51
|
Gholami S, Longo F, Nedaie HA, Berti A, Mousavi M, Meigooni AS. Application of Geant4 Monte Carlo simulation in dose calculations for small radiosurgical fields. Med Dosim 2017; 43:214-223. [PMID: 28988675 DOI: 10.1016/j.meddos.2017.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 11/17/2022]
Abstract
The Geant4 toolkit was used to develop a Monte Carlo (MC)-based engine for accurate dose calculations in small radiation field sizes. The Geant4 toolkit (version 10.1.p02) was used to simulate 6-MV photon beam of a Varian2100C linear accelerator that is being used for stereotactic radiosurgery (SRS) treatment with small radiation fields. Geometric models of 3 in-house designed radiosurgical divergent cones, with the diameters of their projections at the isocenter being 10, 20, and 30 mm, were simulated. The accuracy of the MC simulation technique was examined by reproducing several different simulated dosimetric parameters of the primary beams with the experimental data. The dose distributions are first checked for single beams for each cone, then standard multiple field (SMF) techniques are applied. A sample set of DICOM files from computed tomography (CT) scan imaging of a patient's head was converted to the Geant4 geometry format to implement MC-based engine for a clinical test. To validate the accuracy of the MC-based calculations for SMF arrangements, the isodose lines from MC simulation in water phantom were compared with the measured isodose lines using EBT3 Gafchromic film in Solid Water phantoms. Agreements between measured and simulated depth dose values and beam profiles for SRS cones were generally within 2%/2 mm. For output factors, the largest discrepancy was observed for 10 mm SRS cone, which was 1.7%. For SMF techniques, in SRS cones, the MC simulation and EBT3 Gafchromic film dosimetry were in acceptable agreement (5%/5 mm). Excellent agreement between the results of the MC-based and measured dose values for both single and SMF techniques in SRS cones indicates the ability of the Geant4 toolkit to be applied as the platform for treatment planning of advanced radiotherapy techniques.
Collapse
Affiliation(s)
- Somayeh Gholami
- Radiotherapy Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy.
| | - Francesco Longo
- Department of Physics, University of Trieste and INFN Trieste, Italy
| | - Hassan Ali Nedaie
- Radiotherapy Oncology Research Centre, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Alessio Berti
- Department of Physics, University of Trieste and INFN Trieste, Italy
| | - Mehdi Mousavi
- Faculty of Medicine, Jirof University of Medical Sciences, Jiroft, Iran
| | - Ali S Meigooni
- Comprehensive Cancer Centers of Nevada, Las Vegas, NV, United States
| |
Collapse
|
52
|
Zoros E, Moutsatsos A, Pappas EP, Georgiou E, Kollias G, Karaiskos P, Pantelis E. Monte Carlo and experimental determination of correction factors for gamma knife perfexion small field dosimetry measurements. Phys Med Biol 2017; 62:7532-7555. [PMID: 28796643 DOI: 10.1088/1361-6560/aa8590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Detector-, field size- and machine-specific correction factors are required for precise dosimetry measurements in small and non-standard photon fields. In this work, Monte Carlo (MC) simulation techniques were used to calculate the [Formula: see text] and [Formula: see text] correction factors for a series of ionization chambers, a synthetic microDiamond and diode dosimeters, used for reference and/or output factor (OF) measurements in the Gamma Knife Perfexion photon fields. Calculations were performed for the solid water (SW) and ABS plastic phantoms, as well as for a water phantom of the same geometry. MC calculations for the [Formula: see text] correction factors in SW were compared against corresponding experimental results for a subset of ionization chambers and diode detectors. Reference experimental OF data were obtained through the weighted average of corresponding measurements using TLDs, EBT-2 films and alanine pellets. [Formula: see text] values close to unity (within 1%) were calculated for most of ionization chambers in water. Greater corrections of up to 6.0% were observed for chambers with relatively large air-cavity dimensions and steel central electrode. A phantom correction of 1.006 and 1.024 (breaking down to 1.014 from the ABS sphere and 1.010 from the accompanying ABS phantom adapter) were calculated for the SW and ABS phantoms, respectively, adding up to [Formula: see text] corrections in water. Both measurements and MC calculations for the diode and microDiamond detectors resulted in lower than unit [Formula: see text] correction factors, due to their denser sensitive volume and encapsulation materials. In comparison, higher than unit [Formula: see text] results for the ionization chambers suggested field size depended dose underestimations (being significant for the 4 mm field), with magnitude depending on the combination of contradicting phenomena associated with volume averaging and electron fluence perturbations. Finally, the presence of 0.5 mm air-gap between the diodes' frontal surface and their phantom-inserts may considerably influence OF measurements, reaching 4.6% for the Razor diode.
Collapse
Affiliation(s)
- E Zoros
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
53
|
Poppinga D, Delfs B, Meyners J, Harder D, Poppe B, Looe HK. The output factor correction as function of the photon beam field size - direct measurement and calculation from the lateral dose response functions of gas-filled and solid detectors. Z Med Phys 2017; 28:224-235. [PMID: 28869164 DOI: 10.1016/j.zemedi.2017.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
The first aim of this study has been to extend the systematic experimental study of the field size dependence of the output factor correction for three micro-ionization chambers (PTW 31014, PTW 31022 and IBA Razor chamber), two silicon diodes (PTW 60017 and IBA Razor Diode) and the synthetic diamond detector microDiamond (PTW 60019) in a 6 MV photon beam down to an effective field side length of 2.6mm, and to summarize the present knowledge of this factor by treating it as a function of the dosimetric field size. In order to vary the dosimetric field size over this large range, output factors measurements were performed at source-to-surface distances of 60cm and 90cm. Since the output factors obtained with the organic scintillation detector Exradin W1 (Standard Imaging, Middleton, USA) at all field sizes closely agreed with those measured by EBT3 radiochromic films (ISP Corp, Wayne, USA), the scintillation detector served as the reference detector. The measured output correction factors reflect the influences of the volume averaging and density effects upon the uncorrected output factor values. In case of the microDiamond detector these opposing influences result in output factor correction values less than 1 for moderately small field sizes and larger than 1 for very small field sizes. Our results agree with most of the published experimental as well as Monte-Carlo simulated data within detector-specific limits of uncertainty. The dosimetric field side length has been identified as a reliable determinant of the output factor correction, and typical functional curve shapes of the field-size dependent output factor correction vs. dosimetric field side length have been associated with gas-filled, silicon diode and synthetic diamond detectors. The second aim of this study has been a novel, semi-empirical approach to calculate the field-size dependent output correction factors of small photon detectors by convolving film measured true dose profile data with measured lateral response functions of the detectors. To achieve this, the set of previously published 2D lateral dose response functions was complemented by those of the novel detectors PTW PinPoint chamber 31022 (PTW Freiburg, Freiburg, Germany), Razor chamber and Razor Diode (IBA Dosimetry, Schwarzenbruck, Germany). The output correction factors calculated from the lateral dose response functions closely fit with the directly measured output correction factors, thus supporting the latter by an independent method.
Collapse
Affiliation(s)
- Daniela Poppinga
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Georgstraße 12, 26121 Oldenburg, Germany.
| | - Björn Delfs
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Georgstraße 12, 26121 Oldenburg, Germany
| | - Jutta Meyners
- Radiotherapy Department, Imland Hospital, Lilienstraße 20-28, 24768 Rendsburg, Germany
| | - Dietrich Harder
- Prof. em., Medical Physics and Biophysics, Georg August University, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Georgstraße 12, 26121 Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Georgstraße 12, 26121 Oldenburg, Germany
| |
Collapse
|
54
|
Vicoroski N, Espinoza A, Duncan M, Oborn BM, Carolan M, Metcalfe P, Menichelli D, Perevertaylo VL, Lerch MLF, Rosenfeld AB, Petasecca M. Development of a silicon diode detector for skin dosimetry in radiotherapy. Med Phys 2017; 44:5402-5412. [DOI: 10.1002/mp.12469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/14/2017] [Accepted: 06/28/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nikolina Vicoroski
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2500 Australia
| | - Anthony Espinoza
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2500 Australia
| | - Mitchell Duncan
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2500 Australia
| | - Bradley M. Oborn
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2500 Australia
- Illawarra Cancer Care Centre; Wollongong Hospital; Wollongong NSW 2500 Australia
| | - Martin Carolan
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2500 Australia
- Illawarra Cancer Care Centre; Wollongong Hospital; Wollongong NSW 2500 Australia
| | - Peter Metcalfe
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2500 Australia
- Illawarra Health and Medical Research Institute - IHMRI; Wollongong NSW 2500 Australia
| | | | | | - Michael L. F. Lerch
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2500 Australia
- Illawarra Health and Medical Research Institute - IHMRI; Wollongong NSW 2500 Australia
| | - Anatoly B. Rosenfeld
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2500 Australia
- Illawarra Health and Medical Research Institute - IHMRI; Wollongong NSW 2500 Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2500 Australia
- Illawarra Health and Medical Research Institute - IHMRI; Wollongong NSW 2500 Australia
| |
Collapse
|
55
|
De Coste V, Francescon P, Marinelli M, Masi L, Paganini L, Pimpinella M, Prestopino G, Russo S, Stravato A, Verona C, Verona-Rinati G. Is the PTW 60019 microDiamond a suitable candidate for small field reference dosimetry? ACTA ACUST UNITED AC 2017; 62:7036-7055. [DOI: 10.1088/1361-6560/aa7e59] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
56
|
Agarwal A, Rastogi N, Maria Das KJ, Yoganathan SA, Udayakumar D, Kumar S. Investigating the Electronic Portal Imaging Device for Small Radiation Field Measurements. J Med Phys 2017; 42:59-64. [PMID: 28706350 PMCID: PMC5496271 DOI: 10.4103/jmp.jmp_131_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose: With the advent of state-of-the-art treatment technologies, the use of small fields has increased, and dosimetry in small fields is highly challenging. In this study, the potential use of Varian electronic portal imaging device (EPID) for small field measurements was explored for 6 and 15 MV photon beams. Materials and Methods: The output factors and profiles were measured for a range of jaw-collimated square field sizes starting from 0.8 cm × 0.8 cm to 10 cm × 10 cm using EPID. For evaluation purpose, reference data were acquired using Exradin A16 microionization chamber (0.007 cc) for output factors and stereotactic field diode for profile measurements in a radiation field analyzer. Results: The output factors of EPID were in agreement with the reference data for field sizes down to 2 cm × 2 cm and for 2 cm × 2 cm; the difference in output factors was +2.06% for 6 MV and +1.56% for 15 MV. For the lowest field size studied (0.8 cm × 0.8 cm), the differences were maximum; +16% for 6 MV and +23% for 15 MV photon beam. EPID profiles of both energies were closely matching with reference profiles for field sizes down to 2 cm × 2 cm; however, penumbra and measured field size of EPID profiles were slightly lower compared to its counterpart. Conclusions: EPID is a viable option for profile and output factor measurements for field sizes down to 2 cm × 2 cm in the absence of appropriate small field dosimeters.
Collapse
Affiliation(s)
- Arpita Agarwal
- Department of Physics, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Nikhil Rastogi
- Department of Physics, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - K J Maria Das
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S A Yoganathan
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - D Udayakumar
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shaleen Kumar
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
57
|
Martínez-Rovira I, González W, Brons S, Prezado Y. Carbon and oxygen minibeam radiation therapy: An experimental dosimetric evaluation. Med Phys 2017; 44:4223-4229. [PMID: 28556241 DOI: 10.1002/mp.12383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/03/2017] [Accepted: 05/21/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To perform dosimetric characterization of a minibeam collimator in both carbon and oxygen ion beams to guide optimal setup geometry and irradiation for future radiobiological studies. METHODS Carbon and oxygen minibeams were generated using a prototype tungsten multislit collimator presenting line apertures 700 μm wide, which are spaced 3500 μm centre-to-centre distance apart. Several radiation beam spots generated the desired field size of 15 × 15 mm2 and production of a 50 mm long spread out Bragg peak (SOBP) centered at 80 mm depth in water. Dose evaluations were performed with two different detectors: a PTW microDiamond® single crystal diamond detector and radiochromic films (EBT3). Peak-to-valley dose ratio (PVDR) values, output factors (OF), penumbras, and full width at half maximum (FWHM) were measured. RESULTS Measured lateral dose profiles exhibited spatial fractionation of dose at depth in a water phantom in the expected form of peaks and valleys for both carbon and oxygen radiation fields. The diamond detector and radiochromic film provided measurements of PVDR in good agreement. PVDR values at shallow depth were about 60 and decreased to about 10 at 80 mm depth in water. OF in the center of the SOBP was about 0.4; this value is larger than the corresponding one in proton minibeam radiation therapy measured using a comparable collimator due to a reduced lateral scattering for carbon and oxygen minibeams. CONCLUSIONS Carbon and oxygen minibeams may be produced by a mechanical collimator. PVDR values and output factors measured in this first study of these minibeam radiation types indicate there is potential for their therapeutic use. Optimization of minibeam collimator design and the number and size of focal spots for irradiation are advocated to improve PDVR values and dose distributions for each specific applied use.
Collapse
Affiliation(s)
- Immaculada Martínez-Rovira
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage - 15 rue Georges Clemenceau, 91406, Orsay Cedex, France.,Ionizing Radiation Research Group (GRRI), Physics Department, Universitat Autònoma de Barcelona, Campus UAB, Avinguda de l'Eix Central, Edicifi C, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Wilfredo González
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage - 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Clinic, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Campus universitaire, Bât. 440, 1er étage - 15 rue Georges Clemenceau, 91406, Orsay Cedex, France
| |
Collapse
|
58
|
Reggiori G, Stravato A, Pimpinella M, Lobefalo F, De Coste V, Fogliata A, Mancosu P, De Rose F, Palumbo V, Scorsetti M, Tomatis S. Use of PTW-microDiamond for relative dosimetry of unflattened photon beams. Phys Med 2017; 38:45-53. [PMID: 28610696 DOI: 10.1016/j.ejmp.2017.05.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/31/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The increasing interest in SBRT treatments encourages the use of flattening filter free (FFF) beams. Aim of this work was to evaluate the performance of the PTW60019 microDiamond detector under 6MV and 10MVFFF beams delivered with the EDGE accelerator (Varian Medical System, Palo Alto, USA). A flattened 6MV beam was also considered for comparison. METHODS Short term stability, dose linearity and dose rate dependence were evaluated. Dose per pulse dependence was investigated in the range 0.2-2.2mGy/pulse. MicroDiamond profiles and output factors (OFs) were compared to those obtained with other detectors for field sizes ranging from 40×40cm2 to 0.6×0.6cm2. In small fields, volume averaging effects were evaluated and the relevant correction factors were applied for each detector. RESULTS MicroDiamond short term stability, dose linearity and dependence on monitor unit rate were less than 0.8% for all energies. Response variations with dose per pulse were found within 1.8%. MicroDiamond output factors (OF) values differed from those measured with the reference ion-chamber for less than 1% up to 40×40cm2 fields where silicon diodes overestimate the dose of ≈3%. For small fields (<3×3cm2) microDiamond and the unshielded silicon diode were in good agreement. CONCLUSIONS MicroDiamond showed optimal characteristics for relative dosimetry even under high dose rate beams. The effects due to dose per pulse dependence up to 2.2mGy/pulse are negligible. Compared to other detectors, microDiamond provides accurate OF measurements in the whole range of field sizes. For fields <1cm correction factors accounting for fluence perturbation and volume averaging could be required.
Collapse
Affiliation(s)
- Giacomo Reggiori
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy.
| | - Antonella Stravato
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| | - Maria Pimpinella
- Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA-INMRI C R Casaccia, Roma, Italy
| | - Francesca Lobefalo
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| | - Vanessa De Coste
- Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA-INMRI C R Casaccia, Roma, Italy
| | - Antonella Fogliata
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| | - Pietro Mancosu
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| | - Fiorenza De Rose
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| | - Valentina Palumbo
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milano, Italy
| | - Stefano Tomatis
- Physics Service of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milan-Rozzano, Italy
| |
Collapse
|
59
|
Chaudhari SH, Dobhal R, Kinhikar RA, Kadam SS, Deshpande DD. Measurement of Total Scatter Factor for Stereotactic Cones with Plastic Scintillation Detector. J Med Phys 2017; 42:9-13. [PMID: 28405102 PMCID: PMC5370342 DOI: 10.4103/jmp.jmp_114_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Advanced radiotherapy modalities such as stereotactic radiosurgery (SRS) and image-guided radiotherapy may employ very small beam apertures for accurate localized high dose to target. Accurate measurement of small radiation fields is a well-known challenge for many dosimeters. The purpose of this study was to measure total scatter factors for stereotactic cones with plastic scintillation detector and its comparison against diode detector and theoretical estimates. Measurements were performed on Novalis Tx™ linear accelerator for 6MV SRS beam with stereotactic cones of diameter 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. The advantage of plastic scintillator detector is in its energy dependence. The total scatter factor was measured in water at the depth of dose maximum. Total scatter factor with plastic scintillation detector was determined by normalizing the readings to field size of 10 cm × 10 cm. To overcome energy dependence of diode detector for the determination of scatter factor with diode detector, daisy chaining method was used. The plastic scintillator detector was calibrated against the ionization chamber, and the reproducibility in the measured doses was found to be within ± 1%. Total scatter factor measured with plastic scintillation detector was 0.728 ± 0.3, 0.783 ± 0.05, 0.866 ± 0.55, 0.885 ± 0.5, and 0.910 ± 0.06 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. Total scatter factor measured with diode detector was 0.733 ± 0.03, 0.782 ± 0.02, 0.834 ± 0.07, 0.854 ± 0.02, and 0.872 ± 0.02 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. The variation in the measurement of total scatter factor with published Monte Carlo data was found to be −1.3%, 1.9%, −0.4%, and 0.4% for cone sizes of 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. We conclude that total scatter factor measurements for stereotactic cones can be adequately carried out with a plastic scintillation detector. Our results show a high level of consistency within our data and compared well with published data.
Collapse
Affiliation(s)
- Suresh H Chaudhari
- Department of Radiation Oncology, Apollo Hospitals, Navi Mumbai, Maharashtra, India
| | - Rishabh Dobhal
- Department of Radiation Oncology, Batra Hospital and Medical Research Centre, New Delhi, India
| | - Rajesh A Kinhikar
- Department of Medical Physics, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sudarshan S Kadam
- Department of Medical Physics, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Deepak D Deshpande
- Department of Medical Physics, Tata Memorial Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
60
|
Yarahmadi M, Wegener S, Sauer OA. Energy and field size dependence of a silicon diode designed for small-field dosimetry. Med Phys 2017; 44:1958-1964. [DOI: 10.1002/mp.12195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/17/2017] [Accepted: 02/28/2017] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mehran Yarahmadi
- Department of Medical Physics; Faculty of Medicine; Kurdistan University of Medical Sciences; Sanandaj Iran
| | - Sonja Wegener
- Department of Radiation Oncology; University of Würzburg; Josef-Schneider-Strasse 11 97080 Würzburg Germany
| | - Otto A. Sauer
- Department of Radiation Oncology; University of Würzburg; Josef-Schneider-Strasse 11 97080 Würzburg Germany
| |
Collapse
|
61
|
Marinelli M, Prestopino G, Verona C, Verona-Rinati G. Experimental determination of the PTW 60019 microDiamond dosimeter active area and volume. Med Phys 2017; 43:5205. [PMID: 27587052 DOI: 10.1118/1.4961402] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Small field output correction factors have been studied by several research groups for the PTW 60019 microDiamond (MD) dosimeter, by comparing the response of such a device with both reference dosimeters and Monte Carlo simulations. A general good agreement is observed for field sizes down to about 1 cm. However, evident inconsistencies can be noticed when comparing some experimental results and Monte Carlo simulations obtained for smaller irradiation fields. This issue was tentatively attributed by some authors to unintentional large variations of the MD active surface area. The aim of the present study is a nondestructive experimental determination of the MD active surface area and active volume. METHODS Ten MD dosimeters, one MD prototype, and three synthetic diamond samples were investigated in the present work. 2D maps of the MD response were recorded under scanned soft x-ray microbeam irradiation, leading to an experimental determination of the device active surface area. Profiles of the device responses were measured as well. In order to evaluate the MD active volume, the thickness of the diamond sensing layer was independently evaluated by capacitance measurements and alpha particle detection experiments. The MD sensitivity, measured at the PTW calibration laboratory, was also used to calculate the device active volume thickness. RESULTS An average active surface area diameter of (2.19 ± 0.02) mm was evaluated by 2D maps and response profiles of all the MDs. Average active volume thicknesses of (1.01 ± 0.13) μm and (0.97 ± 0.14) μm were derived by capacitance and sensitivity measurements, respectively. The obtained results are well in agreement with the nominal values reported in the manufacturer dosimeter specifications. A homogeneous response was observed over the whole device active area. Besides the one from the device active volume, no contributions from other components of the housing nor from encapsulation materials were observed in the 2D response maps. CONCLUSIONS The obtained results demonstrate the high reproducibility of the MD fabrication process. The observed discrepancies among the output correction factors reported by several authors for MD response in very small fields are very unlikely to be ascribed to unintentional variations of the device active surface area and volume. It is the opinion of the authors that the role of the volume averaging as well as of other perturbation effects should be separately investigated instead, both experimentally and by Monte Carlo simulations, in order to better clarify the behaviour of the MD response in very small fields.
Collapse
Affiliation(s)
- Marco Marinelli
- INFN-Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata," Via del Politecnico 1, Roma 00133, Italy
| | - G Prestopino
- INFN-Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata," Via del Politecnico 1, Roma 00133, Italy
| | - C Verona
- INFN-Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata," Via del Politecnico 1, Roma 00133, Italy
| | - G Verona-Rinati
- INFN-Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata," Via del Politecnico 1, Roma 00133, Italy
| |
Collapse
|
62
|
Wegener S, Sauer OA. Separation of scatter from small MV beams and its effect on detector response. Med Phys 2017; 44:1139-1148. [PMID: 28063164 DOI: 10.1002/mp.12091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/20/2016] [Accepted: 01/01/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Separating the scatter from the primary component of a MV beam to study detector response separately in each case for a better understanding of the role of different effects influencing the response in nonstandard fields. METHODS Detector response in three different experimental setups was investigated for a variety of different types (diamond, shielded and unshielded diodes, ionization chamber and film): (a). Detectors positioned in water under a thin steel pole blocking the central part of the beam, yielding only the response to the scatter part of the beam. (b). Detectors positioned in air under a PMMA cap to approximate the contribution of the primary beam without scatter. (c). Detectors positioned in water in the standard open field configuration to obtain a superposition of both. RESULTS Detector differences became more clearly observable when the primary beam was blocked and detector behavior heavily depended on the construction type. It was possible to calculate the response in the open fields from the values measured in the blocked configuration with 1% accuracy for all studied field sizes between 0.8 and 10 cm and for all detectors. CONCLUSIONS The limitations of clinically used detectors in nonstandard situations were illustrated in the extreme situation of just scattered radiation reaching the detector. By experimentally separating scatter from the primary beam, the roles of different effects on the detector response were observed.
Collapse
Affiliation(s)
- Sonja Wegener
- Department of Radiation Oncology, University of Würzburg, 97080, Würzburg, Germany
| | - Otto A Sauer
- Department of Radiation Oncology, University of Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
63
|
Jong WL, Ung NM, Vannyat A, Jamalludin Z, Rosenfeld A, Wong JHD. “Edge-on” MOSkin detector for stereotactic beam measurement and verification. Phys Med 2017; 33:127-135. [DOI: 10.1016/j.ejmp.2016.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/16/2016] [Accepted: 12/29/2016] [Indexed: 11/25/2022] Open
|
64
|
Small field output factors evaluation with a microDiamond detector over 30 Italian centers. Phys Med 2016; 32:1644-1650. [DOI: 10.1016/j.ejmp.2016.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/18/2022] Open
|
65
|
Pantelis E, Moutsatsos A, Zourari K, Kilby W, Antypas C, Papagiannis P, Karaiskos P, Georgiou E, Sakelliou L. On the implementation of a recently proposed dosimetric formalism to a robotic radiosurgery system. Med Phys 2016; 37:2369-79. [DOI: 10.1118/1.3404289] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
66
|
Strolin S, Minosse S, D'Andrea M, Fracchiolla F, Bruzzaniti V, Luppino S, Benassi M, Strigari L. Zero field PDD and TMR data for unflattened beams in conventional linacs: A tool for independent dose calculations. Phys Med 2016; 32:1621-1627. [PMID: 27876285 DOI: 10.1016/j.ejmp.2016.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To investigate the applicability of the formalism described in BJR supplement n.25 for Flattening Filter Free (FFF) beams in determining the zero-field tissue maximum ratio (TMR) for an independent calculation method of Percentage Depth Doses (PDDs) and relative dose factors (RDFs) at different experimental setups. METHODS Experimental PDDs for field size from 40×40cm2 to 2×2cm2 with Source Surface Distance (SSD) 100cm were acquired. The normalized peak scatter factor for each square field was obtained by fitting experimental RDFs in water and collimator factors (CFs) in air. Maximum log-likelihood methods were used to extract fit parameters in competing models and the Bayesian Information Criterion was used to select the best one. In different experimental setups additional RDFs and TPR1020s for field sizes other than reference field were measured and Monte Carlo simulations of PDDs at SSD 80cm were carried out to validate the results. PDD agreements were evaluated by gamma analysis. RESULTS The BJR formalism allowed to predict the PDDs obtained with MC within 2%/2mm at SSD 80cm from 100% down to 50% of the maximum dose. The agreement between experimental TPR1020s and RDFs values at SSD=90cm and BJR calculations were within 1% for field sizes greater than 5×5cm2 while it was within 3% for fields down to 2×2cm2. CONCLUSIONS BJR formalism can be used for FFF beams to predict PDD and RDF at different SSDs and can be used for independent MU calculations.
Collapse
Affiliation(s)
- Silvia Strolin
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Silvia Minosse
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Marco D'Andrea
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Francesco Fracchiolla
- Azienda Provinciale per i Servizi Sanitari (APSS), Protontherapy Department, Trento, Italy
| | - Vicente Bruzzaniti
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Stefano Luppino
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Marcello Benassi
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Lidia Strigari
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy.
| |
Collapse
|
67
|
Fogliata A, Lobefalo F, Reggiori G, Stravato A, Tomatis S, Scorsetti M, Cozzi L. Evaluation of the dose calculation accuracy for small fields defined by jaw or MLC for AAA and Acuros XB algorithms. Med Phys 2016; 43:5685. [DOI: 10.1118/1.4963219] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
68
|
Cagni E, Russo S, Reggiori G, Bresciani S, Fedele D, Iori M, Marino C, Nardiello B, Ruggieri R, Strigari L, Mancosu P. Technical Note: Multicenter study of TrueBeam FFF beams with a new stereotactic diode: Can a common small field signal ratio curve be defined? Med Phys 2016; 43:5570. [DOI: 10.1118/1.4961744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
69
|
Bouchard H, Kamio Y, Palmans H, Seuntjens J, Duane S. Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects. Med Phys 2016; 42:6048-61. [PMID: 26429280 DOI: 10.1118/1.4930798] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To quantify detector perturbation effects in megavoltage small photon fields and support the theoretical explanation on the nature of quality correction factors in these conditions. METHODS In this second paper, a modern approach to radiation dosimetry is defined for any detector and applied to small photon fields. Fano's theorem is adapted in the form of a cavity theory and applied in the context of nonstandard beams to express four main effects in the form of perturbation factors. The pencil-beam decomposition method is detailed and adapted to the calculation of perturbation factors and quality correction factors. The approach defines a perturbation function which, for a given field size or beam modulation, entirely determines these dosimetric factors. Monte Carlo calculations are performed in different cavity sizes for different detection materials, electron densities, and extracameral components. RESULTS Perturbation effects are detailed with calculated perturbation functions, showing the relative magnitude of the effects as well as the geometrical extent to which collimating or modulating the beam impacts the dosimetric factors. The existence of a perturbation zone around the detector cavity is demonstrated and the approach is discussed and linked to previous approaches in the literature to determine critical field sizes. CONCLUSIONS Monte Carlo simulations are valuable to describe pencil beam perturbation effects and detail the nature of dosimetric factors in megavoltage small photon fields. In practice, it is shown that dosimetric factors could be avoided if the field size remains larger than the detector perturbation zone. However, given a detector and beam quality, a full account for the detector geometry is necessary to determine critical field sizes.
Collapse
Affiliation(s)
- Hugo Bouchard
- Acoustics and Ionising Radiation Team, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| | - Yuji Kamio
- Centre hospitalier de l'Université de Montréal (CHUM), 1560 Sherbrooke Est, Montréal, Québec H2L 4M1, Canada
| | - Hugo Palmans
- Acoustics and Ionising Radiation Team, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United KingdomMedical Physics, EBG MedAustron GmbH, Wiener Neustadt A-2700, Austria
| | - Jan Seuntjens
- Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada
| | - Simon Duane
- Acoustics and Ionising Radiation Team, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| |
Collapse
|
70
|
Khader J, Al-Mousa A, Hijla FA, Al-Heet S, Rashdan I, Balter P, Chang J, Wadi-Ramahi S. Requirements and Implementation of a Lung SBRT Program in a Developing Country: Benefits of International Cooperation. Int J Radiat Oncol Biol Phys 2016; 95:1236-8. [DOI: 10.1016/j.ijrobp.2016.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 12/25/2022]
|
71
|
Study of commercial detector responses in non-equilibrium small photon fields of a 1000 MU/min CyberKnife system. Phys Med 2016; 32:818-25. [DOI: 10.1016/j.ejmp.2016.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 11/30/2022] Open
|
72
|
Russo S, Masi L, Francescon P, Frassanito MC, Fumagalli ML, Marinelli M, Falco MD, Martinotti AS, Pimpinella M, Reggiori G, Verona Rinati G, Vigorito S, Mancosu P. Multicenter evaluation of a synthetic single-crystal diamond detector for CyberKnife small field size output factors. Phys Med 2016; 32:575-81. [DOI: 10.1016/j.ejmp.2016.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022] Open
|
73
|
Ravichandran R, Binukumar JP, Al Amri I, Davis CA. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams. J Appl Clin Med Phys 2016; 17:291-303. [PMID: 27074452 PMCID: PMC5875569 DOI: 10.1120/jacmp.v17i2.5690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 10/22/2015] [Accepted: 11/16/2015] [Indexed: 11/30/2022] Open
Abstract
Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue‐equivalent properties. We investigated a commercially available ‘microdiamond’ detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1 mm, thickness 1×10−3mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ±0.17% (1 SD) (n=11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stopping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long‐term stability and reproducibility. Based on micro‐dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PACS number(s): 87.56.Da
Collapse
|
74
|
Godson HF, Ravikumar M, Ganesh K, Sathiyan S, Ponmalar YR. Small field output factors: Comparison of measurements with various detectors and effects of detector orientation with primary jaw setting. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2015.12.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
75
|
Pappas EP, Moutsatsos A, Pantelis E, Zoros E, Georgiou E, Torrens M, Karaiskos P. On the development of a comprehensive MC simulation model for the Gamma Knife Perfexion radiosurgery unit. Phys Med Biol 2016; 61:1182-203. [PMID: 26788618 DOI: 10.1088/0031-9155/61/3/1182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work presents a comprehensive Monte Carlo (MC) simulation model for the Gamma Knife Perfexion (PFX) radiosurgery unit. Model-based dosimetry calculations were benchmarked in terms of relative dose profiles (RDPs) and output factors (OFs), against corresponding EBT2 measurements. To reduce the rather prolonged computational time associated with the comprehensive PFX model MC simulations, two approximations were explored and evaluated on the grounds of dosimetric accuracy. The first consists in directional biasing of the (60)Co photon emission while the second refers to the implementation of simplified source geometric models. The effect of the dose scoring volume dimensions in OF calculations accuracy was also explored. RDP calculations for the comprehensive PFX model were found to be in agreement with corresponding EBT2 measurements. Output factors of 0.819 ± 0.004 and 0.8941 ± 0.0013 were calculated for the 4 mm and 8 mm collimator, respectively, which agree, within uncertainties, with corresponding EBT2 measurements and published experimental data. Volume averaging was found to affect OF results by more than 0.3% for scoring volume radii greater than 0.5 mm and 1.4 mm for the 4 mm and 8 mm collimators, respectively. Directional biasing of photon emission resulted in a time efficiency gain factor of up to 210 with respect to the isotropic photon emission. Although no considerable effect on relative dose profiles was detected, directional biasing led to OF overestimations which were more pronounced for the 4 mm collimator and increased with decreasing emission cone half-angle, reaching up to 6% for a 5° angle. Implementation of simplified source models revealed that omitting the sources' stainless steel capsule significantly affects both OF results and relative dose profiles, while the aluminum-based bushing did not exhibit considerable dosimetric effect. In conclusion, the results of this work suggest that any PFX simulation model should be benchmarked in terms of both RDP and OF results.
Collapse
Affiliation(s)
- E P Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
76
|
Poppinga D, Meyners J, Delfs B, Muru A, Harder D, Poppe B, Looe HK. Experimental determination of the lateral dose response functions of detectors to be applied in the measurement of narrow photon-beam dose profiles. Phys Med Biol 2015; 60:9421-36. [PMID: 26583596 DOI: 10.1088/0031-9155/60/24/9421] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study aims at the experimental determination of the detector-specific 1D lateral dose response function K(x) and of its associated rotational symmetric counterpart K(r) for a set of high-resolution detectors presently used in narrow-beam photon dosimetry. A combination of slit-beam, radiochromic film, and deconvolution techniques served to accomplish this task for four detectors with diameters of their sensitive volumes ranging from 1 to 2.2 mm. The particular aim of the experiment was to examine the existence of significant negative portions of some of these response functions predicted by a recent Monte-Carlo-simulation (Looe et al 2015 Phys. Med. Biol. 60 6585-607). In a 6 MV photon slit beam formed by the Siemens Artiste collimation system and a 0.5 mm wide slit between 10 cm thick lead blocks serving as the tertiary collimator, the true cross-beam dose profile D(x) at 3 cm depth in a large water phantom was measured with radiochromic film EBT3, and the detector-affected cross-beam signal profiles M(x) were recorded with a silicon diode, a synthetic diamond detector, a miniaturized scintillation detector, and a small ionization chamber. For each detector, the deconvolution of the convolution integral M(x) = K(x) ∗ D(x) served to obtain its specific 1D lateral dose response function K(x), and K(r) was calculated from it. Fourier transformations and back transformations were performed using function approximations by weighted sums of Gaussian functions and their analytical transformation. The 1D lateral dose response functions K(x) of the four types of detectors and their associated rotational symmetric counterparts K(r) were obtained. Significant negative curve portions of K(x) and K(r) were observed in the case of the silicon diode and the diamond detector, confirming the Monte-Carlo-based prediction (Looe et al 2015 Phys. Med. Biol. 60 6585-607). They are typical for the perturbation of the secondary electron field by a detector with enhanced electron density compared with the surrounding water. In the cases of the scintillation detector and the small ionization chamber, the negative curve portions of K(x) practically vanish. It is planned to use the measured functions K(x) and K(r) to deconvolve clinical narrow-beam signal profiles and to correct the output factor values obtained with various high-resolution detectors.
Collapse
Affiliation(s)
- D Poppinga
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | | | | | | | | | | | | |
Collapse
|
77
|
Bouchard H, Seuntjens J, Duane S, Kamio Y, Palmans H. Detector dose response in megavoltage small photon beams. I. Theoretical concepts. Med Phys 2015; 42:6033-47. [DOI: 10.1118/1.4930053] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
78
|
Petasecca M, Alhujaili S, Aldosari AH, Fuduli I, Newall M, Porumb CS, Carolan M, Nitschke K, Lerch MLF, Kalliopuska J, Perevertaylo V, Rosenfeld AB. Angular independent silicon detector for dosimetry in external beam radiotherapy. Med Phys 2015; 42:4708-18. [DOI: 10.1118/1.4926778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
79
|
Gonzalez-Lopez A, Vera-Sanchez JA, Lago-Martin JD. Small fields measurements with radiochromic films. J Med Phys 2015; 40:61-7. [PMID: 26170551 PMCID: PMC4478646 DOI: 10.4103/0971-6203.158667] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/15/2022] Open
Abstract
The small fields in radiotherapy are widely used due to the development of techniques such as intensity-modulated radiotherapy and stereotactic radio surgery. The measurement of the dose distributions for small fields is a challenge. A perfect dosimeter should be independent of the radiation energy and the dose rate and should have a negligible volume effect. The radiochromic (RC) film characteristics fit well to these requirements. However, the response of RC films and their digitizing processes present a significant spatial inhomogeneity problem. The present work uses a method for two-dimensional (2D) measurement with RC films based on the reduction of the spatial inhomogeneity of both the film and the film digitizing process. By means of registering and averaging several measurements of the same field, the inhomogeneities are mostly canceled. Measurements of output factors (OFs), dose profiles (in-plane and cross-plane), and 2D dose distributions are presented. The field sizes investigated are 0.5 × 0.5 cm2, 0.7 × 0.7 cm2, 1 × 1 cm2, 2 × 2 cm2, 3 × 3 cm2, 6 × 6 cm2, and 10 × 10 cm2 for 6 and 15 MV photon beams. The OFs measured with the RC film are compared with the measurements carried out with a PinPoint ionization chamber (IC) and a Semiflex IC, while the measured transversal dose profiles were compared with Monte Carlo simulations. The results obtained for the OFs measurements show a good agreement with the values obtained from RC films and the PinPoint and Semiflex chambers when the field size is greater or equal than 2 × 2 cm2. These agreements give confidence on the accuracy of the method as well as on the results obtained for smaller fields. Also, good agreement was found between the measured profiles and the Monte Carlo calculated profiles for the field size of 1 × 1 cm2. We expect, therefore, that the presented method can be used to perform accurate measurements of small fields.
Collapse
Affiliation(s)
| | - Juan-Antonio Vera-Sanchez
- Servicio de Proteccion Radiologica y Fisica Medica, Hospital Sant Joan de Reus, Reus, Tarragona, Spain
| | | |
Collapse
|
80
|
Lárraga-Gutiérrez JM. Experimental determination of field factors ($\Omega _{{{Q}_{\text{clin}}},{{Q}_{\text{msr}}}}^{{{f}_{\text{clin}}},{{f}_{\text{msr}}}}$ ) for small radiotherapy beams using the daisy chain correction method. Phys Med Biol 2015; 60:5813-31. [DOI: 10.1088/0031-9155/60/15/5813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
81
|
Spang FJ, Rosenberg I, Hedin E, Royle G. Photon small-field measurements with a CMOS active pixel sensor. Phys Med Biol 2015; 60:4383-98. [PMID: 25985207 DOI: 10.1088/0031-9155/60/11/4383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520 × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5 × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.
Collapse
Affiliation(s)
- F Jiménez Spang
- Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
82
|
Caprile P, Hartmann GH, Doerner E. Development and application of a dose verification tool using a small field model for TomoTherapy. Z Med Phys 2015; 25:48-57. [PMID: 25081067 DOI: 10.1016/j.zemedi.2014.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 11/26/2022]
|
83
|
Baluti F, Deloar HM, Lansley SP, Meyer J. Monte Carlo modelling the dosimetric effects of electrode material on diamond detectors. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:101-8. [DOI: 10.1007/s13246-015-0329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
84
|
Ploquin N, Kertzscher G, Vandervoort E, Cygler JE, Andersen CE, Francescon P. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields. Phys Med Biol 2014; 60:1-14. [DOI: 10.1088/0031-9155/60/1/1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
85
|
Correction of measured Gamma-Knife output factors for angular dependence of diode detectors and PinPoint ionization chamber. Phys Med 2014; 30:914-9. [DOI: 10.1016/j.ejmp.2014.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 11/18/2022] Open
|
86
|
Preliminary investigations of two types of silica-based dosimeter for small-field radiotherapy. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2014.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
87
|
Jafari SM, Alalawi AI, Hussein M, Alsaleh W, Najem MA, Hugtenburg RP, Bradley DA, Spyrou NM, Clark CH, Nisbet A. Glass beads and Ge-doped optical fibres as thermoluminescence dosimeters for small field photon dosimetry. Phys Med Biol 2014; 59:6875-89. [DOI: 10.1088/0031-9155/59/22/6875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
88
|
Aldosari AH, Petasecca M, Espinoza A, Newall M, Fuduli I, Porumb C, Alshaikh S, Alrowaili ZA, Weaver M, Metcalfe P, Carolan M, Lerch MLF, Perevertaylo V, Rosenfeld AB. A two dimensional silicon detectors array for quality assurance in stereotactic radiotherapy: MagicPlate-512. Med Phys 2014; 41:091707. [DOI: 10.1118/1.4892384] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
89
|
García-Garduño OA, Rodríguez-Ponce M, Gamboa-deBuen I, Rodríguez-Villafuerte M, Galván de la Cruz OO, Rivera-Montalvo T. Effect of dosimeter type for commissioning small photon beams on calculated dose distribution in stereotactic radiosurgery. Med Phys 2014; 41:092101. [DOI: 10.1118/1.4892176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
90
|
Azangwe G, Grochowska P, Georg D, Izewska J, Hopfgartner J, Lechner W, Andersen CE, Beierholm AR, Helt-Hansen J, Mizuno H, Fukumura A, Yajima K, Gouldstone C, Sharpe P, Meghzifene A, Palmans H. Detector to detector corrections: A comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams. Med Phys 2014; 41:072103. [DOI: 10.1118/1.4883795] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
91
|
Benmakhlouf H, Sempau J, Andreo P. Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: A PENELOPE Monte Carlo study. Med Phys 2014; 41:041711. [DOI: 10.1118/1.4868695] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
92
|
Bassinet C, Huet C, Derreumaux S, Brunet G, Chéa M, Baumann M, Lacornerie T, Gaudaire-Josset S, Trompier F, Roch P, Boisserie G, Clairand I. Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife® and linear accelerators equipped with microMLC and circular cones. Med Phys 2014; 40:071725. [PMID: 23822429 DOI: 10.1118/1.4811139] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The use of small photon fields is now an established practice in stereotactic radiosurgery and radiotherapy. However, due to a lack of lateral electron equilibrium and high dose gradients, it is difficult to accurately measure the dosimetric quantities required for the commissioning of such systems. Moreover, there is still no metrological dosimetric reference for this kind of beam today. In this context, the first objective of this work was to determine and to compare small fields output factors (OF) measured with different types of active detectors and passive dosimeters for three types of facilities: a CyberKnife(®) system, a dedicated medical linear accelerator (Novalis) equipped with m3 microMLC and circular cones, and an adaptive medical linear accelerator (Clinac 2100) equipped with an additional m3 microMLC. The second one was to determine the kQclin,Qmsr (fclin,fmsr) correction factors introduced in a recently proposed small field dosimetry formalism for different active detectors. METHODS Small field sizes were defined either by microMLC down to 6 × 6 mm(2) or by circular cones down to 4 mm in diameter. OF measurements were performed with several commercially available active detectors dedicated to measurements in small fields (high resolution diodes: IBA SFD, Sun Nuclear EDGE, PTW 60016, PTW 60017; ionizing chambers: PTW 31014 PinPoint chamber, PTW 31018 microLion liquid chamber, and PTW 60003 natural diamond). Two types of passive dosimeters were used: LiF microcubes and EBT2 radiochromic films. RESULTS Significant differences between the results obtained by several dosimetric systems were observed, particularly for the smallest field size for which the difference in the measured OF reaches more than 20%. For passive dosimeters, an excellent agreement was observed (better than 2%) between EBT2 and LiF microcubes for all OF measurements. Moreover, it has been shown that these passive dosimeters do not require correction factors and can then be used as reference dosimeters. Correction factors for the active detectors have then been determined from the mean experimental OF measured by the passive dosimeters. CONCLUSIONS Four sets of correction factors needed to apply the new small field dosimetry formalism are provided for several active detectors. A protocol for small photon beams OF determination based on passive dosimeters measurements has been recently proposed to French radiotherapy treatment centers.
Collapse
Affiliation(s)
- C Bassinet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP17, 92262 Fontenay-aux-Roses Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Du W, Cho SH, Zhang X, Hoffman KE, Kudchadker RJ. Quantification of beam complexity in intensity-modulated radiation therapy treatment plans. Med Phys 2014; 41:021716. [DOI: 10.1118/1.4861821] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
94
|
Barbés B, Azcona JD, Burguete J, Martí-Climent JM. Application of spherical diodes for megavoltage photon beams dosimetry. Med Phys 2014; 41:012102. [PMID: 24387520 DOI: 10.1118/1.4837178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE External beam radiation therapy (EBRT) usually uses heterogeneous dose distributions in a given volume. Designing detectors for quality control of these treatments is still a developing subject. The size of the detectors should be small to enhance spatial resolution and ensure low perturbation of the beam. A high uniformity in angular response is also a very important feature in a detector, because it has to measure radiation coming from all the directions of the space. It is also convenient that detectors are inexpensive and robust, especially to perform in vivo measurements. The purpose of this work is to introduce a new detector for measuring megavoltage photon beams and to assess its performance to measure relative dose in EBRT. METHODS The detector studied in this work was designed as a spherical photodiode (1.8 mm in diameter). The change in response of the spherical diodes is measured regarding the angle of incidence, cumulated irradiation, and instantaneous dose rate (or dose per pulse). Additionally, total scatter factors for large and small fields (between 1 × 1 cm(2) and 20 × 20 cm(2)) are evaluated and compared with the results obtained from some commercially available ionization chambers and planar diodes. Additionally, the over-response to low energy scattered photons in large fields is investigated using a shielding layer. RESULTS The spherical diode studied in this work produces a high signal (150 nC/Gy for photons of nominal energy of 15 MV and 160 for 6 MV, after 12 kGy) and its angular dependence is lower than that of planar diodes: less than 5% between maximum and minimum in all directions, and 2% around one of the axis. It also has a moderated variation with accumulated dose (about 1.5%/kGy for 15 MV photons and 0.7%/kGy for 6 MV, after 12 kGy) and a low variation with dose per pulse (± 0.4%), and its behavior is similar to commercial diodes in total scatter factor measurements. CONCLUSIONS The measurements of relative dose using the spherical diode described in this work show its feasibility for the dosimetry of megavoltage photon beams. A particularly important feature is its good angular response in the MV range. They would be good candidates for in vivo dosimetry, and quality assurance of VMAT and tomotherapy, and other modalities with beams irradiating from multiple orientations, such as Cyberknife and ViewRay, with minor modifications.
Collapse
Affiliation(s)
- Benigno Barbés
- Servicio de Oncología Radioterápica, Clínica Universidad de Navarra, Avda. Pío XII, 36, E-31008 Pamplona, Navarra, Spain
| | - Juan D Azcona
- Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Servicio de Oncología Radioterápica, Clínica Universidad de Navarra, Avda. Pío XII 36, E-31008 Pamplona, Navarra, Spain
| | - Javier Burguete
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Navarra, Spain
| | - Josep M Martí-Climent
- Servicio de Medicina Nuclear, Clínica Universidad de Navarra, Avda. Pío XII 36, E-31008 Pamplona, Navarra, Spain
| |
Collapse
|
95
|
Hassani H, Nedaie HA, Zahmatkesh MH, Shirani K. A dosimetric study of small photon fields using polymer gel and Gafchromic EBT films. Med Dosim 2014; 39:102-7. [PMID: 24388694 DOI: 10.1016/j.meddos.2013.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/25/2013] [Indexed: 12/31/2022]
Abstract
The use of small field sizes is increasingly becoming important in radiotherapy particularly since the introduction of stereotactic radiosurgery and intensity-modulated radiation therapy techniques. The reliable measurement of delivered dose from such fields with conventional dosimeters, such as ionization chambers, is a challenging task. In this work, methacrylic and ascorbic acid in gelatin initiated by copper polymer gel dosimeters are employed to measure dose in 3 dimensions. Field sizes of 5 × 5mm(2), 10 × 10mm(2), 20 × 20mm(2), and 30 × 30mm(2) are investigated for a 6-MV x-rays. The results show an agreement with Gafchromic film, with some variation in measured doses near the edge of the fields, where the film data decrease more rapidly than the other methods. Dose penumbra widths obtained with gel dosimeters and Gafchormic film were generally in agreement with each other. The results of this work indicate that polymer gel dosimetry could be invaluable for the quantification of the 3-dimensional dose distribution in small field size.
Collapse
Affiliation(s)
- Hossein Hassani
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hassan Ali Nedaie
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Kaveh Shirani
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
96
|
Oh SA, Yea JW, Lee R, Park HB, Kim SK. Dosimetric Verifications of the Output Factors in the Small Field Less Than 3 cm2Using the Gafchromic EBT2 Films and the Various Detectors. ACTA ACUST UNITED AC 2014. [DOI: 10.14316/pmp.2014.25.4.218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Se An Oh
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
| | - Ji Woon Yea
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea
| | - Rena Lee
- Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Heon Bo Park
- Department of Neurosurgery, Konkuk University Medical Center, Seoul, Korea
| | - Sung Kyu Kim
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
97
|
Lee CY, Kim WC, Kim HJ, Ji YH, Kim KB, Lee SH, Min CK, Jo GH, Shin DO, Kim SH, Huh HD. Feasibility Study of the microDiamond Detector for Measurement of Small Field Photon Beam. ACTA ACUST UNITED AC 2014. [DOI: 10.14316/pmp.2014.25.4.255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Chang Yeol Lee
- Department of Radiation Oncology, College of Medicine, Inha University, Incheon, Korea
| | - Woo Chul Kim
- Department of Radiation Oncology, College of Medicine, Inha University, Incheon, Korea
| | - Hun Jeong Kim
- Department of Radiation Oncology, College of Medicine, Inha University, Incheon, Korea
| | - Young Hoon Ji
- Research Institute of Radiological and Medical Sciences, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kum Bae Kim
- Research Institute of Radiological and Medical Sciences, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Sang Hoon Lee
- Department of Radiation Oncology, College of Medicine, Kwandong University, Gangneung, Korea
| | - Chul Kee Min
- Department of Radiation Oncology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Gwang Hwan Jo
- Department of Radiation Oncology, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Dong Oh Shin
- Department of Radiation Oncology, College of Medicine, Kyunghee University, Seoul, Korea
| | - Seong Hoon Kim
- Department of Radiation Oncology, College of Medicine, Hanyang University, Seoul, Korea
| | - Hyun Do Huh
- Department of Radiation Oncology, College of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
98
|
Improvement of the penumbra for small radiosurgical fields using flattening filter free low megavoltage beams. Z Med Phys 2013; 23:291-9. [DOI: 10.1016/j.zemedi.2013.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 03/12/2013] [Accepted: 03/18/2013] [Indexed: 11/21/2022]
|
99
|
Lechner W, Palmans H, Sölkner L, Grochowska P, Georg D. Detector comparison for small field output factor measurements in flattening filter free photon beams. Radiother Oncol 2013; 109:356-60. [DOI: 10.1016/j.radonc.2013.10.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/11/2013] [Accepted: 10/19/2013] [Indexed: 11/28/2022]
|
100
|
Tyler M, Liu PZY, Chan KW, Ralston A, McKenzie DR, Downes S, Suchowerska N. Characterization of small-field stereotactic radiosurgery beams with modern detectors. Phys Med Biol 2013; 58:7595-608. [DOI: 10.1088/0031-9155/58/21/7595] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|