51
|
Tendler II, Bruza P, Jermyn M, Cao X, Williams BB, Jarvis LA, Pogue BW, Gladstone DJ. Characterization of a non-contact imaging scintillator-based dosimetry system for total skin electron therapy. Phys Med Biol 2019; 64:125025. [PMID: 31035267 PMCID: PMC10653344 DOI: 10.1088/1361-6560/ab1d8a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Surface dosimetry is required for ensuring effective administration of total skin electron therapy (TSET); however, its use is often reduced due to the time consuming and complex nature of acquisition. A new surface dose imaging technique was characterized in this study and found to provide accurate, rapid and remote measurement of surface doses without the need for post-exposure processing. Disc-shaped plastic scintillators (1 mm thick × 15 mm [Formula: see text]) were chosen as optimal-sized samples and designed to attach to a flat-faced phantom for irradiation using electron beams. Scintillator dosimeter response to radiation damage, dose rate, and temperature were studied. The effect of varying scintillator diameter and thickness on light output was evaluated. Furthermore, the scintillator emission spectra and impact of dosimeter thickness on surface dose were also quantified. Since the scintillators were custom-machined, dosimeter-to-dosimeter variation was tested. Scintillator surface dose measurements were compared to those obtained by optically stimulated luminescence dosimeters (OSLD). Light output from scintillator dosimeters evaluated in this study was insensitive to radiation damage, temperature, and dose rate. Maximum wavelength of emission was found to be 422 nm. Dose reported by scintillators was linearly related to that from OSLDs. Build-up from placement of scintillators and OSLDs had a similar effect on surface dose (4.9% increase). Variation among scintillator dosimeters was found to be 0.3 ± 0.2%. Scintillator light output increased linearly with dosimeter thickness (~1.9 × /mm). All dosimeter diameters tested were able to accurately measure surface dose. Scintillator dosimeters can potentially improve surface dosimetry-associated workflow for TSET in the radiation oncology clinic. Since scintillator data output can be automatically recorded to a patient medical record, the chances of human error in reading out and recording surface dose are minimized.
Collapse
Affiliation(s)
- Irwin I Tendler
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| | - Mike Jermyn
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
- DoseOptics LLC, Lebanon, NH, United States of America
| | - Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| | - Benjamin B Williams
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States of America
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - Lesley A Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States of America
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
- DoseOptics LLC, Lebanon, NH, United States of America
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States of America
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| |
Collapse
|
52
|
Girardi A, Fiandra C, Giglioli FR, Gallio E, Ali OH, Ragona R. Small field correction factors determination for several active detectors using a Monte Carlo method in the Elekta Axesse linac equipped with circular cones. ACTA ACUST UNITED AC 2019; 64:11NT01. [DOI: 10.1088/1361-6560/ab1f26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
53
|
Le Deroff C, Frelin AM, Ledoux X. Energy dependence of a scintillating fiber detector for preclinical dosimetry with an image guided micro-irradiator. Phys Med Biol 2019; 64:115015. [PMID: 30974415 DOI: 10.1088/1361-6560/ab1854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The dosimetry of preclinical micro-irradiators is challenging due to their millimetric beams and medium x-ray energy range. Plastic scintillator dosimeters (PSD) are good candidates for such a purpose as they provide a high spatial resolution although they show an energy dependence below 100 keV. The purpose of this study was to assess the energy dependence of a dedicated PSD (called DosiRat) for micro-irradiators dosimetry. The response of the PSD relative to air kerma was measured for different beam qualities (40-225 kV) with the X-RAD 225Cx irradiator. The corresponding energy spectra, determined by Monte Carlo simulations, allowed for correcting the differences in absorbed dose between the DosiRat material (polystyrene) and the air and therefore allowed to compare DosiRat intrinsic energy response to the Birks scintillation quenching model. The energy response of DosiRat was then assessed under preclinical conditions through percentage depth dose curves (PDD) and relative output factor (ROF) measurements in water for beam diameters ranging from 1 to 25 mm. DosiRat energy response showed a coefficient of variation of 23% from 40 to 225 kV, mainly explained by the mass energy-absorption coefficient variation between polystyrene and air. A remaining variation was shown to be caused by the quenching of the scintillation and was correctly reproduced by the Birks model (with kB = 10.27 mg MeV-1 cm-2). PDD and ROF measurements highlighted an energy response variation with depth and collimation up to 10%. A dose accuracy better than 1% was finally achieved with appropriate calibration and correction factors (CF), for beam collimations larger than the detector ([Formula: see text]2 mm diameter). DosiRat energy dependence was fully characterized in preclinical energy range and shown to be negligible with convenient calibration and corrections factors. It provided accurate dosimetry for medium energy (225 kV) and millimetric beams (down to 2.5 mm).
Collapse
Affiliation(s)
- C Le Deroff
- Grand accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
54
|
Evaluating small field dosimetry with the Acuros XB (AXB) and analytical anisotropic algorithm (AAA) dose calculation algorithms in the eclipse treatment planning system. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBackground:An increasing number of external beam treatment modalities including intensity modulated radiation therapy, volumetric modulated arc therapy (VMAT) and stereotactic radiosurgery uses very small fields for treatment planning and delivery. However, there are major challenges in small photon field dosimetry, due to the partial occlusion of the direct photon beam source’s view from the measurement point, lack of lateral charged particle equilibrium, steep dose-rate gradient and volume averaging effect of the detector response and variation of the energy fluence in the lateral direction of the beam. Therefore, experimental measurements of dosimetric parameters such as percent depth doses (PDDs), beam profiles and relative output factors (ROFs) for small fields continue to be a challenge.Materials and Methods:In this study, we used a homogeneous water phantom and the heterogeneous anthropomorphic stereotactic end-to-end verification (STEEV) head phantom for all dose measurements and calculations. PDDs, lateral dose profiles and ROFs were calculated in the Eclipse Treatment Planning System version 13·6 using the Acuros XB (AXB) and the analytical anisotropic algorithms (AAAs) in a homogenous water phantom. Monte Carlo (MC) simulations and measurements using the Exradin W1 Scintillator were also accomplished for four photon energies: 6 MV, 6FFF, 10 MV and 10FFF. Two VMAT treatment plans were generated for two different targets: one located in the brain and the other in the neck (close to the trachea) in the head phantom (CIRS, Norfolk, VA, USA). A Varian Truebeam linear accelerator (Varian, Palo Alto, CA, USA) was used for all treatment deliveries. Calculated results with AXB and AAA were compared with MC simulations and measurements.Results:The average difference of PDDs between W1 Exradin Scintillator measurements and MC simulations, AAA and AXB algorithm calculations were 1·2, 2·4 and 3·2%, respectively, for all field sizes and energies. AXB and AAA showed differences in ROF of about 0·3 and 2·9%, respectively, compared with W1 Exradin Scintillator measured values. For the target located in the brain in the head phantom, the average dose difference between W1 Exradin Scintillator and the MC simulations, AAA and AXB were 0·2, 3·2 and 2·7%, respectively, for all field sizes. Similarly, for the target located in the neck, the respective dose differences were 3·8, 5·7 and 3·5%.Conclusion:In this study, we compared dosimetric parameters such as PDD, beam profile and ROFs in water phantom and isocenter point dose measurements in an anthropomorphic head phantom representing a patient. We observed that measurements using the W1 Exradin scintillator agreed well with MC simulations and can be used efficiently for dosimetric parameters such as PDDs and dose profiles and patient-specific quality assurance measurements for small fields. In both homogenous and heterogeneous media, the AXB algorithm dose prediction agrees well with MC and measurements and was found to be superior to the AAA algorithm.
Collapse
|
55
|
Galavis PE, Hu L, Holmes S, Das IJ. Characterization of the plastic scintillation detector Exradin W2 for small field dosimetry. Med Phys 2019; 46:2468-2476. [DOI: 10.1002/mp.13501] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Paulina E. Galavis
- Department of Radiation Oncology New York University, Langone Medical Center & Laura and Issac Perlmutter Cancer Center New York NY 10016USA
| | - Lei Hu
- Department of Radiation Oncology New York University, Langone Medical Center & Laura and Issac Perlmutter Cancer Center New York NY 10016USA
| | | | - Indra J. Das
- Department of Radiation Oncology New York University, Langone Medical Center & Laura and Issac Perlmutter Cancer Center New York NY 10016USA
| |
Collapse
|
56
|
Delfs B, Kapsch RP, Chofor N, Looe HK, Harder D, Poppe B. A new reference-type ionization chamber with direction-independent response for use in small-field photon-beam dosimetry – An experimental and Monte Carlo study. Z Med Phys 2019; 29:39-48. [DOI: 10.1016/j.zemedi.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 10/14/2022]
|
57
|
Fukui Y, Hamada Y, Noma K, Harada N. [Characterization of Small Volume Plastic Scintillation Detector]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:652-658. [PMID: 31327776 DOI: 10.6009/jjrt.2019_jsrt_75.7.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Some radiation detectors are used for quality assurance and measured to radiation dose for high precision external beam radiotherapy. Recently, plastic scintillation detectors for MeV X-ray measurement are commercially released. The purpose of this study was to evaluate the performance of a commercial plastic scintillation detector with respect to the dose linearity, dose rate dependence, and the output coefficient compared the ionization chamber and the semiconductor detector using each different X-ray energy with or without flattening filter. The result that the dose linearity of each detector showed a linear response in any detectors. Dose rate dependence of plastic scintillation detector was increased when setting dose rate was changed, especially setting to low dose rate. The output coefficient of plastic scintillation detector was equivalent as that of the semiconductor detector even in smallest irradiation field. In conclusion, it was suggested that the plastic scintillation detector is a suitable detector in dose verification measurements for high precision external beam radiotherapy, although we must be with care to low dose rate measurements.
Collapse
Affiliation(s)
- Yusuke Fukui
- Radiology Service, Shiga University of Medical Science Hospital
| | - Yuto Hamada
- Radiology Service, Shiga University of Medical Science Hospital (Current address: Canon Medical Systems Corporation)
| | - Kazuo Noma
- Radiology Service, Shiga University of Medical Science Hospital
| | - Naoki Harada
- Radiology Service, Shiga University of Medical Science Hospital
| |
Collapse
|
58
|
Casar B, Gershkevitsh E, Mendez I, Jurković S, Huq MS. A novel method for the determination of field output factors and output correction factors for small static fields for six diodes and a microdiamond detector in megavoltage photon beams. Med Phys 2018; 46:944-963. [PMID: 30521073 PMCID: PMC7379629 DOI: 10.1002/mp.13318] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/04/2022] Open
Abstract
Purpose The goal of this work is to provide a large and consistent set of data for detector‐specific output correction factors, kQclin,Qreffclin,fref, for small static fields for seven solid‐state detectors and to determine field output factors, ΩQclin,Qreffclin,fref, using EBT3 radiochromic films and W1 plastic scintillator as reference detectors on two different linear accelerators and four megavoltage photon beams. Consistent measurement conditions and recommendations given in the International Code of Practice TRS‐483 for small‐field dosimetry were followed throughout the study. Methods ΩQclin,Qreffclin,fref were determined on two linacs, Elekta Versa HD and Varian TrueBeam, for 6 and 10 MV beams with and without flattening filter and for nine fields ranging from 0.5 × 0.5 cm2 to 10 × 10 cm2. Signal readings obtained with EBT3 radiochromic films and W1 plastic scintillator were fitted by an analytical function. Volume averaging correction factors, determined from two‐dimensional (2D) dose matrices obtained with EBT3 films and fitted to bivariate Gaussian function, were used to correct measured signals. kQclin,Qreffclin,fref were determined empirically for six diodes, IBA SFD, IBA Razor, PTW 60008 P, PTW 60012 E, PTW 60018 SRS, and SN EDGE, and a PTW 60019 microDiamond detector. Results Field output factors and detector‐specific kQclin,Qreffclin,fref are presented in the form of analytical functions as well as in the form of discrete values. It is found that in general, for a given linac, small‐field output factors need to be determined for every combination of beam energy and filtration (WFF or FFF) and field size as the differences between them can be statistically significant (P < 0.05). For different beam energies, the present data for kQclin,Qreffclin,fref are found to differ significantly (P < 0.05) from the corresponding data published in TRS‐483 mostly for the smallest fields (<1.5 cm). For the PTW microDiamond detector, statistically significant differences (P < 0.05) between kQclin,Qreffclin,fref values were found for all investigated beams on an Elekta Versa HD linac for field sizes 0.5 × 0.5 cm2 and 0.8 × 0.8 cm2. Significant differences in kQclin,Qreffclin,fref between beams of a given energy but with and without flattening filters are found for measurements made in small fields (<1.5 cm) at a given linac. Differences in kQclin,Qreffclin,fref are also found when measurements are made at different linacs using the same beam energy filtration combination; for the PTW microDiamond detector, these differences were found to be around 6% and were considered as significant. Conclusions Selection of two reference detectors, EBT3 films and W1 plastic scintillator, and use of an analytical function, is a novel approach for the determination of ΩQclin,Qreffclin,fref for small static fields in megavoltage photon beams. Large set of kQclin,Qreffclin,fref data for seven solid‐state detectors and four beam energies determined on two linacs by a single group of researchers can be considered a valuable supplement to the literature and the TRS‐483 dataset.
Collapse
Affiliation(s)
- Božidar Casar
- Department for Dosimetry and Quality of Radiological Procedures, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Eduard Gershkevitsh
- Medical Physics Service, North Estonia Medical Centre, J. Sütiste tee 19, 13419, Tallinn, Estonia
| | - Ignasi Mendez
- Department for Dosimetry and Quality of Radiological Procedures, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Slaven Jurković
- Medical Physics Department, University Hospital Rijeka, Krešimirova 42, 51000, Rijeka, Croatia
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
59
|
Stevens MTR, Lobb EC, Yenice KM. Validation of MLC-based linac radiosurgery for trigeminal neuralgia. J Appl Clin Med Phys 2018; 19:214-221. [PMID: 29901278 PMCID: PMC6036389 DOI: 10.1002/acm2.12381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/04/2018] [Accepted: 05/16/2018] [Indexed: 11/23/2022] Open
Abstract
This study details a validation process for linear accelerator‐based treatment of trigeminal neuralgia using HD‐MLC field collimation. Nine trigeminal neuralgia treatment plans utilizing HD‐MLC were selected for absolute dose measurement at isocenter using a commercial scintillating detector in an anthropomorphic phantom. Four plans were chosen for film dosimetry measurements in each of the three principal planes to assess spatial dose distribution agreement with the treatment planning system. Additionally, trajectory log analysis for each treatment field in the nine cases was performed to assess mechanical positioning accuracy of the MLC system during delivery. Scintillator and film measurements both revealed mean dose agreement at isocenter of better than 3% while FWHM of the 2D dose distribution in each plane showed agreement between plan and measurement within 0.2 mm. Analysis of log files revealed a maximum MLC leaf positioning error of 0.04 mm across 178 treatment fields. In conjunction with a quality‐controlled treatment delivery methodology, an appropriately commissioned treatment planning system can be used for accurate and clinically appropriate design of trigeminal neuralgia treatment plans utilizing HD‐MLC.
Collapse
Affiliation(s)
- M Tynan R Stevens
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| | - Eric C Lobb
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| | - Kamil M Yenice
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
60
|
Simiele EA, DeWerd LA. Characterization of spectral and intensity changes with measurement geometry in various light guides used in scintillation dosimetry. Med Phys 2018; 45:3417-3428. [DOI: 10.1002/mp.12992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Eric A. Simiele
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin–Madison Madison WI 53705USA
| | - Larry A. DeWerd
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin–Madison Madison WI 53705USA
| |
Collapse
|
61
|
Hoehr C, Lindsay C, Beaudry J, Penner C, Strgar V, Lee R, Duzenli C. Characterization of the exradin W1 plastic scintillation detector for small field applications in proton therapy. Phys Med Biol 2018; 63:095016. [PMID: 29634488 DOI: 10.1088/1361-6560/aabd2d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accurate dosimetry in small field proton therapy is challenging, particularly for applications such as ocular therapy, and suitable detectors for this purpose are sought. The Exradin W1 plastic scintillating fibre detector is known to out-perform most other detectors for determining relative dose factors for small megavoltage photon beams used in radiotherapy but its potential in small proton beams has been relatively unexplored in the literature. The 1 mm diameter cylindrical geometry and near water equivalence of the W1 makes it an attractive alternative to other detectors. This study examines the dosimetric performance of the W1 in a 74 MeV proton therapy beam with particular focus on detector response characteristics relevant to relative dose measurement in small fields suitable for ocular therapy. Quenching of the scintillation signal is characterized and demonstrated not to impede relative dose measurements at a fixed depth. The background cable-only (Čerenkov and radio-fluorescence) signal is 4 orders of magnitude less than the scintillation signal, greatly simplifying relative dose measurements. Comparison with other detectors and Monte Carlo simulations indicate that the W1 is useful for measuring relative dose factors for field sizes down to 5 mm diameter and shallow spread out Bragg peaks down to 6 mm in depth.
Collapse
Affiliation(s)
- C Hoehr
- TRIUMF, 4004 Wesbrook Mall, Vancouver, Canada. University of Victoria, Victoria, Canada
| | | | | | | | | | | | | |
Collapse
|
62
|
Gholizadeh Sendani N, Karimian A, Ferreira C, Alaei P. Technical Note: Impact of region of interest size and location in Gafchromic film dosimetry. Med Phys 2018; 45:2329-2336. [DOI: 10.1002/mp.12885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/05/2018] [Accepted: 02/17/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Neda Gholizadeh Sendani
- Department of Medical Radiation Engineering; University of Isfahan; Isfahan 81746 Iran
- Department of Radiation Oncology; University of Minnesota; Minneapolis MN 55455 USA
| | - Alireza Karimian
- Department of Biomedical Engineering; University of Isfahan; Isfahan 81746 Iran
| | - Clara Ferreira
- Department of Radiation Oncology; University of Minnesota; Minneapolis MN 55455 USA
| | - Parham Alaei
- Department of Radiation Oncology; University of Minnesota; Minneapolis MN 55455 USA
| |
Collapse
|
63
|
Simiele E, Kapsch RP, Ankerhold U, Culberson W, DeWerd L. Spectral characterization of plastic scintillation detector response as a function of magnetic field strength. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1361-6560/aab56c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
64
|
Alsanea F, Wootton L, Sahoo N, Kudchadker R, Mahmood U, Beddar S. Exradin W1 plastic scintillation detector for in vivo skin dosimetry in passive scattering proton therapy. Phys Med 2018; 47:58-63. [PMID: 29609819 DOI: 10.1016/j.ejmp.2018.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/23/2018] [Accepted: 02/16/2018] [Indexed: 01/30/2023] Open
Abstract
In vivo skin dosimetry is desirable in passive scattering proton therapy because of the possibility of high entrance dose with a small number of fields. However, suitable detectors are needed to determine skin dose in proton therapy. Plastic scintillation detectors (PSDs) are particularly well suited for applications in proton therapy because of their water equivalence, small size, and ease of use. We investigated the utility of the Exradin W1, a commercially available PSD, for in vivo skin dosimetry during passive scattering proton therapy. We evaluated the accuracy of the Exradin W1 in six patients undergoing proton therapy for prostate cancer, as part of an Institutional Review Board-approved protocol. Over 22 weeks, we compared in vivo PSD measurements with in-phantom ionization chamber measurements and doses from the treatment planning system, resulting in 96 in vivo measurements. Temperature and ionization quenching correction factors were applied on the basis of the dose response of the PSD in a phantom. The calibrated PSD exhibited an average 7.8% under-response (±1% standard deviation) owing to ionization quenching. We observed 4% under-response at 37 °C relative to the calibration-temperature response. After temperature and quenching corrections were applied, the overall PSD dose response was within ±1% of the expected dose for all patients. The dose differences between the PSD and ionization chamber measurements for all treatment fields were within ±2% (standard deviation 0.67%). The PSD was highly accurate for in vivo skin dosimetry in passively scattered proton beams and could be useful in verifying proton therapy delivery.
Collapse
Affiliation(s)
- Fahed Alsanea
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Landon Wootton
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Rajat Kudchadker
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Usama Mahmood
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
65
|
Martínez N, Rucci A, Marcazzó J, Molina P, Santiago M, Cravero W. Characterization of YVO4:Eu3+ scintillator as detector for Fiber Optic Dosimetry. RADIAT MEAS 2017. [DOI: 10.1016/j.radmeas.2017.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
66
|
Dosimetric characterization of small fields using a plastic scintillator detector: A large multicenter study. Phys Med 2017; 41:33-38. [DOI: 10.1016/j.ejmp.2017.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
|
67
|
Qin Y, Gardner SJ, Kim J, Huang Y, Wen N, Doemer A, Chetty IJ. Technical Note: Evaluation of plastic scintillator detector for small field stereotactic patient-specific quality assurance. Med Phys 2017; 44:5509-5516. [PMID: 28714067 DOI: 10.1002/mp.12471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the performance of a commercial plastic scintillator detector (PSD) for small-field stereotactic patient-specific quality assurance (QA) measurements using flattening-filter-free beam. METHODS A total of 10 spherical targets [volume range: (0.03 cc-2 cc)] were planned with two techniques: (a) dynamic conformal arc (DCA-10 plans) and (b) volumetric modulated arc therapy (VMAT-10 plans). All plans were generated using Varian Eclipse treatment planning system, and AcurosXB v.13 algorithm in 1.0 mm grid size. Additionally, 14 previously treated cranial and spine SRS plans were evaluated [6 DCA, 8 VMAT, volume range: (0.04 cc-119.02 cc)]. Plan modulation was quantified via two metrics: MU per prescription dose (MU/Rx) and Average Leaf Pair Opening (ALPO). QA was performed on the Varian Edge linear accelerator equipped with HDMLC. Three detectors were used: (a) PinPoint ion chamber (PTW; active volume 0.015 cc), (b) Exradin W1 PSD (Standard Imaging; active volume 0.002 cc), and (c) Gafchromic EBT3 film (Ashland). PinPoint chamber and PSD were positioned perpendicular to beam axis in a Lucy phantom (Standard Imaging); films were placed horizontally capturing the coronal plane. RESULTS PSD, film, and PinPoint chamber measured average differences of 1.00 ± 1.54%, 1.30 ± 1.69%, and -0.66 ± 2.36%, respectively, compared to AcurosXB dose calculation. As the target volume decreased, PinPoint chamber measured lower doses (maximum -5.07% at 0.07 cc target), while PSD and film measured higher doses (2.87% and 2.54% at 0.03 cc target) than AcurosXB. Film agreed with the benchmark detector PSD by an average difference of 0.31 ± 1.20%, but suffered from larger uncertainty; PinPoint chamber underestimated dose by more than 4% for targets smaller than 0.2 cc. Taking PSD as the measurement standard, DCA plans achieved good QA results across all volumes studied, with an average of -0.07 ± 0.89%; for VMAT plans, PSD measured consistently higher dose (1.95 ± 1.36%) than AcurosXB. Correlation study revealed that plan modulation quantified by both MU/Rx and ALPO correlated significantly with QA results. CONCLUSION Among all three detectors, PSD demonstrated superior performances in plans with small fields and heavy modulation. High consistency and low uncertainty made PSD a suitable detector for clinical routine SRS QA. PinPoint chamber should be avoided for targets smaller than 0.2 cc; film dosimetry can be utilized with careful evaluation of its uncertainty bracket. Compared to PSD measurements, AcurosXB calculation demonstrated high accuracy for nonmodulated small fields. The positive correlation between plan modulation and QA discrepancy calls for our attention for clinical SRS plans with high modulation.
Collapse
Affiliation(s)
- Yujiao Qin
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| | - Stephen J Gardner
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| | - Joshua Kim
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| | - Yimei Huang
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| | - Ning Wen
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| | - Anthony Doemer
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Radiation Oncology, Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA
| |
Collapse
|
68
|
Veronese I, Chiodini N, Cialdi S, d’Ippolito E, Fasoli M, Gallo S, La Torre S, Mones E, Vedda A, Loi G. Real-time dosimetry with Yb-doped silica optical fibres. Phys Med Biol 2017; 62:4218-4236. [DOI: 10.1088/1361-6560/aa642f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
69
|
Chaudhari SH, Dobhal R, Kinhikar RA, Kadam SS, Deshpande DD. Measurement of Total Scatter Factor for Stereotactic Cones with Plastic Scintillation Detector. J Med Phys 2017; 42:9-13. [PMID: 28405102 PMCID: PMC5370342 DOI: 10.4103/jmp.jmp_114_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Advanced radiotherapy modalities such as stereotactic radiosurgery (SRS) and image-guided radiotherapy may employ very small beam apertures for accurate localized high dose to target. Accurate measurement of small radiation fields is a well-known challenge for many dosimeters. The purpose of this study was to measure total scatter factors for stereotactic cones with plastic scintillation detector and its comparison against diode detector and theoretical estimates. Measurements were performed on Novalis Tx™ linear accelerator for 6MV SRS beam with stereotactic cones of diameter 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm. The advantage of plastic scintillator detector is in its energy dependence. The total scatter factor was measured in water at the depth of dose maximum. Total scatter factor with plastic scintillation detector was determined by normalizing the readings to field size of 10 cm × 10 cm. To overcome energy dependence of diode detector for the determination of scatter factor with diode detector, daisy chaining method was used. The plastic scintillator detector was calibrated against the ionization chamber, and the reproducibility in the measured doses was found to be within ± 1%. Total scatter factor measured with plastic scintillation detector was 0.728 ± 0.3, 0.783 ± 0.05, 0.866 ± 0.55, 0.885 ± 0.5, and 0.910 ± 0.06 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. Total scatter factor measured with diode detector was 0.733 ± 0.03, 0.782 ± 0.02, 0.834 ± 0.07, 0.854 ± 0.02, and 0.872 ± 0.02 for cone sizes of 6 mm, 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. The variation in the measurement of total scatter factor with published Monte Carlo data was found to be −1.3%, 1.9%, −0.4%, and 0.4% for cone sizes of 7.5 mm, 10 mm, 12.5 mm, and 15 mm, respectively. We conclude that total scatter factor measurements for stereotactic cones can be adequately carried out with a plastic scintillation detector. Our results show a high level of consistency within our data and compared well with published data.
Collapse
Affiliation(s)
- Suresh H Chaudhari
- Department of Radiation Oncology, Apollo Hospitals, Navi Mumbai, Maharashtra, India
| | - Rishabh Dobhal
- Department of Radiation Oncology, Batra Hospital and Medical Research Centre, New Delhi, India
| | - Rajesh A Kinhikar
- Department of Medical Physics, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sudarshan S Kadam
- Department of Medical Physics, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Deepak D Deshpande
- Department of Medical Physics, Tata Memorial Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
70
|
Burke E, Poppinga D, Schönfeld AA, Harder D, Poppe B, Looe HK. The practical application of scintillation dosimetry in small-field photon-beam radiotherapy. Z Med Phys 2017; 27:324-333. [PMID: 28342596 DOI: 10.1016/j.zemedi.2016.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/07/2016] [Accepted: 11/09/2016] [Indexed: 11/19/2022]
Abstract
Plastic scintillation detectors are a new instrument of stereotactic photon-beam dosimetry. The clinical application of the plastic scintillation detector Exradin W1 at the Siemens Artiste and Elekta Synergy accelerators is a matter of current interest. In order to reduce the measurement uncertainty, precautions have to be taken with regard to the geometrical arrangement of the scintillator, the light-guide fiber and the photodiode in the radiation field. To determine the "Cerenkov light ratio" CLR with a type A uncertainty below 1%, the Cerenkov calibration procedure for small-field measurements based on the two-channel spectral method was used. Output factors were correctly measured with the W1 for field sizes down to 0.5×0.5cm2 with a type A uncertainty of 1.8%. Measurements of small field dose profiles and percentage depth dose curves were carried out with the W1 using automated water phantom profile scans, and a type A uncertainty for dose maxima of 1.4% was achieved. The agreement with a synthetic diamond detector (microDiamond, PTW Freiburg) and a plane parallel ionization chamber (Roos chamber, PTW Freiburg) in relative dose measurements was excellent. In oversight of all results, the suitability of the plastic scintillation detector Exradin W1 for clinical dosimetry under stereotactic conditions, in particular the tried and tested procedures for CLR determination, output factor measurement and automated dose profile scans in water phantoms, have been confirmed.
Collapse
Affiliation(s)
- Elisa Burke
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany.
| | - Daniela Poppinga
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Andreas A Schönfeld
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Dietrich Harder
- Prof. em., Medical Physics and Biophysics, Georg-August University, Göttingen, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
71
|
Francescon P, Kilby W, Noll JM, Masi L, Satariano N, Russo S. Monte Carlo simulated corrections for beam commissioning measurements with circular and MLC shaped fields on the CyberKnife M6 System: a study including diode, microchamber, point scintillator, and synthetic microdiamond detectors. Phys Med Biol 2017; 62:1076-1095. [DOI: 10.1088/1361-6560/aa5610] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
72
|
Masi L, Russo S, Francescon P, Doro R, Frassanito MC, Fumagalli ML, Reggiori G, Marinelli M, Redaelli I, Pimpinella M, Verona Rinati G, Siragusa C, Vigorito S, Mancosu P. CyberKnife beam output factor measurements: A multi-site and multi-detector study. Phys Med 2016; 32:1637-1643. [DOI: 10.1016/j.ejmp.2016.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022] Open
|
73
|
Pasquino M, Cutaia C, Radici L, Valzano S, Gino E, Cavedon C, Stasi M. Dosimetric characterization and behaviour in small X-ray fields of a microchamber and a plastic scintillator detector. Br J Radiol 2016; 90:20160596. [PMID: 27826990 DOI: 10.1259/bjr.20160596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The aim of this work was to investigate the main dosimetric characteristics and the performance of an A26 Exradin ionization microchamber (A26 IC) and a W1 Exradin plastic scintillation detector (W1 PSD) in small photon beam dosimetry for treatment planning system commissioning and quality assurance programme. METHODS Detector characterization measurements (short-term stability, dose linearity, angular dependence and energy dependence) were performed in water for field sizes up to 10 × 10 cm2. Polarity effect (Ppol) was examined for the A26 IC. The behaviour of the detectors in small field relative dosimetry [percentage depth dose, dose profiles often called the off-axis ratio and output factors (OFs)] was investigated for field sizes ranging from 1 × 1 to 3 × 3 cm2. RESULTS Results were compared with those obtained with other detectors we already use for small photon beam dosimetry. A26 IC and W1 PSD showed a linear dose response. While the A26 IC showed no energy dependence, the W1 PSD showed energy dependence within 2%; no angular dependence was registered. Ppol values for A26 IC were below 0.9% (0.5% for field size >2 × 2 cm2). A26 IC and W1 PSD depth-dose curves and lateral profiles agreed with those obtained with an EDGE diode. No differences were observed among the detectors in OF measurement for field sizes larger than 1 × 1 cm2, with average differences <1%. For field sizes <1 × 1 cm2, the effective volume of ionization chamber and non-water equivalence of EDGE diode become significant. A26 IC OF values were significantly lower than EDGE diode and W1 PSD values, with percentage differences of about -23 and -13% for the smallest field, respectively. W1 PSD OF values lay between ion chambers and diode values, with a maximum percentage difference of about -10% with respect to the EDGE diode, for a 6 × 6-mm2 field size. CONCLUSION The results of our investigation confirm that A26 IC and W1 PSD could play an important role in small field relative dosimetry. Advances in knowledge: Dosimetric characteristics of Exradin A26 ionization microchamber and W1 plastic scintillation detector for small field dosimetry.
Collapse
Affiliation(s)
- Massimo Pasquino
- 1 Medical Physics Department, AO Ordine Mauriziano di Torino, Turin, Italy
| | - Claudia Cutaia
- 1 Medical Physics Department, AO Ordine Mauriziano di Torino, Turin, Italy
| | - Lorenzo Radici
- 1 Medical Physics Department, AO Ordine Mauriziano di Torino, Turin, Italy
| | - Serena Valzano
- 1 Medical Physics Department, AO Ordine Mauriziano di Torino, Turin, Italy
| | - Eva Gino
- 1 Medical Physics Department, AO Ordine Mauriziano di Torino, Turin, Italy
| | - Carlo Cavedon
- 2 Medical Physics Department, University Hospital, Verona, Italy
| | - Michele Stasi
- 1 Medical Physics Department, AO Ordine Mauriziano di Torino, Turin, Italy
| |
Collapse
|
74
|
Beaulieu L, Beddar S. Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy. Phys Med Biol 2016; 61:R305-R343. [DOI: 10.1088/0031-9155/61/20/r305] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
75
|
Le Deroff C, Frelin-Labalme AM, Ledoux X. Characterization of a scintillating fibre detector for small animal imaging and irradiation dosimetry. Br J Radiol 2016; 90:20160454. [PMID: 27556813 DOI: 10.1259/bjr.20160454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Small animal image-guided irradiators have recently been developed to mimic the delivery techniques of clinical radiotherapy. A dosemeter adapted to millimetric beams of medium-energy X-rays is then required. This work presents the characterization of a dosemeter prototype for this particular application. METHODS A scintillating optical fibre dosemeter (called DosiRat) has been implemented to perform real-time dose measurements with the dedicated small animal X-RAD® 225Cx (Precision X-Ray, Inc., North Branford, CT) irradiator. Its sensitivity, stem effect, stability, linearity and measurement precision were determined in large field conditions for three different beam qualities, consistent with small animal irradiation and imaging parameters. RESULTS DosiRat demonstrates good sensitivity and stability; excellent air kerma and air kerma rate linearity; and a good repeatability for air kerma rates >1 mGy s-1. The stem effect was found to be negligible. DosiRat showed limited precision for low air kerma rate measurements (<1 mGy s-1), typically for imaging protocols. A positive energy dependence was found that can be accounted for by calibrating the dosemeter at the needed beam qualities. CONCLUSION The dosimetric performances of DosiRat are very promising. Extensive studies of DosiRat energy dependence are still required. Further developments will allow to reduce the dosemeter size to ensure millimetric beams dosimetry and perform small animal in vivo dosimetry. Advances in knowledge: Among existing point dosemeters, very few are dedicated to both medium-energy X-rays and millimetric beams. Our work demonstrated that scintillating fibre dosemeters are suitable and promising tools for real-time dose measurements in the small animal field of interest.
Collapse
Affiliation(s)
- Coralie Le Deroff
- 1 Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France
| | - Anne-Marie Frelin-Labalme
- 1 Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France.,2 Advanced Resource Centre for HADrontherapy in Europe (ARCHADE) Program, Caen, France
| | - Xavier Ledoux
- 1 Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France
| |
Collapse
|
76
|
Evaluation of RayStation robust optimisation for superficial target coverage with setup variation in breast IMRT. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:705-16. [DOI: 10.1007/s13246-016-0466-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
77
|
Ramírez M, Martínez N, Marcazzó J, Molina P, Feld D, Santiago M. Performance of ZnSe(Te) as fiberoptic dosimetry detector. Appl Radiat Isot 2016; 116:1-7. [PMID: 27472824 DOI: 10.1016/j.apradiso.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/29/2016] [Accepted: 07/10/2016] [Indexed: 10/21/2022]
Abstract
Fiberoptic dosimetry (FOD) is an experimental technique suitable for in-vivo, real time dosimetry in radiotherapy treatments. FOD relies on using a small scintillator coupled to one end of a long optical fiber. The scintillator is placed at the point where the dose rate is to be determined whereas a light detector at the other end of the fiber measures the intensity of the radioluminescence emitted by the scintillator. One of the problems hampering the straightforward application of this technique in clinics is the presence of Cherenkov radiation generated in the fiber by the ionizing radiation, which adds to the scintillating light and introduces a bias in the dose measurement. Since Cherenkov radiation is more important in short wavelength range of the visible spectrum, using red-emitting scintillators as FOD detectors permits to reduce the Cherenkov contribution by using optical filters. In this work, the performance of red-emitting tellurium-doped zinc selenide crystal as FOD detector is evaluated and compared to the response of an ion-chamber.
Collapse
Affiliation(s)
- M Ramírez
- Instituto de Física Arroyo Seco (UNCPBA) and CIFICEN (UNCPBA - CICPBA - CONICET), Pinto 399, 7000 Tandil, Argentina; Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano (ITM), Calle 73 No 76 A 354, Medellín, Colombia
| | - N Martínez
- Instituto de Física Arroyo Seco (UNCPBA) and CIFICEN (UNCPBA - CICPBA - CONICET), Pinto 399, 7000 Tandil, Argentina
| | - J Marcazzó
- Instituto de Física Arroyo Seco (UNCPBA) and CIFICEN (UNCPBA - CICPBA - CONICET), Pinto 399, 7000 Tandil, Argentina
| | - P Molina
- Instituto de Física Arroyo Seco (UNCPBA) and CIFICEN (UNCPBA - CICPBA - CONICET), Pinto 399, 7000 Tandil, Argentina
| | - D Feld
- Instituto de Oncología Ángel H. Roffo, Av. San Martín, CABA, 5481 Argentina
| | - M Santiago
- Instituto de Física Arroyo Seco (UNCPBA) and CIFICEN (UNCPBA - CICPBA - CONICET), Pinto 399, 7000 Tandil, Argentina
| |
Collapse
|
78
|
Kron T, Lehmann J, Greer PB. Dosimetry of ionising radiation in modern radiation oncology. Phys Med Biol 2016; 61:R167-205. [DOI: 10.1088/0031-9155/61/14/r167] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
79
|
Therriault-Proulx F, Wootton L, Beddar S. A method to correct for temperature dependence and measure simultaneously dose and temperature using a plastic scintillation detector. Phys Med Biol 2015; 60:7927-39. [PMID: 26407188 PMCID: PMC4613770 DOI: 10.1088/0031-9155/60/20/7927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plastic scintillation detectors (PSDs) work well for radiation dosimetry. However, they show some temperature dependence, and a priori knowledge of the temperature surrounding the PSD is required to correct for this dependence. We present a novel approach to correct PSD response values for temperature changes instantaneously and without the need for prior knowledge of the temperature value. In addition to rendering the detector temperature-independent, this approach allows for actual temperature measurement using solely the PSD apparatus. With a temperature-controlled water tank, the temperature was varied from room temperature to more than 40 °C and the PSD was used to measure the dose delivered from a cobalt-60 photon beam unit to within an average of 0.72% from the expected value. The temperature was measured during each acquisition with the PSD and a thermocouple and values were within 1 °C of each other. The depth-dose curve of a 6 MV photon beam was also measured under warm non-stable conditions and this curve agreed to within an average of -0.98% from the curve obtained at room temperature. The feasibility of rendering PSDs temperature-independent was demonstrated with our approach, which also enabled simultaneous measurement of both dose and temperature. This novel approach improves both the robustness and versatility of PSDs.
Collapse
Affiliation(s)
- Francois Therriault-Proulx
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
80
|
Boivin J, Beddar S, Guillemette M, Beaulieu L. Systematic evaluation of photodetector performance for plastic scintillation dosimetry. Med Phys 2015; 42:6211-20. [DOI: 10.1118/1.4931979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jonathan Boivin
- Département de Physique, de Génie physique et d'Optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada and Département de Radio‐Oncologie et Axe oncologie du Centre de recherche du CHU de Québec, CHU de Québec, Québec, Québec G1R 2J6, Canada
| | - Sam Beddar
- Department of Radiation Physics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Maxime Guillemette
- Département de Physique, de Génie physique et d'Optique, Université Laval, Québec, Québec G1V 0A6, Canada and Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec G1V 4G5, Canada
| | - Luc Beaulieu
- Département de Physique, de Génie physique et d'Optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec G1V 0A6, Canada and Département de Radio‐Oncologie et Axe oncologie du Centre de recherche du CHU de Québec, CHU de Québec, Québec, Québec G1R 2J6, Canada
| |
Collapse
|
81
|
Tanny S, Sperling N, Parsai EI. Correction factor measurements for multiple detectors used in small field dosimetry on the Varian Edge radiosurgery system. Med Phys 2015; 42:5370-6. [DOI: 10.1118/1.4928602] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
82
|
Carrasco P, Jornet N, Jordi O, Lizondo M, Latorre-Musoll A, Eudaldo T, Ruiz A, Ribas M. Response to “Comment on ‘Characterization of the Exradin W1 scintillator for use in radiotherapy’ ” [Med. Phys. 42
, 297-304 (2015)]. Med Phys 2015; 42:4417-8. [DOI: 10.1118/1.4922655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
83
|
Beierholm AR, Behrens CF, Andersen CE. Comment on “Characterization of the Exradin W1 scintillator for use in radiotherapy” [Med. Phys. 42
, 297-304 (2015)]. Med Phys 2015; 42:4414-6. [DOI: 10.1118/1.4922656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|