51
|
Noah JA, Dravida S, Zhang X, Yahil S, Hirsch J. Neural correlates of conflict between gestures and words: A domain-specific role for a temporal-parietal complex. PLoS One 2017; 12:e0173525. [PMID: 28278240 PMCID: PMC5344449 DOI: 10.1371/journal.pone.0173525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/21/2017] [Indexed: 12/30/2022] Open
Abstract
The interpretation of social cues is a fundamental function of human social behavior, and resolution of inconsistencies between spoken and gestural cues plays an important role in successful interactions. To gain insight into these underlying neural processes, we compared neural responses in a traditional color/word conflict task and to a gesture/word conflict task to test hypotheses of domain-general and domain-specific conflict resolution. In the gesture task, recorded spoken words ("yes" and "no") were presented simultaneously with video recordings of actors performing one of the following affirmative or negative gestures: thumbs up, thumbs down, head nodding (up and down), or head shaking (side-to-side), thereby generating congruent and incongruent communication stimuli between gesture and words. Participants identified the communicative intent of the gestures as either positive or negative. In the color task, participants were presented the words "red" and "green" in either red or green font and were asked to identify the color of the letters. We observed a classic "Stroop" behavioral interference effect, with participants showing increased response time for incongruent trials relative to congruent ones for both the gesture and color tasks. Hemodynamic signals acquired using functional near-infrared spectroscopy (fNIRS) were increased in the right dorsolateral prefrontal cortex (DLPFC) for incongruent trials relative to congruent trials for both tasks consistent with a common, domain-general mechanism for detecting conflict. However, activity in the left DLPFC and frontal eye fields and the right temporal-parietal junction (TPJ), superior temporal gyrus (STG), supramarginal gyrus (SMG), and primary and auditory association cortices was greater for the gesture task than the color task. Thus, in addition to domain-general conflict processing mechanisms, as suggested by common engagement of right DLPFC, socially specialized neural modules localized to the left DLPFC and right TPJ including adjacent homologous receptive language areas were engaged when processing conflicting communications. These findings contribute to an emerging view of specialization within the TPJ and adjacent areas for interpretation of social cues and indicate a role for the region in processing social conflict.
Collapse
Affiliation(s)
- J. Adam Noah
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Swethasri Dravida
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
- Medical Scientist Training Program, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Xian Zhang
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Shaul Yahil
- Department of Neurosciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Joy Hirsch
- Brain Function Laboratory, Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
52
|
Abstract
Previous studies have shown right parietal activation in response to observing irrational actions. Behavioral studies show that people sometimes imitate irrational actions, a phenomenon called overimitation. However, limitations on movement in functional magnetic resonance imaging (fMRI) mean that the neural basis of overimitation has not been studied. To address this, our study employed a less restrictive neuroimaging technique, functional near-infrared spectroscopy (fNIRS). Measurements were taken while participants observed either rational or irrational movements before performing movements on a computerized puzzle task. Observing irrational actions produced greater activation in right anterior inferior parietal lobule (aIPL), replicating results from the fMRI literature. This is a proof of principle that fNIRS can be used as an alternative to fMRI in social cognition experiments, and that parietal cortex has a core role in responding to irrational actions.
Collapse
Affiliation(s)
- Dominic Oliver
- a Institute of Cognitive Neuroscience , University College London , London , UK
| | - Ilias Tachtsidis
- b Medical Physics and Biomedical Engineering , University College London , London , UK
| | | |
Collapse
|
53
|
Physiological Effects of Continuous Colored Light Exposure on Mayer Wave Activity in Cerebral Hemodynamics: A Functional Near-Infrared Spectroscopy (fNIRS) Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 977:277-283. [PMID: 28685457 DOI: 10.1007/978-3-319-55231-6_38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We are increasingly exposed to colored light, but its impact on human physiology is not yet extensively investigated. In the present study we aimed to determine the effects of colored light on human cerebral Mayer wave activity (MWA). We measured oxy- ([O2Hb]), deoxy- ([HHb]), total hemoglobin ([tHb]) concentrations and tissue oxygen saturation (StO2) by functional near-infrared spectroscopy (fNIRS) in the left and right pre-frontal cortex (L-PFC, R-PFC) of 17 subjects (median age: 29 years, 6 women). In a randomized crossover design subjects were exposed to blue, red, green, and yellow LED light for 10 min. Pre-light (8 min, baseline) and post-light (15 min, recovery) conditions were darkness. MWA was calculated from band-pass filtered fNIRS signals (~0.08-0.12 Hz). The medians from the last 3 min of each period (baseline, light exposure, recovery) were statistically analyzed. MWA was increased during red and green light vs. baseline and after blue light exposure in recovery in the L-PFC. MWA differed depending on the chosen frequency range, filter design, and type of signals to analyze (raw intensity, hemoglobin signal from multi-distance method or modified Beer-Lambert law, or within hemoglobin signals).
Collapse
|
54
|
Vrana A, Meier ML, Hotz‐Boendermaker S, Humphreys BK, Scholkmann F. Different mechanosensory stimulations of the lower back elicit specific changes in hemodynamics and oxygenation in cortical sensorimotor areas-A fNIRS study. Brain Behav 2016; 6:e00575. [PMID: 28031998 PMCID: PMC5167005 DOI: 10.1002/brb3.575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES This study aimed at investigating the feasibility of functional near-infrared spectroscopy (fNIRS) to measure changes in cerebral hemodynamics and oxygenation evoked by painful and nonpainful mechanosensory stimulation on the lower back. The main objectives were to investigate whether cortical activity can be (1) detected using functional fNIRS, and (2) if it is possible to distinguish between painful and nonpainful pressure as well as a tactile brushing stimulus based on relative changes in oxy- and deoxyhemoglobin ([O2Hb] and [HHb]). METHODS Twenty right-handed subjects (33.5 ± 10.7 years; range 20-61 years; 8 women) participated in the study. Painful and nonpainful pressure stimulation was exerted with a thumb grip perpendicularly to the spinous process of the lumbar spine. Tactile stimulation was realized by a one-finger brushing. The supplementary motor area (SMA) and primary somatosensory cortex (S1) were measured bilaterally using a multichannel continuous-wave fNIRS imaging system. RESULTS Characteristic relative changes in [O2Hb] in the SMA and S1 after both pressure stimulations (corrected for multiple comparison) were observed. [HHb] showed only much weaker changes (uncorrected). The brushing stimulus did not reveal any significant changes in [O2Hb] or [HHb]. CONCLUSION The results indicate that fNIRS is sensitive enough to detect varying hemodynamic responses to different types of mechanosensory stimulation. The acquired data will serve as a foundation for further investigations in patients with chronic lower back pain. The future aim is to disentangle possible maladaptive neuroplastic changes in sensorimotor areas during painful and nonpainful lower back stimulations based on fNIRS neuroimaging.
Collapse
Affiliation(s)
- Andrea Vrana
- Interdisciplinary Spinal ResearchDepartment of Chiropractic MedicineUniversity Hospital of BalgristZurichSwitzerland
- Department of Health Sciences and Technology, Human Movement SciencesETH ZurichZurichSwitzerland
| | - Michael L. Meier
- Interdisciplinary Spinal ResearchDepartment of Chiropractic MedicineUniversity Hospital of BalgristZurichSwitzerland
| | - Sabina Hotz‐Boendermaker
- Interdisciplinary Spinal ResearchDepartment of Chiropractic MedicineUniversity Hospital of BalgristZurichSwitzerland
| | - Barry K. Humphreys
- Interdisciplinary Spinal ResearchDepartment of Chiropractic MedicineUniversity Hospital of BalgristZurichSwitzerland
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory (BORL)Department of NeonatologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| |
Collapse
|
55
|
Modelling confounding effects from extracerebral contamination and systemic factors on functional near-infrared spectroscopy. Neuroimage 2016; 143:91-105. [PMID: 27591921 PMCID: PMC5139986 DOI: 10.1016/j.neuroimage.2016.08.058] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/29/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
Abstract
Haemodynamics-based neuroimaging is widely used to study brain function. Regional blood flow changes characteristic of neurovascular coupling provide an important marker of neuronal activation. However, changes in systemic physiological parameters such as blood pressure and concentration of CO2 can also affect regional blood flow and may confound haemodynamics-based neuroimaging. Measurements with functional near-infrared spectroscopy (fNIRS) may additionally be confounded by blood flow and oxygenation changes in extracerebral tissue layers. Here we investigate these confounds using an extended version of an existing computational model of cerebral physiology, ‘BrainSignals’. Our results show that confounding from systemic physiological factors is able to produce misleading haemodynamic responses in both positive and negative directions. By applying the model to data from previous fNIRS studies, we demonstrate that such potentially deceptive responses can indeed occur in at least some experimental scenarios. It is therefore important to record the major potential confounders in the course of fNIRS experiments. Our model may then allow the observed behaviour to be attributed among the potential causes and hence reduce identification errors. Confounding of fNIRS haemoglobin signals is simulated using a computational model. Model is extended to simulate scalp haemodynamics. Changes in blood pressure and CO2 can mimic and mask functional activation. Experimental recording of systemic factors is recommended to aid interpretation.
Collapse
|
56
|
Quaresima V, Ferrari M. Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review. ORGANIZATIONAL RESEARCH METHODS 2016. [DOI: 10.1177/1094428116658959] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Upon adequate stimulation, real-time maps of cortical hemodynamic responses can be obtained by functional near-infrared spectroscopy (fNIRS), which noninvasively measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. This review is aimed at giving a concise and simple overview of the basic principles of fNIRS including features, strengths, advantages, limitations, and utility for evaluating human behavior. The transportable/wireless commercially available fNIRS systems have a time resolution of 1 to 10 Hz, a depth sensitivity of about 1.5 cm, and a spatial resolution up to 1 cm. fNIRS has been found suitable for many applications on human beings, either adults or infants/children, in the field of social sciences, neuroimaging basic research, and medicine. Some examples of present and future prospects of fNIRS for assessing cerebral cortex function during human behavior in different situations (in natural and social situations) will be provided. Moreover, the most recent fNIRS studies for investigating interpersonal interactions by adopting the hyperscanning approach, which consists of the measurement of brain activity simultaneously on two or more people, will be reported.
Collapse
Affiliation(s)
- Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Italy
| | - Marco Ferrari
- Department of Physical and Chemical Sciences, University of L’Aquila, Italy
| |
Collapse
|