study examined the relationship between electroencephalography (EEG) activity and self-paced exercise performance in control (CON, 18 °C, 40% RH), hot (HOT, 35 °C, 60% RH) and hypoxic (HYP, 18 °C, 40% RH FiO2 : 0.145) conditions. METHODS Eleven well-trained cyclists completed a 750 kJ cycling time trial in each condition on separate days in a counterbalanced order. EEG activity was recorded with α- and β-activity evaluated in the frontal (F3 and F4) and central (C3 and C4) areas. Standardized low-resolution brain electromagnetic tomography (sLORETA) was also utilized to localize changes in cerebrocortical activity. RESULTS Both α- and β-activity decreased in the frontal and central areas during exercise in HOT relative to CON (P < 0.05). α-activity was also lower in HYP compared with CON (P < 0.05), whereas β-activity remained similar. β-activity was higher in HYP than in HOT (P < 0.05). sLORETA revealed that α- and β-activity increased at the onset of exercise in the primary somatosensory and motor cortices in CON and HYP, while only β-activity increased in HOT. A decrease in α- and β-activity occurred thereafter in all conditions, with α-activity being lower in the somatosensory and somatosensory association cortices in HOT relative to CON. CONCLUSION High-intensity prolonged self-paced exercise induces cerebrocortical activity alterations in areas of the brain associated with the ability to inhibit conflicting attentional processing under hot and hypoxic conditions, along with the capacity to sustain mental readiness and arousal under heat stress.
Collapse
Affiliation(s)
- J. D. Périard
- Research Institute for Sport and Exercise; University of Canberra; Canberra ACT Australia
- Athlete Health and Performance Research Centre; Aspetar Orthopaedic and Sports Medicine Hospital; Doha Qatar
| | - K. De Pauw
- Research Group Human Physiology; Faculty of Physical Education and Physiotherapy; Vrije Universiteit Brussel; Brussels Belgium
| | - F. Zanow
- ANT Neuro bv; Enschede the Netherlands
| | - S. Racinais
- Athlete Health and Performance Research Centre; Aspetar Orthopaedic and Sports Medicine Hospital; Doha Qatar
| |
Collapse
|
69
|
Sex-specific reliability and multidimensional stability of responses to tests assessing neuromuscular function. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2017; 68:452-464. [PMID: 29175061 DOI: 10.1016/j.jchb.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
Abstract
The objective of this study was to estimate sex-specific effects in the test-retest cross-reliability of peripheral and central changes in nonlinear and linear measures of a surface electromyography signal during a brief (5 second) and sustained (2minute) isometric maximal voluntary contraction, combined with superimposed electrical stimulation involving the ankle plantar flexors over five identical trials. In this study, we repeated the testing protocol used in our previous study of 10 women (age 20.9, SD=0.3 years) (Bernecke et al., 2015) in a group of 10 men (age 21.2, SD=0.4 years). Despite the central (sex effect; p<0.05, ηp2>0.71, SP>70%) and peripheral fatigability (sex effect; p<0.01, ηp2>0.8, SP>90%) during sustained isometric maximal voluntary contraction, and lower reliability for central activation ratio during brief (intraclass correlation coefficient [ICC]=0.95 for men and ICC=0.82 for women) and sustained maximal voluntary contraction (ICC>0.82 for men and ICC>0.66 for women) over ankle plantar flexors expressed in women more than in men, all the ICCs of all indices measured by tests assessing neuromuscular function across the five identical test-retest trials were found as meaningful (correlation significance of p<0.05 was reached) and no significant differences were found between trials for any of the measured variables. In conclusion, the present study demonstrated greater central and peripheral fatigue for female participants following sustained (2minute) isometric maximal voluntary contraction of the plantar flexor muscles for all repeated trials and indicated an acceptable agreement between measurements of the characteristic variables made using the three different devices (dynamometry, electrical stimulation, and surface electromyography) over time for both sexes.
Collapse
|
70
|
Abstract
Performance fatigability differs between men and women for a range of fatiguing tasks. Women are usually less fatigable than men, and this is most widely described for isometric fatiguing contractions and some dynamic tasks. The sex difference in fatigability is specific to the task demands so that one mechanism is not universal, including any sex differences in skeletal muscle physiology, muscle perfusion, and voluntary activation. However, there are substantial knowledge gaps about the task dependency of the sex differences in fatigability, the involved mechanisms, and the relevance to clinical populations and with advanced age. The knowledge gaps are in part due to the significant deficits in the number of women included in performance fatigability studies despite a gradual increase in the inclusion of women for the last 20 yr. Therefore, this review 1) provides a rationale for the limited knowledge about sex differences in performance fatigability, 2) summarizes the current knowledge on sex differences in fatigability and the potential mechanisms across a range of tasks, 3) highlights emerging areas of opportunity in clinical populations, and 4) suggests strategies to close the knowledge gap and understanding the relevance of sex differences in performance fatigability. The limited understanding about sex differences in fatigability in healthy and clinical populations presents as a field ripe with opportunity for high-impact studies. Such studies will inform on the limitations of men and women during athletic endeavors, ergonomic tasks, and daily activities. Because fatigability is required for effective neuromuscular adaptation, sex differences in fatigability studies will also inform on optimal strategies for training and rehabilitation in both men and women.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| |
Collapse
|
71
|
Abstract
Despite flourishing interest in the topic of fatigue-as indicated by the many presentations on fatigue at the 2015 Annual Meeting of the American College of Sports Medicine-surprisingly little is known about its effect on human performance. There are two main reasons for this dilemma: 1) the inability of current terminology to accommodate the scope of the conditions ascribed to fatigue, and 2) a paucity of validated experimental models. In contrast to current practice, a case is made for a unified definition of fatigue to facilitate its management in health and disease. On the basis of the classic two-domain concept of Mosso, fatigue is defined as a disabling symptom in which physical and cognitive function is limited by interactions between performance fatigability and perceived fatigability. As a symptom, fatigue can only be measured by self-report, quantified as either a trait characteristic or a state variable. One consequence of such a definition is that the word fatigue should not be preceded by an adjective (e.g., central, mental, muscle, peripheral, and supraspinal) to suggest the locus of the changes responsible for an observed level of fatigue. Rather, mechanistic studies should be performed with validated experimental models to identify the changes responsible for the reported fatigue. As indicated by three examples (walking endurance in old adults, time trials by endurance athletes, and fatigue in persons with multiple sclerosis) discussed in the review, however, it has proven challenging to develop valid experimental models of fatigue. The proposed framework provides a foundation to address the many gaps in knowledge of how laboratory measures of fatigue and fatigability affect real-world performance.
Collapse
Affiliation(s)
- Roger M Enoka
- 1Department of Integrative Physiology, University of Colorado, Boulder, CO; and 2Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Bruxelles, BELGIUM
| | | |
Collapse
|
72
|
Behringer M, Nowak S, Leyendecker J, Mester J. Effects of TRPV1 and TRPA1 activators on the cramp threshold frequency: a randomized, double-blind placebo-controlled trial. Eur J Appl Physiol 2017; 117:1641-1647. [PMID: 28573374 DOI: 10.1007/s00421-017-3653-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Previous data indicate that a strong sensory input from orally administered TRPV1 and TRPA1 activators alleviates muscle cramps in foot muscles by reducing the α-motor neuron hyperexcitability. We investigated if TRP activators increase the cramp threshold frequency of the medial gastrocnemius. METHODS We randomly assigned 22 healthy male participants to an intervention (IG) and a control group (CG). While participants of the IG ingested a mixture of TRPV1 and TRPA1 activators, the CG received a placebo. We tested the cramp threshold frequency (CTF), the cramp intensity (EMG activity), and the perceived pain of electrically induced muscle cramps before (pre), and 15 min, 4, 8, and 24 h after either treatment. We further measured the maximal isometric force of knee extensors at pre, 4, and 24 h to assess potential side-effects on the force output. RESULTS When we included all measurement time points, no group-by-time interaction was observed for the CTF. However, when only pre and 15 min values were incorporated, a significant interaction, with a slightly greater CTF increase in IG (3.1 ± 1.5) compared to the CG (2.0 ± 1.5), was observed. No significant group by time interaction was found for the cramp intensity, the perceived pain, and the maximal isometric force. CONCLUSION Our data indicate that orally administered TRPV1 and TRPA1 activators exert a small short-term effect on the CTF, but not on the other parameters tested. Future studies need to investigate whether such small CTF increments are sufficient to prevent exercise-associated muscle cramps.
Collapse
Affiliation(s)
- Michael Behringer
- German Research Center of Elite Sport - momentum, German Sport University Cologne, Cologne, Germany. .,Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany. .,Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany.
| | - Stephanie Nowak
- German Research Center of Elite Sport - momentum, German Sport University Cologne, Cologne, Germany
| | - Jannik Leyendecker
- German Research Center of Elite Sport - momentum, German Sport University Cologne, Cologne, Germany
| | - Joachim Mester
- German Research Center of Elite Sport - momentum, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
73
|
Schabrun SM, Palsson TS, Thapa T, Graven-Nielsen T. Movement Does Not Promote Recovery of Motor Output Following Acute Experimental Muscle Pain. PAIN MEDICINE 2017; 19:608-614. [DOI: 10.1093/pm/pnx099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Siobhan M Schabrun
- Western Sydney University, Brain Neuroplasticity and Rehabilitation Unit (BRAiN-u), School of Science and Health, Penrith, NSW, Australia
| | - Thorvaldur S Palsson
- Department of Health Science and Technology, Laboratory for Musculoskeletal Pain and Motor Control, Center for Neuroplasticity and Pain (CNAP), Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Tribikram Thapa
- Western Sydney University, Brain Neuroplasticity and Rehabilitation Unit (BRAiN-u), School of Science and Health, Penrith, NSW, Australia
| | - Thomas Graven-Nielsen
- Department of Health Science and Technology, Laboratory for Musculoskeletal Pain and Motor Control, Center for Neuroplasticity and Pain (CNAP), Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
74
|
Carroll TJ, Taylor JL, Gandevia SC. Recovery of central and peripheral neuromuscular fatigue after exercise. J Appl Physiol (1985) 2017; 122:1068-1076. [DOI: 10.1152/japplphysiol.00775.2016] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Sustained physical exercise leads to a reduced capacity to produce voluntary force that typically outlasts the exercise bout. This “fatigue” can be due both to impaired muscle function, termed “peripheral fatigue,” and a reduction in the capacity of the central nervous system to activate muscles, termed “central fatigue.” In this review we consider the factors that determine the recovery of voluntary force generating capacity after various types of exercise. After brief, high-intensity exercise there is typically a rapid restitution of force that is due to recovery of central fatigue (typically within 2 min) and aspects of peripheral fatigue associated with excitation-contraction coupling and reperfusion of muscles (typically within 3–5 min). Complete recovery of muscle function may be incomplete for some hours, however, due to prolonged impairment in intracellular Ca2+ release or sensitivity. After low-intensity exercise of long duration, voluntary force typically shows rapid, partial, recovery within the first few minutes, due largely to recovery of the central, neural component. However, the ability to voluntarily activate muscles may not recover completely within 30 min after exercise. Recovery of peripheral fatigue contributes comparatively little to the fast initial force restitution and is typically incomplete for at least 20–30 min. Work remains to identify what factors underlie the prolonged central fatigue that usually accompanies long-duration single joint and locomotor exercise and to document how the time course of neuromuscular recovery is affected by exercise intensity and duration in locomotor exercise. Such information could be useful to enhance rehabilitation and sports performance.
Collapse
Affiliation(s)
- T. J. Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, University of Queensland; and
| | - J. L. Taylor
- Neuroscience Research Australia and University of New South Wales
| | - S. C. Gandevia
- Neuroscience Research Australia and University of New South Wales
| |
Collapse
|
75
|
Pelletier R, Higgins J, Bourbonnais D. The relationship of corticospinal excitability with pain, motor performance and disability in subjects with chronic wrist/hand pain. J Electromyogr Kinesiol 2017; 34:65-71. [PMID: 28411487 DOI: 10.1016/j.jelekin.2017.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/25/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022] Open
Abstract
There is a growing body of evidence of changes in corticospinal excitability associated with musculoskeletal disorders, however there is a lack of knowledge of how these changes relate to measures of pain, motor performance and disability. An exploratory study was performed utilizing Transcranial Magnetic Stimulation to investigate differences in corticospinal excitability in the Abductor Pollicis Brevis (APB) between 15 pain-free subjects and 15 subjects with chronic wrist/hand pain and to determine how corticospinal excitability was associated with measures of pain (visual analog scale, AUSCAN™), hand motor performance (isometric and key pinch strength, Purdue Pegboard Test), disability (AUSCAN™), and spinal motoneuronal excitability. Input-output curves demonstrated increased corticospinal excitability of the APB in the affected hand of subjects with chronic pain (p<0.01). Changes in corticospinal excitability were significantly correlated with pain intensity (r=0.77), disability (r=0.58), and negatively correlated with motoneuronal excitability (r=-0.57). Corticospinal excitability in subjects with heterogeneous injuries of the wrist/hand was associated with disability and pain.
Collapse
Affiliation(s)
- René Pelletier
- Sciences de la réadaptation, École de réadaptation, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| | - Johanne Higgins
- École de réadaptation, Faculté de médecine, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7, Canada; Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Canada.
| | - Daniel Bourbonnais
- École de réadaptation, Faculté de médecine, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7, Canada; Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Canada.
| |
Collapse
|
76
|
Hohenauer E, Cescon C, Deliens T, Clarys P, Clijsen R. The effect of local skin cooling before a sustained, submaximal isometric contraction on fatigue and isometric quadriceps femoris performance: A randomized controlled trial. J Therm Biol 2017; 65:88-94. [PMID: 28343582 DOI: 10.1016/j.jtherbio.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
The central- and peripheral mechanisms by which heat strain limits physical performance are not fully elucidated. Nevertheless, pre-cooling is often used in an attempt to improve subsequent performance. This study compared the effects of pre-cooling vs. a pre-thermoneutral application on central- and peripheral fatigue during 60% of isometric maximum voluntary contraction (MVC) of the right quadriceps femoris muscle. Furthermore, the effects between a pre-cooling and a pre-thermoneutral application on isometric MVC of the right quadriceps femoris muscle and subjective ratings of perceived exertion (RPE) were investigated. In this randomized controlled trial, 18 healthy adults voluntarily participated. The participants received either a cold (experimental) application (+8°C) or a thermoneutral (control) application (+32°C) for 20min on their right thigh (one cuff). After the application, central (fractal dimension - FD) and peripheral (muscle fiber conduction velocity - CV) fatigue was estimated using sEMG parameters during 60% of isometric MVC. Surface EMG signals were detected from the vastus medialis and lateralis using bidimensional arrays. Immediately after the submaximal contraction, isometric MVC and RPE were assessed. Participants receiving the cold application were able to maintain a 60% isometric MVC significantly longer when compared to the thermoneutral group (mean time: 78 vs. 46s; p=0.04). The thermoneutral application had no significant impact on central fatigue (p>0.05) compared to the cold application (p=0.03). However, signs of peripheral fatigue were significantly higher in the cold group compared to the thermoneutral group (p=0.008). Pre-cooling had no effect on isometric MVC of the right quadriceps muscle and ratings of perceived exertion. Pre-cooling attenuated central fatigue and led to significantly longer submaximal contraction times compared to the pre-thermoneutral application. These findings support the use of pre-cooling procedures prior to submaximal exercises of the quadriceps muscle compared to pre-thermoneutral applications.
Collapse
Affiliation(s)
- Erich Hohenauer
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; University College Physiotherapy, Thim van der Laan, Landquart, Switzerland; Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Corrado Cescon
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland.
| | - Tom Deliens
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Peter Clarys
- Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Ron Clijsen
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; University College Physiotherapy, Thim van der Laan, Landquart, Switzerland; Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
77
|
Dongés SC, D’Amico JM, Butler JE, Taylor JL. The effects of cervical transcutaneous spinal direct current stimulation on motor pathways supplying the upper limb in humans. PLoS One 2017; 12:e0172333. [PMID: 28225813 PMCID: PMC5321432 DOI: 10.1371/journal.pone.0172333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/08/2017] [Indexed: 12/29/2022] Open
Abstract
Non-invasive, weak direct current stimulation can induce changes in excitability of underlying neural tissue. Many studies have used transcranial direct current stimulation to induce changes in the brain, however more recently a number of studies have used transcutaneous spinal direct current stimulation to induce changes in the spinal cord. This study further characterises the effects following cervical transcutaneous spinal direct current stimulation on motor pathways supplying the upper limb. In Study 1, on two separate days, participants (n = 12, 5 F) received 20 minutes of either real or sham direct current stimulation at 3 mA through electrodes placed in an anterior-posterior configuration over the neck (anode anterior). Biceps brachii, flexor carpi radialis and first dorsal interosseous responses to transcranial magnetic stimulation (motor evoked potentials) and cervicomedullary stimulation (cervicomedullary motor evoked potentials) were measured before and after real or sham stimulation. In Study 2, on two separate days, participants (n = 12, 7 F) received either real or sham direct current stimulation in the same way as for Study 1. Before and after real or sham stimulation, median nerve stimulation elicited M waves and H reflexes in the flexor carpi radialis. H-reflex recruitment curves and homosynaptic depression of the H reflex were assessed. Results show that the effects of real and sham direct current stimulation did not differ for motor evoked potentials or cervicomedullary motor evoked potentials for any muscle, nor for H-reflex recruitment curve parameters or homosynaptic depression. Cervical transcutaneous spinal direct current stimulation with the parameters described here does not modify motor responses to corticospinal stimulation nor does it modify H reflexes of the upper limb. These results are important for the emerging field of transcutaneous spinal direct current stimulation.
Collapse
Affiliation(s)
- Siobhan C. Dongés
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Jessica M. D’Amico
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales, Australia
| | - Jane E. Butler
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Janet L. Taylor
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
78
|
Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL. Effects of fatigue on corticospinal excitability of the human knee extensors. Exp Physiol 2016; 101:1552-1564. [PMID: 27652591 DOI: 10.1113/ep085753] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/19/2016] [Indexed: 01/05/2023]
Abstract
NEW FINDINGS What is the central question of this study? Do group III and IV muscle afferents act at the spinal or cortical level to affect the ability of the central nervous system to drive quadriceps muscles during fatiguing exercise? What is the main finding and its importance? The excitability of the motoneurone pool of vastus lateralis was unchanged by feedback from group III and IV muscle afferents. In contrast, feedback from these afferents may contribute to inhibition at the cortex. However, the excitability of the corticospinal pathway was not directly affected by feedback from these afferents. These findings are important for understanding neural processes during fatiguing exercise. In upper limb muscles, changes in afferent feedback, motoneurone excitability, and motor cortical output can contribute to failure of the central nervous system to recruit muscles fully during fatigue. It is not known whether similar changes occur with fatigue of muscles in the lower limb. We assessed the corticospinal pathway to vastus lateralis during fatiguing sustained maximal voluntary contractions (MVCs) of the knee extensors and during firing of fatigue-sensitive group III/IV muscle afferents maintained by postexercise ischaemia after fatiguing MVCs of the knee extensors and, separately, the flexors. In two experiments, subjects (n = 9) performed brief knee extensor MVCs before and after 2-min sustained MVCs of the knee extensors (experiment 1) or knee flexors (experiment 2). During MVCs, motor evoked potentials (MEPs) were elicited by transcranial magnetic stimulation over the motor cortex and thoracic motor evoked potentials (TMEPs) by electrical stimulation over the thoracic spine. During the 2-min extensor contraction, the size of vastus lateralis MEPs normalized to the maximal M-wave increased (P < 0.05), but normalized TMEPs were unchanged (P = 0.16). After the 2-min MVC, maintained firing of group III/IV muscle afferents had no effect on vastus lateralis MEPs or TMEPs (P = 0.18 and P = 0.50, respectively). Likewise, after the 2-min knee flexor MVC, maintained firing of these afferents showed no effect on vastus lateralis MEPs or TMEPs (P = 0.69 and P = 0.34, respectively). Motoneurones of vastus lateralis do not become less excitable during fatiguing isometric MVCs. Moreover, fatigue-sensitive group III/IV muscle afferents fail to affect the overall excitability of vastus lateralis motoneurones during MVCs.
Collapse
Affiliation(s)
- David S Kennedy
- Neuroscience Research Australia, Randwick, NSW, Australia.,University of New South Wales, Kensington, NSW, Australia
| | - Chris J McNeil
- Neuroscience Research Australia, Randwick, NSW, Australia.,Centre for Heart, Lung and Vascular Health, School of Health & Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Simon C Gandevia
- Neuroscience Research Australia, Randwick, NSW, Australia.,University of New South Wales, Kensington, NSW, Australia
| | - Janet L Taylor
- Neuroscience Research Australia, Randwick, NSW, Australia.,University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
79
|
Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. Clin Neurophysiol 2016; 128:44-55. [PMID: 27866119 DOI: 10.1016/j.clinph.2016.10.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 08/17/2016] [Accepted: 10/09/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the influence of group III/IV muscle afferents on the development of central fatigue and corticospinal excitability during exercise. METHODS Fourteen males performed cycling-exercise both under control-conditions (CTRL) and with lumbar intrathecal fentanyl (FENT) impairing feedback from leg muscle afferents. Transcranial magnetic- and cervicomedullary stimulation was used to monitor cortical versus spinal excitability. RESULTS While fentanyl-blockade during non-fatiguing cycling had no effect on motor-evoked potentials (MEPs), cervicomedullary-evoked motor potentials (CMEPs) were 13±3% higher (P<0.05), resulting in a decrease in MEP/CMEP (P<0.05). Although the pre- to post-exercise reduction in resting twitch was greater in FENT vs. CTRL (-53±3% vs. -39±3%; P<0.01), the reduction in voluntary muscle activation was smaller (-2±2% vs. -10±2%; P<0.05). Compared to the start of fatiguing exercise, MEPs and CMEPs were unchanged at exhaustion in CTRL. In contrast, MEPs and MEP/CMEP increased 13±3% and 25±6% in FENT (P<0.05). CONCLUSION During non-fatiguing exercise, group III/IV muscle afferents disfacilitate, or inhibit, spinal motoneurons and facilitate motor cortical cells. In contrast, during exhaustive exercise, group III/IV muscle afferents disfacilitate/inhibit the motor cortex and promote central fatigue. SIGNIFICANCE Group III/IV muscle afferents influence corticospinal excitability and central fatigue during whole-body exercise in humans.
Collapse
|
80
|
Effect of Experimental Cutaneous Hand Pain on Corticospinal Excitability and Short Afferent Inhibition. Brain Sci 2016; 6:brainsci6040045. [PMID: 27690117 PMCID: PMC5187559 DOI: 10.3390/brainsci6040045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/15/2022] Open
Abstract
Sensorimotor integration is altered in people with chronic pain. While there is substantial evidence that pain interferes with neural activity in primary sensory and motor cortices, much less is known about its impact on integrative sensorimotor processes. Here, the short latency afferent inhibition (SAI) paradigm was used to assess sensorimotor integration in the presence and absence of experimental cutaneous heat pain applied to the hand. Ulnar nerve stimulation was combined with transcranial magnetic stimulation to condition motor evoked potentials (MEPs) in the first dorsal interosseous muscle. Four interstimulus intervals (ISI) were tested, based on the latency of the N20 component of the afferent sensory volley (N20−5 ms, N20+2 ms, N20+4 ms, N20+10 ms). In the PAIN condition, MEPs were smaller compared to the NEUTRAL condition (p = 0.005), and were modulated as a function of the ISI (p = 0.012). Post-hoc planned comparisons revealed that MEPs at N20+2 and N20+4 were inhibited compared to unconditioned MEPs. However, the level of inhibition (SAI) was similar in the PAIN and NEUTRAL conditions. This suggests that the interplay between pain and sensorimotor integration is not mediated through direct and rapid pathways as assessed by SAI, but rather might involve higher-order integrative areas.
Collapse
|
81
|
Salomoni S, Tucker K, Hug F, McPhee M, Hodges P. Reduced Maximal Force during Acute Anterior Knee Pain Is Associated with Deficits in Voluntary Muscle Activation. PLoS One 2016; 11:e0161487. [PMID: 27559737 PMCID: PMC4999173 DOI: 10.1371/journal.pone.0161487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/05/2016] [Indexed: 11/19/2022] Open
Abstract
Although maximal voluntary contraction (MVC) force is reduced during pain, studies using interpolated twitch show no consistent reduction of voluntary muscle drive. The present study aimed to test if the reduction in MVC force during acute experimental pain could be explained by increased activation of antagonist muscles, weak voluntary activation at baseline, or changes in force direction. Twenty-two healthy volunteers performed maximal voluntary isometric knee extensions before, during, and after the effects of hypertonic (pain) and isotonic (control) saline injections into the infrapatellar fat pad. The MVC force, voluntary activation, electromyographic (EMG) activity of agonist, antagonist, and auxiliary (hip) muscles, and pain cognition and anxiety scores were recorded. MVC force was 9.3% lower during pain than baseline (p < 0.001), but there was no systematic change in voluntary activation. Reduced MVC force during pain was variable between participants (SD: 14%), and was correlated with reduced voluntary activation (r = 0.90), baseline voluntary activation (r = − 0.62), and reduced EMG amplitude of agonist and antagonist muscles (all r > 0.52), but not with changes in force direction, pain or anxiety scores. Hence, reduced MVC force during acute pain was mainly explained by deficits in maximal voluntary drive.
Collapse
Affiliation(s)
- Sauro Salomoni
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Kylie Tucker
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences, Brisbane, Australia
| | - François Hug
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
- University of Nantes, Laboratory “Motricité, Interactions, Performance” (EA 4334), Nantes, France
| | - Megan McPhee
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Paul Hodges
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
- * E-mail:
| |
Collapse
|
82
|
Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M. Fatigue diminishes motoneuronal excitability during cycling exercise. J Neurophysiol 2016; 116:1743-1751. [PMID: 27440242 DOI: 10.1152/jn.00300.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/15/2016] [Indexed: 11/22/2022] Open
Abstract
Exercise-induced fatigue influences the excitability of the motor pathway during single-joint isometric contractions. This study sought to investigate the influence of fatigue on corticospinal excitability during cycling exercise. Eight men performed fatiguing constant-load (80% Wpeak; 241 ± 13 W) cycling to exhaustion during which the percent increase in quadriceps electromyography (ΔEMG; vastus lateralis and rectus femoris) was quantified. During a separate trial, subjects performed two brief (∼45 s) nonfatiguing cycling bouts (244 ± 15 and 331 ± 23W) individually chosen to match the ΔEMG across bouts to that observed during fatiguing cycling. Corticospinal excitability during exercise was quantified by transcranial magnetic, electric transmastoid, and femoral nerve stimulation to elicit motor-evoked potentials (MEP), cervicomedullary evoked potentials (CMEP), and M waves in the quadriceps. Peripheral and central fatigue were expressed as pre- to postexercise reductions in quadriceps twitch force (ΔQtw) and voluntary quadriceps activation (ΔVA). Whereas nonfatiguing cycling caused no measureable fatigue, fatiguing cycling resulted in significant peripheral (ΔQtw: 42 ± 6%) and central (ΔVA: 4 ± 1%) fatigue. During nonfatiguing cycling, the area of MEPs and CMEPs, normalized to M waves, similarly increased in the quadriceps (∼40%; P < 0.05). In contrast, there was no change in normalized MEPs or CMEPs during fatiguing cycling. As a consequence, the ratio of MEP to CMEP was unchanged during both trials (P > 0.5). Therefore, although increases in muscle activation promote corticospinal excitability via motoneuronal facilitation during nonfatiguing cycling, this effect is abolished during fatigue. We conclude that the unaltered excitability of the corticospinal pathway from start of intense cycling exercise to exhaustion is, in part, determined by inhibitory influences on spinal motoneurons obscuring the facilitating effects of muscle activation.
Collapse
Affiliation(s)
- Joshua C Weavil
- Department of Exercise & Sport Science, University of Utah, Salt Lake City, Utah
| | - Simranjit K Sidhu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Discipline of Physiology, University of Adelaide, Australia; and
| | - Tyler S Mangum
- Department of Exercise & Sport Science, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Exercise & Sport Science, University of Utah, Salt Lake City, Utah; Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Markus Amann
- Department of Exercise & Sport Science, University of Utah, Salt Lake City, Utah; Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
83
|
Blain GM, Mangum TS, Sidhu SK, Weavil JC, Hureau TJ, Jessop JE, Bledsoe AD, Richardson RS, Amann M. Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J Physiol 2016; 594:5303-15. [PMID: 27241818 DOI: 10.1113/jp272283] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/16/2016] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS The purpose of this study was to determine the role of group III/IV muscle afferents in limiting the endurance exercise-induced metabolic perturbation assayed in muscle biopsy samples taken from locomotor muscle. Lumbar intrathecal fentanyl was used to attenuate the central projection of μ-opioid receptor-sensitive locomotor muscle afferents during a 5 km cycling time trial. The findings suggest that the central projection of group III/IV muscle afferent feedback constrains voluntary neural 'drive' to working locomotor muscle and limits the exercise-induced intramuscular metabolic perturbation. Therefore, the CNS might regulate the degree of metabolic perturbation within locomotor muscle and thereby limit peripheral fatigue. It appears that the group III/IV muscle afferents are an important neural link in this regulatory mechanism, which probably serves to protect locomotor muscle from the potentially severe functional impairment as a consequence of severe intramuscular metabolic disturbance. ABSTRACT To investigate the role of metabo- and mechanosensitive group III/IV muscle afferents in limiting the intramuscular metabolic perturbation during whole body endurance exercise, eight subjects performed 5 km cycling time trials under control conditions (CTRL) and with lumbar intrathecal fentanyl impairing lower limb muscle afferent feedback (FENT). Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Motoneuronal output was estimated through vastus lateralis surface electromyography (EMG). Exercise-induced changes in intramuscular metabolites were determined using liquid and gas chromatography-mass spectrometry. Quadriceps fatigue was quantified by pre- to post-exercise changes in potentiated quadriceps twitch torque (ΔQTsingle ) evoked by electrical femoral nerve stimulation. Although motoneuronal output was 21 ± 12% higher during FENT compared to CTRL (P < 0.05), time to complete the time trial was similar (∼8.8 min). Compared to CTRL, power output during FENT was 10 ± 4% higher in the first half of the time trial, but 11 ± 5% lower in the second half (both P < 0.01). The exercise-induced increase in intramuscular inorganic phosphate, H(+) , adenosine diphosphate, lactate and phosphocreatine depletion was 55 ± 30, 62 ± 18, 129 ± 63, 47 ± 14 (P < 0.001) and 27 ± 14% (P < 0.01) greater in FENT than CTRL. ΔQTsingle was greater following FENT than CTRL (-52 ± 2 vs -31 ± 1%, P < 0.001) and this difference was positively correlated with the difference in inorganic phosphate (r(2) = 0.79; P < 0.01) and H(+) (r(2) = 0.92; P < 0.01). In conclusion, during whole body exercise, group III/IV muscle afferents provide feedback to the CNS which, in turn, constrains motoneuronal output to the active skeletal muscle. This regulatory mechanism limits the exercise-induced intramuscular metabolic perturbation, preventing an abnormal homeostatic challenge and excessive peripheral fatigue.
Collapse
Affiliation(s)
- Gregory M Blain
- LAMHESS, EA 6312, University Nice Sophia Antipolis, University of Toulon, Nice, France.
| | - Tyler S Mangum
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Simranjit K Sidhu
- Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Discipline of Physiology, School of Medicine, The University of Adelaide, Australia
| | - Joshua C Weavil
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Thomas J Hureau
- LAMHESS, EA 6312, University Nice Sophia Antipolis, University of Toulon, Nice, France.,Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA.,Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Centre, Salt Lake City VAMC, UT, USA
| | - Markus Amann
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA.,Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Centre, Salt Lake City VAMC, UT, USA.,Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
84
|
Yunoki T, Matsuura R, Yamanaka R, Afroundeh R, Lian CS, Shirakawa K, Ohtsuka Y, Yano T. Relationship between motor corticospinal excitability and ventilatory response during intense exercise. Eur J Appl Physiol 2016; 116:1117-26. [PMID: 27055665 DOI: 10.1007/s00421-016-3374-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE Effort sense has been suggested to be involved in the hyperventilatory response during intense exercise (IE). However, the mechanism by which effort sense induces an increase in ventilation during IE has not been fully elucidated. The aim of this study was to determine the relationship between effort-mediated ventilatory response and corticospinal excitability of lower limb muscle during IE. METHODS Eight subjects performed 3 min of cycling exercise at 75-85 % of maximum workload twice (IE1st and IE2nd). IE2nd was performed after 60 min of resting recovery following 45 min of submaximal cycling exercise at the workload corresponding to ventilatory threshold. Vastus lateralis muscle response to transcranial magnetic stimulation of the motor cortex (motor evoked potentials, MEPs), effort sense of legs (ESL, Borg 0-10 scale), and ventilatory response were measured during the two IEs. RESULTS The slope of ventilation (l/min) against CO2 output (l/min) during IE2nd (28.0 ± 5.6) was significantly greater than that (25.1 ± 5.5) during IE1st. Mean ESL during IE was significantly higher in IE2nd (5.25 ± 0.89) than in IE1st (4.67 ± 0.62). Mean MEP (normalized to maximal M-wave) during IE was significantly lower in IE2nd (66 ± 22 %) than in IE1st (77 ± 24 %). The difference in mean ESL between the two IEs was significantly (p < 0.05, r = -0.82) correlated with the difference in mean MEP between the two IEs. CONCLUSIONS The findings suggest that effort-mediated hyperventilatory response to IE may be associated with a decrease in corticospinal excitability of exercising muscle.
Collapse
Affiliation(s)
- Takahiro Yunoki
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan.
| | - Ryouta Matsuura
- Department of Health and Physical Education, Joetsu University of Education, Joetsu, Japan
| | - Ryo Yamanaka
- Japan Institute of Sports Sciences, Tokyo, Japan
| | - Roghayyeh Afroundeh
- Department of Physical Education and Sports Science, Faculty of Education and Psychology, University of Mohaghegh Ardabilli, Ardabil, Iran
| | - Chang-Shun Lian
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| | - Kazuki Shirakawa
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| | - Yoshinori Ohtsuka
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| | - Tokuo Yano
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| |
Collapse
|
85
|
HUREAU THOMASJ, DUCROCQ GUILLAUMEP, BLAIN GREGORYM. Peripheral and Central Fatigue Development during All-Out Repeated Cycling Sprints. Med Sci Sports Exerc 2016; 48:391-401. [DOI: 10.1249/mss.0000000000000800] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
86
|
Burns E, Chipchase L, Schabrun S. Primary sensory and motor cortex function in response to acute muscle pain: A systematic review and meta-analysis. Eur J Pain 2016; 20:1203-13. [DOI: 10.1002/ejp.859] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 12/20/2022]
Affiliation(s)
- E. Burns
- Brain Rehabilitation and Neuroplasticity Unit; School of Science and Health; Western Sydney University; Australia
| | - L.S. Chipchase
- Brain Rehabilitation and Neuroplasticity Unit; School of Science and Health; Western Sydney University; Australia
| | - S.M. Schabrun
- Brain Rehabilitation and Neuroplasticity Unit; School of Science and Health; Western Sydney University; Australia
| |
Collapse
|
87
|
Burns E, Chipchase LS, Schabrun SM. Reduced Short- and Long-Latency Afferent Inhibition Following Acute Muscle Pain: A Potential Role in the Recovery of Motor Output. PAIN MEDICINE 2016; 17:1343-1352. [PMID: 26874884 DOI: 10.1093/pm/pnv104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/20/2015] [Accepted: 12/13/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Corticomotor output is reduced in response to acute muscle pain, yet the mechanisms that underpin this effect remain unclear. Here the authors investigate the effect of acute muscle pain on short-latency afferent inhibition, long-latency afferent inhibition, and long-interval intra-cortical inhibition to determine whether these mechanisms could plausibly contribute to reduced motor output in pain. DESIGN Observational same subject pre-post test design. SETTING Neurophysiology research laboratory. SUBJECTS Healthy, right-handed human volunteers (n = 22, 9 male; mean age ± standard deviation, 22.6 ± 7.8 years). METHODS Transcranial magnetic stimulation was used to assess corticomotor output, short-latency afferent inhibition, long-latency afferent inhibition, and long-interval intra-cortical inhibition before, during, immediately after, and 15 minutes after hypertonic saline infusion into right first dorsal interosseous muscle. Pain intensity and quality were recorded using an 11-point numerical rating scale and the McGill Pain Questionnaire. RESULTS Compared with baseline, corticomotor output was reduced at all time points (p = 0.001). Short-latency afferent inhibition was reduced immediately after (p = 0.039), and long-latency afferent inhibition 15 minutes after (p = 0.035), the resolution of pain. Long-interval intra-cortical inhibition was unchanged at any time point (p = 0.36). CONCLUSIONS These findings suggest short- and long-latency afferent inhibition, mechanisms thought to reflect the integration of sensory information with motor output at the cortex, are reduced following acute muscle pain. Although the functional relevance is unclear, the authors hypothesize a reduction in these mechanisms may contribute to the restoration of normal motor output after an episode of acute muscle pain.
Collapse
Affiliation(s)
- Emma Burns
- *Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Campbelltown, Sydney, New South Wales, Australia
| | - Lucinda Sian Chipchase
- *Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Campbelltown, Sydney, New South Wales, Australia
| | - Siobhan May Schabrun
- *Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Campbelltown, Sydney, New South Wales, Australia
| |
Collapse
|
88
|
Pearcey GE, Bradbury-Squires DJ, Monks M, Philpott D, Power KE, Button DC. Arm-cycling sprints induce neuromuscular fatigue of the elbow flexors and alter corticospinal excitability of the biceps brachii. Appl Physiol Nutr Metab 2016; 41:199-209. [DOI: 10.1139/apnm-2015-0438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We examined the effects of arm-cycling sprints on maximal voluntary elbow flexion and corticospinal excitability of the biceps brachii. Recreationally trained athletes performed ten 10-s arm-cycling sprints interspersed with 150 s of rest in 2 separate experiments. In experiment A (n = 12), maximal voluntary contraction (MVC) force of the elbow flexors was measured at pre-sprint 1, post-sprint 5, and post-sprint 10. Participants received electrical motor point stimulation during and following the elbow flexor MVCs to estimate voluntary activation (VA). In experiment B (n = 7 participants from experiment A), supraspinal and spinal excitability of the biceps brachii were measured via transcranial magnetic and transmastoid electrical stimulation that produced motor evoked potentials (MEPs) and cervicomedullary motor evoked potentials (CMEPs), respectively, during a 5% isometric MVC at pre-sprint 1, post-sprint 1, post-sprint 5, and post-sprint 10. In experiment A, mean power output, MVC force, potentiated twitch force, and VA decreased 13.1% (p < 0.001), 8.7% (p = 0.036), 27.6% (p = 0.003), and 5.6% (p = 0.037), respectively, from pre-sprint 1 to post-sprint 10. In experiment B, (i) MEPs decreased 42.1% (p = 0.002) from pre-sprint 1 to post-sprint 5 and increased 40.1% (p = 0.038) from post-sprint 5 to post-sprint 10 and (ii) CMEPs increased 28.5% (p = 0.045) from post-sprint 1 to post-sprint 10. Overall, arm-cycling sprints caused neuromuscular fatigue of the elbow flexors, which corresponded with decreased supraspinal and increased spinal excitability of the biceps brachii. The different post-sprint effects on supraspinal and spinal excitability may illustrate an inhibitory effect on supraspinal drive that reduces motor output and, therefore, decreases arm-cycling sprint performance.
Collapse
Affiliation(s)
- Gregory E.P. Pearcey
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | | | - Michael Monks
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Devin Philpott
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Kevin E. Power
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Duane C. Button
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
89
|
de Souza NS, Martins ACG, Bastos VHDV, Orsini M, Leite MAA, Teixeira S, Velasques B, Ribeiro P, Bittencourt J, Matta APDC, Filho PM. Motor Imagery and Its Effect on Complex Regional Pain Syndrome: An Integrative Review. Neurol Int 2015; 7:5962. [PMID: 26788264 PMCID: PMC4704470 DOI: 10.4081/ni.2015.5962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/21/2015] [Accepted: 11/12/2015] [Indexed: 01/15/2023] Open
Abstract
The motor imagery (MI) has been proposed as a treatment in the complex regional pain syndrome type 1 (CRPS-1), since it seems to promote a brain reorganization effect on sensory-motor areas of pain perception. The aim of this paper is to investigate, through an integrative critical review, the influence of MI on the CRPS-1, correlating their evidence to clinical practice. Research in PEDro, Medline, Bireme and Google Scholar databases was conducted. Nine randomized controlled trials (level 2), 1 non-controlled clinical study (level 3), 1 case study (level 4), 1 systematic review (level 1), 2 review articles and 1 comment (level 5) were found. We can conclude that MI has shown effect in reducing pain and functionality that remains after 6 months of treatment. However, the difference between the MI strategies for CRPS-1 is unknown as well as the intensity of mental stress influences the painful response or effect of MI or other peripheral neuropathies.
Collapse
Affiliation(s)
- Nélio Silva de Souza
- University Center Serra dos Órgãos, Teresópolis; Science of Rehabilitation, Centro Universitário Augusto Motta, Rio de Janeiro
| | - Ana Carolina Gomes Martins
- University Center Serra dos Órgãos, Teresópolis; Integrated Health of Women and Children, Fluminense Federal University, Niterói
| | - Victor Hugo do Vale Bastos
- Science of Rehabilitation, Centro Universitário Augusto Motta, Rio de Janeiro; Department of Neurology, Antônio Pedro University Hospital, Fluminense Federal University, Niterói; Biomedical Sciences stricto sensu, Federal University of Piauí
| | - Marco Orsini
- Science of Rehabilitation, Centro Universitário Augusto Motta, Rio de Janeiro; Severino Sombra University Center, Medicine Department, Vassouras, Rio de Janeiro
| | - Marco Antônio A Leite
- Fluminense Federal University Medical School, Niterói; Movement Disorders Unit, Antônio Pedro University Hospital, Fluminense Federal University, Niterói
| | | | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro; Institute of Applied Neuroscience, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro; Institute of Applied Neuroscience, Rio de Janeiro, Brazil
| | - Juliana Bittencourt
- Brain Mapping and Sensory Motor Integration, Institute of Psychiatry of Federal University of Rio de Janeiro
| | | | - Pedro Moreira Filho
- Department of Neurology, Antônio Pedro University Hospital, Fluminense Federal University , Niterói
| |
Collapse
|
90
|
Schabrun SM, Burns E, Hodges PW. New Insight into the Time-Course of Motor and Sensory System Changes in Pain. PLoS One 2015; 10:e0142857. [PMID: 26599632 PMCID: PMC4658023 DOI: 10.1371/journal.pone.0142857] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/26/2015] [Indexed: 11/18/2022] Open
Abstract
Background Pain-related interactions between primary motor (M1) and primary sensory (S1) cortex are poorly understood. In particular, the time-course over which S1 processing and corticomotor output are altered in association with muscle pain is unclear. We aimed to examine the temporal profile of altered processing in S1 and altered corticomotor output with finer temporal resolution than has been used previously. Methods In 10 healthy individuals we recorded somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) in separate sessions at multiple time-points before, during and immediately after pain induced by hypertonic saline infusion in a hand muscle, and at 15 and 25 minutes follow-up. Results Participants reported an average pain intensity that was less in the session where SEPs were recorded (SEPs: 4.0±1.6; MEPs: 4.9±2.3). In addition, the time taken for pain to return to zero once infusion of hypertonic saline ceased was less for participants in the SEP session (SEPs: 4.7±3.8 mins; MEPs 9.4±7.4 mins). Both SEPs and MEPs began to reduce almost immediately after pain reached 5/10 following hypertonic saline injection and were significantly reduced from baseline by the second (SEPs) and third (MEPs) recording blocks during pain. Both parameters remained suppressed immediately after pain had resolved and at 15 and 25 minutes after the resolution of pain. Conclusions These data suggest S1 processing and corticomotor output may be co-modulated in association with muscle pain. Interestingly, this is in contrast to previous observations. This discrepancy may best be explained by an effect of the SEP test stimulus on the corticomotor pathway. This novel finding is critical to consider in experimental design and may be potentially useful to consider as an intervention for the management of pain.
Collapse
Affiliation(s)
- Siobhan M Schabrun
- Western Sydney University, Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Campbelltown Campus, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Emma Burns
- Western Sydney University, Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Campbelltown Campus, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Science, St Lucia, Brisbane, Queensland 4062, Australia
| |
Collapse
|
91
|
van den Hoorn W, Hug F, Hodges PW, Bruijn SM, van Dieën JH. Effects of noxious stimulation to the back or calf muscles on gait stability. J Biomech 2015; 48:4109-4115. [PMID: 26602375 DOI: 10.1016/j.jbiomech.2015.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/17/2015] [Accepted: 10/10/2015] [Indexed: 11/27/2022]
Abstract
Gait stability is the ability to deal with small perturbations that naturally occur during walking. Changes in motor control caused by pain could affect this ability. This study investigated whether nociceptive stimulation (hypertonic saline injection) in a low back (LBP) or calf (CalfP) muscle affects gait stability. Sixteen participants walked on a treadmill at 0.94ms(-1) and 1.67ms(-1), while thorax kinematics were recorded using 3D-motion capture. From 110 strides, stability (local divergence exponent, LDE), stride-to-stride variability and root mean squares (RMS) of thorax linear velocities were calculated along the three movement axes. At 0.94ms(-1), independent of movement axes, gait stability was lower (higher LDE) and stride-to-stride variability was higher, during LBP and CalfP than no pain. This was more pronounced during CalfP, likely explained by the biomechanical function of calf muscles in gait, as supported by greater mediolateral RMS and stance time asymmetry than in LBP and no pain. At 1.67ms(-1), independent of movement axes, gait stability was greater and stride-to-stride variability was smaller with LBP than no pain and CalfP, whereas CalfP was not different from no pain. Opposite effects of LBP on gait stability between speeds suggests a more protective strategy at the faster speed. Although mediolateral RMS was greater and participants had more asymmetric stance times with CalfP than LBP and no pain, limited effect of CalfP at the faster speed could relate to greater kinematic constraints and smaller effects of calf muscle activity on propulsion at this speed. In conclusion, pain effects on gait stability depend on pain location and walking speed.
Collapse
Affiliation(s)
- Wolbert van den Hoorn
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health & Rehabilitation Sciences, Brisbane, Queensland 4072, Australia.
| | - François Hug
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health & Rehabilitation Sciences, Brisbane, Queensland 4072, Australia; University of Nantes, Laboratory "Motricité, Interactions, Performance" (EA 4334), Nantes, France
| | - Paul W Hodges
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health & Rehabilitation Sciences, Brisbane, Queensland 4072, Australia
| | - Sjoerd M Bruijn
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands; Department of Orthopaedic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jaap H van Dieën
- MOVE Research Institute Amsterdam, Department of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
92
|
Goodall S, Charlton K, Howatson G, Thomas K. Neuromuscular fatigability during repeated-sprint exercise in male athletes. Med Sci Sports Exerc 2015; 47:528-36. [PMID: 25010404 DOI: 10.1249/mss.0000000000000443] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE This study aimed to determine the pattern of neuromuscular fatigability that manifests during repeated-sprint running exercise. METHODS Twelve male participants (mean ± SD: age, 25 ± 6 yr; stature, 180 ± 7 cm; body mass, 77 ± 7 kg), currently training and competing in intermittent sprint sports, performed a repeated maximal sprint running protocol (12 × 30 m, 30-s rest periods). Pre- and postexercise twitch responses to transcutaneous motor point stimulation and transcranial magnetic stimulation were obtained to assess knee extensor neuromuscular and corticospinal function, respectively. Throughout the protocol, during alternate rest periods, blood lactate samples were taken and a single knee extensor maximal voluntary contraction (MVC) of the knee extensors was performed, with motor point stimulation delivered during and 2 s after, to determine voluntary activation (VA) and peripheral fatigue. RESULTS The repeated-sprint protocol induced significant increases in sprint time and blood [lactate] from the third sprint onwards (P < 0.001). Furthermore, knee extensor MVC, resting twitch amplitude, and VA were all significantly reduced after two sprints and reached their nadir after sprint 10 (Δ12%, Δ24%, Δ8%, P < 0.01, respectively). In line with a reduction in motor point-derived VA, there was also a reduction in VA measured with transcranial magnetic stimulation (Δ9%, P < 0.05) immediately after exercise. CONCLUSIONS These data are the first to demonstrate the development of neuromuscular fatigability of the knee extensors during and immediately after repeated-sprint exercise. Peripheral and central factors contributing to muscle fatigability were evident after two maximal sprints, and over half of the drop in postexercise MVC was due to supraspinal fatigue. Thus, peripheral, central, and supraspinal factors all contribute to the performance decrement and fatigability of the knee extensors after maximal repeated-sprint activity.
Collapse
Affiliation(s)
- Stuart Goodall
- 1Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UNITED KINGDOM; and 2Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, SOUTH AFRICA
| | | | | | | |
Collapse
|
93
|
Vaseghi B, Zoghi M, Jaberzadeh S. Differential effects of cathodal transcranial direct current stimulation of prefrontal, motor and somatosensory cortices on cortical excitability and pain perception - a double-blind randomised sham-controlled study. Eur J Neurosci 2015; 42:2426-37. [DOI: 10.1111/ejn.13043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 01/30/2023]
Affiliation(s)
- B. Vaseghi
- Department of Physiotherapy; School of Primary Health Care; Faculty of Medicine; Nursing and Health Sciences; Monash University; Frankston Vic. Australia
| | - M. Zoghi
- Department of Medicine; Royal Melbourne Hospital; The University of Melbourne; Parkville Vic. Australia
| | - S. Jaberzadeh
- Department of Physiotherapy; School of Primary Health Care; Faculty of Medicine; Nursing and Health Sciences; Monash University; Frankston Vic. Australia
| |
Collapse
|
94
|
Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise. Am J Physiol Regul Integr Comp Physiol 2015; 308:R998-1007. [PMID: 25876651 DOI: 10.1152/ajpregu.00021.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/08/2015] [Indexed: 11/22/2022]
Abstract
We investigated the role of exercise intensity and associated central motor drive in determining corticomotoneuronal excitability. Ten participants performed a series of nonfatiguing (3 s) isometric single-leg knee extensions (ISO; 10-100% of maximal voluntary contractions, MVC) and cycling bouts (30-160% peak aerobic capacity, W peak). At various exercise intensities, electrical potentials were evoked in the vastus lateralis (VL) and rectus femoris (RF) via transcranial magnetic stimulation (motor-evoked potentials, MEP), and electrical stimulation of both the cervicomedullary junction (cervicomedullary evoked potentials, CMEP) and the femoral nerve (maximal M-waves, M max). Whereas M max remained unchanged in both muscles (P > 0.40), voluntary electromyographic activity (EMG) increased in an exercise intensity-dependent manner for ISO and cycling exercise in VL and RF (both P < 0.001). During ISO exercise, MEPs and CMEPs progressively increased in VL and RF until a plateau was reached at ∼ 75% MVC; further increases in contraction intensity did not cause additional changes (P > 0.35). During cycling exercise, VL-MEPs and CMEPs progressively increased by ∼ 65% until a plateau was reached at W peak. In contrast, RF MEPs and CMEPs progressively increased by ∼ 110% throughout the tested cycling intensities without the occurrence of a plateau. Furthermore, alterations in EMG below the plateau influenced corticomotoneuronal excitability similarly between exercise modalities. In both exercise modalities, the MEP-to-CMEP ratio did not change with exercise intensity (P > 0.22). In conclusion, increases in exercise intensity and EMG facilitates the corticomotoneuronal pathway similarly in isometric knee extension and locomotor exercise until a plateau occurs at a submaximal exercise intensity. This facilitation appears to be primarily mediated by increases in excitability of the motoneuron pool.
Collapse
Affiliation(s)
- J C Weavil
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - S K Sidhu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - T S Mangum
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - R S Richardson
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah
| | - M Amann
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
95
|
Laurin J, Pertici V, Dousset E, Marqueste T, Decherchi P. Group III and IV muscle afferents: Role on central motor drive and clinical implications. Neuroscience 2015; 290:543-51. [DOI: 10.1016/j.neuroscience.2015.01.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
|
96
|
Vaseghi B, Zoghi M, Jaberzadeh S. How does anodal transcranial direct current stimulation of the pain neuromatrix affect brain excitability and pain perception? A randomised, double-blind, sham-control study. PLoS One 2015; 10:e0118340. [PMID: 25738603 PMCID: PMC4349802 DOI: 10.1371/journal.pone.0118340] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022] Open
Abstract
Background Integration of information between multiple cortical regions of the pain neuromatrix is thought to underpin pain modulation. Although altered processing in the primary motor (M1) and sensory (S1) cortices is implicated in separate studies, the simultaneous changes in and the relationship between these regions are unknown yet. The primary aim was to assess the effects of anodal transcranial direct current stimulation (a-tDCS) over superficial regions of the pain neuromatrix on M1 and S1 excitability. The secondary aim was to investigate how M1 and S1 excitability changes affect sensory (STh) and pain thresholds (PTh). Methods Twelve healthy participants received 20 min a-tDCS under five different conditions including a-tDCS of M1, a-tDCS of S1, a-tDCS of DLPFC, sham a-tDCS, and no-tDCS. Excitability of dominant M1 and S1 were measured before, immediately, and 30 minutes after intervention respectively. Moreover, STh and PTh to peripheral electrical and mechanical stimulation were evaluated. All outcome measures were assessed at three time-points of measurement by a blind rater. Results A-tDCS of M1 and dorsolateral prefrontal cortex (DLPFC) significantly increased brain excitability in M1 (p < 0.05) for at least 30 min. Following application of a-tDCS over the S1, the amplitude of the N20-P25 component of SEPs increased immediately after the stimulation (p < 0.05), whilst M1 stimulation decreased it. Compared to baseline values, significant STh and PTh increase was observed after a-tDCS of all three stimulated areas. Except in M1 stimulation, there was significant PTh difference between a-tDCS and sham tDCS. Conclusion a-tDCS of M1 is the best spots to enhance brain excitability than a-tDCS of S1 and DLPFC. Surprisingly, a-tDCS of M1 and S1 has diverse effects on S1 and M1 excitability. A-tDCS of M1, S1, and DLPFC increased STh and PTh levels. Given the placebo effects of a-tDCS of M1 in pain perception, our results should be interpreted with caution, particularly with respect to the behavioural aspects of pain modulation. Trial Registration Australian New Zealand Clinical Trials, ACTRN12614000817640, http://www.anzctr.org.au/.
Collapse
Affiliation(s)
- Bita Vaseghi
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- * E-mail:
| | - Maryam Zoghi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
97
|
Pelletier R, Higgins J, Bourbonnais D. Is neuroplasticity in the central nervous system the missing link to our understanding of chronic musculoskeletal disorders? BMC Musculoskelet Disord 2015; 16:25. [PMID: 25887644 PMCID: PMC4331171 DOI: 10.1186/s12891-015-0480-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background Musculoskeletal rehabilitative care and research have traditionally been guided by a structural pathology paradigm and directed their resources towards the structural, functional, and biological abnormalities located locally within the musculoskeletal system to understand and treat Musculoskeletal Disorders (MSD). However the structural pathology model does not adequately explain many of the clinical and experimental findings in subjects with chronic MSD and, more importantly, treatment guided by this paradigm fails to effectively treat many of these conditions. Discussion Increasing evidence reveals structural and functional changes within the Central Nervous System (CNS) of people with chronic MSD that appear to play a prominent role in the pathophysiology of these disorders. These neuroplastic changes are reflective of adaptive neurophysiological processes occurring as the result of altered afferent stimuli including nociceptive and neuropathic transmission to spinal, subcortical and cortical areas with MSD that are initially beneficial but may persist in a chronic state, may be part and parcel in the pathophysiology of the condition and the development and maintenance of chronic signs and symptoms. Neuroplastic changes within different areas of the CNS may help to explain the transition from acute to chronic conditions, sensory-motor findings, perceptual disturbances, why some individuals continue to experience pain when no structural cause can be discerned, and why some fail to respond to conservative interventions in subjects with chronic MSD. We argue that a change in paradigm is necessary that integrates CNS changes associated with chronic MSD and that these findings are highly relevant for the design and implementation of rehabilitative interventions for this population. Summary Recent findings suggest that a change in model and approach is required in the rehabilitation of chronic MSD that integrate the findings of neuroplastic changes across the CNS and are targeted by rehabilitative interventions. Effects of current interventions may be mediated through peripheral and central changes but may not specifically address all underlying neuroplastic changes in the CNS potentially associated with chronic MSD. Novel approaches to address these neuroplastic changes show promise and require further investigation to improve efficacy of currents approaches.
Collapse
Affiliation(s)
- René Pelletier
- École de réadaptation, Faculté de médecine, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, H3C 3 J7, Québec, Canada.
| | - Johanne Higgins
- École de réadaptation, Faculté de médecine, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, H3C 3 J7, Québec, Canada. .,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut de réadaptation Gingras-Lindsay-de-Montréal, Montréal, Québec, Canada.
| | - Daniel Bourbonnais
- École de réadaptation, Faculté de médecine, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, H3C 3 J7, Québec, Canada. .,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut de réadaptation Gingras-Lindsay-de-Montréal, Montréal, Québec, Canada.
| |
Collapse
|
98
|
Schabrun SM, Christensen SW, Mrachacz-Kersting N, Graven-Nielsen T. Motor Cortex Reorganization and Impaired Function in the Transition to Sustained Muscle Pain. Cereb Cortex 2015; 26:1878-90. [PMID: 25609242 DOI: 10.1093/cercor/bhu319] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Primary motor cortical (M1) adaptation has not been investigated in the transition to sustained muscle pain. Daily injection of nerve growth factor (NGF) induces hyperalgesia reminiscent of musculoskeletal pain and provides a novel model to study M1 in response to progressively developing muscle soreness. Twelve healthy individuals were injected with NGF into right extensor carpi radialis brevis (ECRB) on Days 0 and 2 and with hypertonic saline on Day 4. Quantitative sensory and motor testing and assessment of M1 organization and function using transcranial magnetic stimulation were performed prior to injection on Days 0, 2, and 4 and again on Day 14. Pain and disability increased at Day 2 and increased further at Day 4. Reorganization of M1 was evident at Day 4 and was characterized by increased map excitability. These changes were accompanied by reduced intracortical inhibition and increased intracortical facilitation. Interhemispheric inhibition was reduced from the "affected" to the "unaffected" hemisphere on Day 4, and this was associated with increased pressure sensitivity in left ECRB. These data provide the first evidence of M1 adaptation in the transition to sustained muscle pain and have relevance for the development of therapies that seek to target M1 in musculoskeletal pain.
Collapse
Affiliation(s)
- S M Schabrun
- School of Science and Health, University of Western Sydney, Penrith, NSW 2751, Australia
| | - S W Christensen
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - N Mrachacz-Kersting
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - T Graven-Nielsen
- Laboratory for Musculoskeletal Pain and Motor Control, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
99
|
Marchetti PH, Silva FHDDO, Soares EG, Serpa EP, Nardi PSM, Vilela GDB, Behm DG. Upper limb static-stretching protocol decreases maximal concentric jump performance. J Sports Sci Med 2014; 13:945-950. [PMID: 25435789 PMCID: PMC4234966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/08/2014] [Indexed: 06/04/2023]
Abstract
The purpose of the present study was to evaluate the acute effects of an upper limb static-stretching (SS) protocol on the maximal concentric jump performance. We recruited 25 young healthy, male, resistance trained individuals (stretched group, n = 15 and control group, n = 10) in this study. The randomized between group experimental protocol consisted of a three trials of maximal concentric jump task, before and after a SS of the upper limb. Vertical ground reaction forces (vGRF) and surface electromyography (sEMG) of both gastrocnemius lateralis (GL) and vastus lateralis (VL) were acquired. An extensive SS was employed consisting of ten stretches of 30 seconds, with 15 seconds of rest, and 70-90% of the point of discomfort (POD). ANOVA (2x2) (group x condition) was used for shoulder joint range of motion (ROM), vGRF and sEMG. A significant interaction for passive ROM of the shoulder joint revealed significant increases between pre- and post-SS protocol (p < 0.001). A significant interaction demonstrated decreased peak force and an increased peak propulsion duration between pre- and post-stretching only for stretch group (p = 0.021, and p = 0.024, respectively. There was a significant main effect between groups (stretch and control) for peak force for control group (p = 0.045). Regarding sEMG variables, there were no significant differences between groups (control versus stretched) or condition (pre-stretching versus post-stretching) for the peak amplitude of RMS and IEMG for both muscles (VL and GL). In conclusion, an acute extensive SS can increase the shoulder ROM, and negatively affect both the propulsion duration and peak force of the maximal concentric jump, without providing significant changes in muscle activation. Key pointsThe jump performance can be affected negatively by an intense extensive static-stretching protocol.An intense acute extensive SS protocol can affect positively the shoulder ROM.The intense acute extensive SS protocol does not change the level of muscle activation for vastus lateralis and gastrocnemius lateralis.
Collapse
Affiliation(s)
- Paulo H Marchetti
- Human Movement Sciences Graduate Program, School of Health Sciences, Methodist University of Piracicaba (UNIMEP) , Piracicaba, São Paulo, Brazil
| | - Fernando H D de Oliveira Silva
- Human Movement Sciences Graduate Program, School of Health Sciences, Methodist University of Piracicaba (UNIMEP) , Piracicaba, São Paulo, Brazil
| | - Enrico G Soares
- Human Movement Sciences Graduate Program, School of Health Sciences, Methodist University of Piracicaba (UNIMEP) , Piracicaba, São Paulo, Brazil
| | - Erica P Serpa
- Human Movement Sciences Graduate Program, School of Health Sciences, Methodist University of Piracicaba (UNIMEP) , Piracicaba, São Paulo, Brazil
| | - Priscyla S M Nardi
- Human Movement Sciences Graduate Program, School of Health Sciences, Methodist University of Piracicaba (UNIMEP) , Piracicaba, São Paulo, Brazil
| | - Guanis de B Vilela
- Human Movement Sciences Graduate Program, School of Health Sciences, Methodist University of Piracicaba (UNIMEP) , Piracicaba, São Paulo, Brazil
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland , Canada
| |
Collapse
|
100
|
Camic CL, Kovacs AJ, Enquist EA, VanDusseldorp TA, Hill EC, Calantoni AM, Yemm AJ. An electromyographic-based test for estimating neuromuscular fatigue during incremental treadmill running. Physiol Meas 2014; 35:2401-13. [PMID: 25390736 DOI: 10.1088/0967-3334/35/12/2401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purposes of the present study were two fold: (1) to determine if the model used for estimating the physical working capacity at the fatigue threshold (PWCFT) from electromyographic (EMG) amplitude data during incremental cycle ergometry could be applied to treadmill running to derive a new neuromuscular fatigue threshold for running, and (2) to compare the running velocities associated with the PWCFT, ventilatory threshold (VT), and respiratory compensation point (RCP). Fifteen college-aged subjects (21.5 ± 1.3 y, 68.7 ± 10.5 kg, 175.9 ± 6.7 cm) performed an incremental treadmill test to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. There were significant (p < 0.05) mean differences in running velocities between the VT (11.3 ± 1.3 km h(-1)) and PWCFT (14.0 ± 2.3 km h(-1)), VT and RCP (14.0 ± 1.8 km h(-1)), but not the PWCFT and RCP. The findings of the present study indicated that the PWCFT model could be applied to a single continuous, incremental treadmill test to estimate the maximal running velocity that can be maintained prior to the onset of neuromuscular fatigue. In addition, these findings suggested that the PWCFT, like the RCP, may be used to differentiate the heavy from severe domains of exercise intensity.
Collapse
Affiliation(s)
- Clayton L Camic
- Human Performance Laboratory, Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, USA
| | | | | | | | | | | | | |
Collapse
|