51
|
Bernstein JGW, Mehraei G, Shamma S, Gallun FJ, Theodoroff SM, Leek MR. Spectrotemporal modulation sensitivity as a predictor of speech intelligibility for hearing-impaired listeners. J Am Acad Audiol 2013; 24:293-306. [PMID: 23636210 DOI: 10.3766/jaaa.24.4.5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND A model that can accurately predict speech intelligibility for a given hearing-impaired (HI) listener would be an important tool for hearing-aid fitting or hearing-aid algorithm development. Existing speech-intelligibility models do not incorporate variability in suprathreshold deficits that are not well predicted by classical audiometric measures. One possible approach to the incorporation of such deficits is to base intelligibility predictions on sensitivity to simultaneously spectrally and temporally modulated signals. PURPOSE The likelihood of success of this approach was evaluated by comparing estimates of spectrotemporal modulation (STM) sensitivity to speech intelligibility and to psychoacoustic estimates of frequency selectivity and temporal fine-structure (TFS) sensitivity across a group of HI listeners. RESEARCH DESIGN The minimum modulation depth required to detect STM applied to an 86 dB SPL four-octave noise carrier was measured for combinations of temporal modulation rate (4, 12, or 32 Hz) and spectral modulation density (0.5, 1, 2, or 4 cycles/octave). STM sensitivity estimates for individual HI listeners were compared to estimates of frequency selectivity (measured using the notched-noise method at 500, 1000, 2000, and 4000 Hz), TFS processing ability (2 Hz frequency-modulation detection thresholds for 500, 1000, 2000, and 4000 Hz carriers) and sentence intelligibility in noise (at a 0 dB signal-to-noise ratio) that were measured for the same listeners in a separate study. STUDY SAMPLE Eight normal-hearing (NH) listeners and 12 listeners with a diagnosis of bilateral sensorineural hearing loss participated. DATA COLLECTION AND ANALYSIS STM sensitivity was compared between NH and HI listener groups using a repeated-measures analysis of variance. A stepwise regression analysis compared STM sensitivity for individual HI listeners to audiometric thresholds, age, and measures of frequency selectivity and TFS processing ability. A second stepwise regression analysis compared speech intelligibility to STM sensitivity and the audiogram-based Speech Intelligibility Index. RESULTS STM detection thresholds were elevated for the HI listeners, but only for low rates and high densities. STM sensitivity for individual HI listeners was well predicted by a combination of estimates of frequency selectivity at 4000 Hz and TFS sensitivity at 500 Hz but was unrelated to audiometric thresholds. STM sensitivity accounted for an additional 40% of the variance in speech intelligibility beyond the 40% accounted for by the audibility-based Speech Intelligibility Index. CONCLUSIONS Impaired STM sensitivity likely results from a combination of a reduced ability to resolve spectral peaks and a reduced ability to use TFS information to follow spectral-peak movements. Combining STM sensitivity estimates with audiometric threshold measures for individual HI listeners provided a more accurate prediction of speech intelligibility than audiometric measures alone. These results suggest a significant likelihood of success for an STM-based model of speech intelligibility for HI listeners.
Collapse
Affiliation(s)
- Joshua G W Bernstein
- Audiology and Speech Center, Scientific and Clinical Studies Section, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Aguilar E, Eustaquio-Martin A, Lopez-Poveda EA. Contralateral efferent reflex effects on threshold and suprathreshold psychoacoustical tuning curves at low and high frequencies. J Assoc Res Otolaryngol 2013; 14:341-57. [PMID: 23423559 PMCID: PMC3642277 DOI: 10.1007/s10162-013-0373-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/21/2013] [Indexed: 11/28/2022] Open
Abstract
Medial olivocochlear efferent neurons can control cochlear frequency selectivity and may be activated in a reflexive manner by contralateral sounds. The present study investigated the significance of the contralateral medial olivocochlear reflex (MOCR) on human psychoacoustical tuning curves (PTCs), a behavioral correlate of cochlear tuning curves. PTCs were measured using forward masking in the presence and in the absence of a contralateral white noise, assumed to elicit the MOCR. To assess MOCR effects on apical and basal cochlear regions over a wide range of sound levels, PTCs were measured for probe frequencies of 500 Hz and 4 kHz and for near- and suprathreshold conditions. Results show that the contralateral noise affected the PTCs predominantly at 500 Hz. At near-threshold levels, its effect was obvious only for frequencies in the tails of the PTCs; at suprathreshold levels, its effects were obvious for all frequencies. It was verified that the effects were not due to the contralateral noise activating the middle-ear muscle reflex or changing the postmechanical rate of recovery from forward masking. A phenomenological computer model of forward masking with efferent control was used to explain the data. The model supports the hypothesis that the behavioral results were due to the contralateral noise reducing apical cochlear gain in a frequency- and level-dependent manner consistent with physiological evidence. Altogether, this shows that the contralateral MOCR may be changing apical cochlear responses in natural, binaural listening situations.
Collapse
Affiliation(s)
- Enzo Aguilar
- />Instituto de Neurociencias de Castilla y León and Instituto de Investigaciones Biomédicas de Salamanca, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Almudena Eustaquio-Martin
- />Instituto de Neurociencias de Castilla y León and Instituto de Investigaciones Biomédicas de Salamanca, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Enrique A. Lopez-Poveda
- />Instituto de Neurociencias de Castilla y León and Instituto de Investigaciones Biomédicas de Salamanca, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007 Salamanca, Spain
- />Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
53
|
Yasin I, Drga V, Plack CJ. Estimating peripheral gain and compression using fixed-duration masking curves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:4145-4155. [PMID: 23742366 DOI: 10.1121/1.4802827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Estimates of human basilar membrane gain and compression obtained using temporal masking curve (TMC) and additivity of forward masking (AFM) methods with long-duration maskers or long masker-signal silent intervals may be affected by olivocochlear efferent activation, which reduces basilar membrane gain. The present study introduces a fixed-duration masking curve (FDMC) method, which involves a comparison of off- and on-frequency forward masker levels at threshold as a function of masker and signal duration, with the total masker-signal duration fixed at 25 ms to minimize efferent effects. Gain and compression estimates from the FDMC technique were compared with those from TMC (104-ms maskers) and AFM (10- and 200-ms maskers) methods. Compression estimates over an input-masker range of 40-60 dB sound pressure level were similar for the four methods. Maximum compression occurred at a lower input level for the FDMC compared to the TMC method. Estimates of gain were similar for TMC and FDMC methods. The FDMC method may provide a more reliable estimate of BM gain and compression in the absence of efferent activation and could be a useful method for estimating effects of efferent activity when used with a precursor sound (to trigger efferent activation), presented prior to the combined masker-signal stimulus.
Collapse
Affiliation(s)
- Ifat Yasin
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, United Kingdom.
| | | | | |
Collapse
|
54
|
Irino T, Fukawatase T, Sakaguchi M, Nisimura R, Kawahara H, Patterson RD. Accurate estimation of compression in simultaneous masking enables the simulation of hearing impairment for normal-hearing listeners. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 787:73-80. [PMID: 23716211 DOI: 10.1007/978-1-4614-1590-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This chapter presents a unified gammachirp framework for -estimating cochlear compression and synthesizing sounds with inverse compression that -cancels the compression of a normal-hearing (NH) listener to simulate the -experience of a hearing-impaired (HI) listener. The compressive gammachirp (cGC) filter was -fitted to notched-noise masking data to derive level-dependent -filter shapes and the cochlear compression function (e.g., Patterson et al., J Acoust Soc Am 114:1529-1542, 2003). The procedure is based on the analysis/synthesis technique of Irino and Patterson (IEEE Trans Audio Speech Lang Process 14:2222-2232, 2006) using a dynamic cGC filterbank (dcGC-FB). The level dependency of the dcGC-FB can be reversed to produce inverse compression and resynthesize sounds in a form that cancels the compression applied by the -auditory system of the NH listener. The chapter shows that the estimation of compression in simultaneous masking is improved if the notched-noise procedure for the derivation of auditory filter shape includes noise bands with different levels. Since both the estimation and resynthesis are performed within the gammachirp framework, it is possible for a specific NH listener to experience the loss of a -specific HI listener.
Collapse
Affiliation(s)
- Toshio Irino
- Faculty of Systems Engineering, Wakayama University, Wakayama, Japan.
| | | | | | | | | | | |
Collapse
|
55
|
Lecluyse W, Tan CM, McFerran D, Meddis R. Acquisition of auditory profiles for good and impaired hearing. Int J Audiol 2013; 52:596-605. [DOI: 10.3109/14992027.2013.796530] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
56
|
Abstracts of the British Society of Audiology annual conference (incorporating the Experimental and Clinical Short papers meetings). Int J Audiol 2013. [DOI: 10.3109/14992027.2013.765042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
57
|
Tinnitus and patterns of hearing loss. J Assoc Res Otolaryngol 2013; 14:275-82. [PMID: 23328862 DOI: 10.1007/s10162-013-0371-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/03/2013] [Indexed: 10/27/2022] Open
Abstract
Tinnitus is strongly linked with the presence of damaged hearing. However, it is not known why tinnitus afflicts only some, and not all, hearing-impaired listeners. One possibility is that tinnitus patients have specific inner ear damage that triggers tinnitus. In this study, differences in cochlear function inferred from psychophysical measures were measured between hearing-impaired listeners with tinnitus and hearing-impaired listeners without tinnitus. Despite having similar average hearing loss, tinnitus patients were observed to have better frequency selectivity and compression than those without tinnitus. The results suggest that the presence of subjective tinnitus may not be strongly associated to outer hair cell impairment, at least where hearing impairment is evident. The results also show a different average pattern of hearing impairment amongst the tinnitus patients, consistent with the suggestion that inner hair cell dysfunction with subsequent reduced auditory innervation is a possible trigger of tinnitus.
Collapse
|
58
|
Cochlear compression: recent insights from behavioural experiments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 787:31-8. [PMID: 23716206 DOI: 10.1007/978-1-4614-1590-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Although physiological measures have provided a great deal of -information about the basilar membrane (BM) response of non-human mammals, it is only relatively recently that behavioural techniques have allowed researchers to measure accurately the non-linear characteristics of the human BM. These techniques are based on forward masking, in which the threshold for detecting a signal is measured in the presence of a prior masking sound. Two popular techniques, the growth of forward masking technique and the temporal masking curve technique, rely on the fact that compression in the base of the cochlea is largely restricted to frequencies close to the characteristic frequency (CF) of each place. By comparing the response to a masker with a frequency equal to that of the signal with the response to a lower-frequency masker, it is possible to infer the CF response. These measures have shown that BM compression in humans matches that of other mammals and that compression is absent in listeners with moderate-to-severe cochlear hearing loss, probably reflecting outer hair cell dysfunction. Another technique, the additivity of forward masking (AFM) technique, does not rely on a comparison between on- and off-frequency maskers, but instead measures the effect on threshold of combining two nonoverlapping maskers, an effect which is magnified by compression. The difference between thresholds in the single- and combined-masker conditions can be used to estimate compression. The AFM technique has provided evidence that strong compression extends down to low CFs in humans, a finding inconsistent with direct measures of the BM response in other mammals. Furthermore, recent AFM results suggest that there may be an additional source of compression central to the BM. This more central compression also appears to be affected by hearing loss and may reflect non-linear processes in the transduction mechanism of the inner hair cells.
Collapse
|
59
|
Lopez-Poveda EA, Aguilar E, Johannesen PT, Eustaquio-Martín A. Contralateral efferent regulation of human cochlear tuning: behavioural observations and computer model simulations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 787:47-54. [PMID: 23716208 DOI: 10.1007/978-1-4614-1590-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In binaural listening, the two cochleae do not act as independent sound receptors; their functioning is linked via the contralateral medial olivo-cochlear reflex (MOCR), which can be activated by contralateral sounds. The present study aimed at characterizing the effect of a contralateral white noise (CWN) on psychophysical tuning curves (PTCs). PTCs were measured in forward masking for probe frequencies of 500 Hz and 4 kHz, with and without CWN. The sound pressure level of the probe was fixed across conditions. PTCs for different response criteria were measured by using various masker-probe time gaps. The CWN had no significant effects on PTCs at 4 kHz. At 500 Hz, by contrast, PTCs measured with CWN appeared broader, particularly for short gaps, and they showed a decrease in the masker level. This decrease was greater the longer the masker-probe time gap. A computer model of forward masking with efferent control of cochlear gain was used to explain the data. The model accounted for the data based on the assumption that the sole effect of the CWN was to reduce the cochlear gain by ∼6.5 dB at 500 Hz for low and moderate levels. It also suggested that the pattern of data at 500 Hz is the result of combined broad bandwidth of compression and off-frequency listening. Results are discussed in relation with other physiological and psychoacoustical studies on the effect of activation of MOCR on cochlear function.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.
| | | | | | | |
Collapse
|
60
|
Yasin I, Drga V, Plack CJ. Improved Psychophysical Methods to Estimate Peripheral Gain and Compression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 787:39-46. [DOI: 10.1007/978-1-4614-1590-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
61
|
Jennings SG, Strickland EA. Evaluating the effects of olivocochlear feedback on psychophysical measures of frequency selectivity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:2483-96. [PMID: 23039443 PMCID: PMC3477188 DOI: 10.1121/1.4742723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 05/19/2023]
Abstract
Frequency selectivity was evaluated under two conditions designed to assess the influence of a "precursor" stimulus on auditory filter bandwidths. The standard condition consisted of a short masker, immediately followed by a short signal. The precursor condition was identical except a 100-ms sinusoid at the signal frequency (i.e., the precursor) was presented before the masker. The standard and precursor conditions were compared for measurements of psychophysical tuning curves (PTCs), and notched noise tuning characteristics. Estimates of frequency selectivity were significantly broader in the precursor condition. In the second experiment, PTCs in the standard and precursor conditions were simulated to evaluate the influence of the precursor on PTC bandwidth. The model was designed to account for the influence of additivity of masking between the masker and precursor. Model simulations were able to qualitatively account for the perceptual data when outer hair cell gain of the model was reduced in the precursor condition. These findings suggest that the precursor may have reduced cochlear gain, in addition to producing additivity of masking. This reduction in gain may be mediated by the medial olivocochlear reflex.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
62
|
Jennings SG, Strickland EA. Auditory filter tuning inferred with short sinusoidal and notched-noise maskers. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:2497-513. [PMID: 23039444 PMCID: PMC3477189 DOI: 10.1121/1.4746029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 05/29/2023]
Abstract
The physiology of the medial olivocochlear reflex suggests that a sufficiently long stimulus (>100 ms) may reduce cochlear gain and result in broadened frequency selectivity. The current study attempted to avoid gain reduction by using short maskers (20 ms) to measure psychophysical tuning curves (PTCs) and notched-noise tuning characteristics, with a 4-kHz signal. The influence of off-frequency listening on PTCs was evaluated using two types of background noise. Iso-level curves were derived using an estimate of the cochlear input/output (I/O) function, which was obtained using an off-frequency masker as a linear reference. The influence of masker duration on PTCs was assessed using a model that assumed long maskers (>20 ms) evoked gain reduction. The results suggested that the off-frequency masker was a valid linear reference when deriving I/O functions and that off-frequency listening may have occurred in auditory filters apical to the signal place. The iso-level curves from this growth-of-masking study were consistent with those from a temporal-masking-curve study by Eustaquio-Martin and Lopez-Poveda [J. Assoc. Res. Otolaryngol. 12, 281-299. (2011)], suggesting that either approach may be used to derive iso-level curves. Finally, model simulations suggested that masker duration may not influence estimates of frequency selectivity.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
63
|
Auditory nerve frequency tuning measured with forward-masked compound action potentials. J Assoc Res Otolaryngol 2012; 13:799-817. [PMID: 22948475 DOI: 10.1007/s10162-012-0346-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 07/31/2012] [Indexed: 10/27/2022] Open
Abstract
Frequency selectivity is a fundamental cochlear property. Recent studies using otoacoustic emissions and psychophysical forward masking suggest that frequency selectivity is sharper in human than in common laboratory species. This has been disputed based on reports using compound action potentials (CAPs), which reflect activity in the auditory nerve and can be measured in humans. Comparative data of CAPs, obtained with a variety of simultaneous masking protocols, have been interpreted to indicate similarity of frequency tuning across mammals and even birds. Unfortunately, there are several issues with the available CAP measurements which hamper a straightforward comparison across species. We investigate sharpness of CAP tuning in cat and chinchilla using a forward masking notched-noise paradigm--which is less confounded by cochlear nonlinearities than simultaneous masking paradigms and similar to what was used in the psychophysical study reporting sharper tuning in humans. Our parametric study, using different probe frequencies and notch widths, shows relationships consistent with those of auditory nerve fibers (ANFs). The sharpness of tuning, quantified by Q(10) factors, is negatively correlated with probe level and increases with probe frequency, but the Q(10) values are generally lower than the average trend for ANFs. Like the single fiber data, tuning for CAPs is sharper in cat than in chinchilla, but the two species are similar in the dependence of tuning on probe frequency and in the relationship between tuning in ANFs and CAP. Growth-of-maskability functions show slopes <1 indicating that with increasing probe level the probe is more susceptible to cochlear compression than the masker. The results support the use of forward-masked CAPs as an alternative measure to estimate ANF tuning and to compare frequency tuning across species.
Collapse
|
64
|
Lopez-Poveda EA, Johannesen PT. Behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualized audiometric loss. J Assoc Res Otolaryngol 2012; 13:485-504. [PMID: 22526735 DOI: 10.1007/s10162-012-0327-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 03/26/2012] [Indexed: 10/28/2022] Open
Abstract
Differentiating the relative importance of the various contributors to the audiometric loss (HL(TOTAL)) of a given hearing impaired listener and frequency region is becoming critical as more specific treatments are being developed. The aim of the present study was to assess the relative contribution of inner (IHC) and outer hair cell (OHC) dysfunction (HL(IHC) and HL(OHC), respectively) to the audiometric loss of patients with mild to moderate cochlear hearing loss. It was assumed that HL(TOTAL) = HL(OHC) + HL(IHC) (all in decibels) and that HL(OHC) may be estimated as the reduction in maximum cochlear gain. It is argued that the latter may be safely estimated from compression threshold shifts of cochlear input/output (I/O) curves relative to normal hearing references. I/O curves were inferred behaviorally using forward masking for 26 test frequencies in 18 hearing impaired listeners. Data suggested that the audiometric loss for six of these 26 test frequencies was consistent with pure OHC dysfunction, one was probably consistent with pure IHC dysfunction, 13 were indicative of mixed IHC and OHC dysfunction, and five were uncertain (one more was excluded from the analysis). HL(OHC) and HL(IHC) contributed on average 60 and 40 %, respectively, to the audiometric loss, but variability was large across cases. Indeed, in some cases, HL(IHC) was up to 63 % of HL(TOTAL), even for moderate losses. The repeatability of the results is assessed using Monte Carlo simulations and potential sources of bias are discussed.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León IBSAL, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
| | | |
Collapse
|
65
|
Abstracts of the British Society of Audiology annual conference (incorporating the Experimental and Clinical Short papers meetings). Int J Audiol 2012. [DOI: 10.3109/14992027.2012.653103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
66
|
Lee J, Long G. Stimulus characteristics which lessen the impact of threshold fine structure on estimates of hearing status. Hear Res 2011; 283:24-32. [PMID: 22178980 DOI: 10.1016/j.heares.2011.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/30/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
When hearing thresholds are measured with high-frequency resolution there is a pseudo-periodic variation in thresholds across frequency of up to 15-20dB. This variation is called threshold fine structure (previously referred to as threshold microstructure). Consequently, estimates of auditory status based on threshold measures can depend greatly on the specific frequency evaluated. The impact of threshold fine structure on the prediction of auditory status was examined by measuring detection thresholds of pure tones (providing an indication of threshold fine structure) and comparing them with thresholds obtained using linear sweeps, sinusoidally frequency modulated tones, and narrow-band noise. Spontaneous otoacoustic emissions (SOAEs) were also obtained to confirm the established relationship between threshold fine structure and SOAEs. Thresholds obtained using linear sweeps and narrow-band noise provided stable threshold estimates indicating that such threshold estimates were less influenced by threshold fine structure. Consequently, thresholds obtained with these stimuli may provide estimates of cochlear status less dependent of the exact frequency being evaluated, permitting better prediction of performance on other psychoacoustic measures (such as cochlear tuning and loudness perception) and the properties of their more objective measures (such as otoacoustic emissions).
Collapse
Affiliation(s)
- Jungmee Lee
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2-256 Frances Searle, 2240 Campus Drive, Evanston, IL 60208, USA.
| | | |
Collapse
|
67
|
Horwitz AR, Ahlstrom JB, Dubno JR. Level-dependent changes in detection of temporal gaps in noise markers by adults with normal and impaired hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:2928-38. [PMID: 22087921 PMCID: PMC3248059 DOI: 10.1121/1.3643829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Compression in the basilar-membrane input-output response flattens the temporal envelope of a fluctuating signal when more gain is applied to lower level than higher level temporal components. As a result, level-dependent changes in gap detection for signals with different depths of envelope fluctuation and for subjects with normal and impaired hearing may reveal effects of compression. To test these assumptions, gap detection with and without a broadband noise was measured with 1, 000-Hz-wide (flatter) and 50-Hz-wide (fluctuating) noise markers as a function of marker level. As marker level increased, background level also increased, maintaining a fixed acoustic signal-to-noise ratio (SNR) to minimize sensation-level effects on gap detection. Significant level-dependent changes in gap detection were observed, consistent with effects of cochlear compression. For the flatter marker, gap detection that declines with increases in level up to mid levels and improves with further increases in level may be explained by an effective flattening of the temporal envelope at mid levels, where compression effects are expected to be strongest. A flatter effective temporal envelope corresponds to a reduced effective SNR. The effects of a reduction in compression (resulting in larger effective SNRs) may contribute to better-than-normal gap detection observed for some hearing-impaired listeners.
Collapse
Affiliation(s)
- Amy R Horwitz
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Avenue, MSC 550, Charleston, South Carolina 29425-5500, USA
| | | | | |
Collapse
|
68
|
Gregan MJ, Nelson PB, Oxenham AJ. Behavioral estimates of basilar-membrane compression: additivity of forward masking in noise-masked normal-hearing listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:2835-2844. [PMID: 22087912 PMCID: PMC3248057 DOI: 10.1121/1.3643817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 05/31/2023]
Abstract
Cochlear hearing loss is often associated with a loss of basilar-membrane (BM) compression, which in turn may contribute to degraded processing of suprathreshold stimuli. Behavioral estimates of compression may therefore be useful as long as they are valid over a wide range of levels and frequencies. Additivity of forward masking (AFM) may provide such a measure, but research to date lacks normative data from normal-hearing (NH) listeners at high sound levels, which is necessary to evaluate data from hearing-impaired (HI) listeners. The present study measured AFM in six NH listeners for signal frequencies of 500, 1500, and 4000 Hz in the presence of background noise, designed to elevate signal thresholds to levels similar to those experienced by HI listeners. Results consistent with compressive BM responses were found for all six listeners at 500 Hz, five listeners at 1500 Hz, but only two listeners at 4000 Hz. Further measurements in the absence of background noise also indicated a lack of consistent compression at 4000 Hz at higher signal levels, in contrast to earlier results collected at lower levels. A better understanding of this issue will be required before AFM can be used as a general behavioral estimate of BM compression.
Collapse
Affiliation(s)
- Melanie J Gregan
- Department of Speech-Language-Hearing Science, University of Minnesota, 164 Pillsbury Drive SE, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
69
|
Chen Z, Hu G, Glasberg BR, Moore BCJ. A new model for calculating auditory excitation patterns and loudness for cases of cochlear hearing loss. Hear Res 2011; 282:69-80. [PMID: 21983133 DOI: 10.1016/j.heares.2011.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022]
Abstract
A model for calculating auditory excitation patterns and loudness for steady sounds for normal hearing is extended to deal with cochlear hearing loss. The filters used in the model have a double ROEX-shape, the gain of the narrow active filter being controlled by the output of the broad passive filter. It is assumed that the hearing loss at each audiometric frequency can be partitioned into a loss due to dysfunction of outer hair cells (OHCs) and a loss due to dysfunction of inner hair cells (IHCs). OHC loss is modeled by decreasing the maximum gain of the active filter, which results in increased absolute threshold, reduced compressive nonlinearity and reduced frequency selectivity. IHC loss is modeled by a level-dependent attenuation of excitation level, which results in elevated absolute threshold. The magnitude of OHC loss and IHC loss can be derived from measures of loudness recruitment and the measured absolute threshold, using an iterative procedure. The model accurately fits loudness recruitment data obtained using subjects with unilateral or highly asymmetric cochlear hearing loss who were required to make loudness matches between tones presented alternately to the two ears. With the same parameters, the model predicted loudness matches between narrowband and broadband sound reasonably well, reflecting loudness summation. The model can also predict when a dead region is present.
Collapse
Affiliation(s)
- Zhangli Chen
- Department of Biomedical Engineering, Medical School, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
70
|
Individual differences in behavioral estimates of cochlear nonlinearities. J Assoc Res Otolaryngol 2011; 13:91-108. [PMID: 21938546 DOI: 10.1007/s10162-011-0291-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/29/2011] [Indexed: 02/07/2023] Open
Abstract
Psychophysical methods provide a mechanism to infer the characteristics of basilar membrane responses in humans that cannot be directly measured. Because these behavioral measures are indirect, the interpretation of results depends on several underlying assumptions. Ongoing uncertainty about the suitability of these assumptions and the most appropriate measurement and compression estimation procedures, and unanswered questions regarding the effects of cochlear hearing loss and age on basilar membrane nonlinearities, motivated this experiment. Here, estimates of cochlear nonlinearities using temporal masking curves (TMCs) were obtained in a large sample of adults of various ages whose hearing ranged from normal to moderate cochlear hearing loss (Experiment 1). A wide range of compression slopes was observed, even for subjects with similar ages and thresholds, which warranted further investigation (Experiment 2). Potential sources of variance contributing to these individual differences were explored, including procedural-related factors (test-retest reliability, suitability of the linear-reference TMC, probe sensation levels, and parameters of TMC fitting algorithms) and subject-related factors (age and age-related changes in temporal processing, strength of cochlear nonlinearities estimated with distortion-product otoacoustic emissions, estimates of changes in cochlear function from damage to outer hair cells versus inner hair cells). Subject age did not contribute significantly to TMC or compression slopes, and TMC slopes did not vary significantly with threshold. Test-retest reliability of TMCs suggested that TMC masker levels and the general shapes of TMCs did not change in a systematic way when re-measured many weeks later. Although the strength of compression decreased slightly with increasing hearing loss, the magnitude of individual differences in compression estimates makes it difficult to determine the effects of hearing loss and cochlear damage on basilar membrane nonlinearities in humans.
Collapse
|
71
|
Desloge JG, Reed CM, Braida LD, Perez ZD, Delhorne LA. Temporal masking functions for listeners with real and simulated hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:915-32. [PMID: 21877806 PMCID: PMC3190659 DOI: 10.1121/1.3607599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 05/24/2023]
Abstract
A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal masking functions for eight listeners with mild to severe sensorineural hearing loss. Each audiometric loss was simulated in a group of age-matched normal-hearing listeners through a combination of spectrally-shaped masking noise and multi-band expansion. Temporal-masking functions were obtained in both groups of listeners using a forward-masking paradigm in which the level of a 110-ms masker required to just mask a 10-ms fixed-level probe (5-10 dB SL) was measured as a function of the time delay between the masker offset and probe onset. At each of four probe frequencies (500, 1000, 2000, and 4000 Hz), temporal-masking functions were obtained using maskers that were 0.55, 1.0, and 1.15 times the probe frequency. The slopes and y-intercepts of the masking functions were not significantly different for listeners with real and simulated hearing loss. The y-intercepts were positively correlated with level of hearing loss while the slopes were negatively correlated. The ratio of the slopes obtained with the low-frequency maskers relative to the on-frequency maskers was similar for both groups of listeners and indicated a smaller compressive effect than that observed in normal-hearing listeners.
Collapse
Affiliation(s)
- Joseph G Desloge
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
72
|
Bernstein JGW, Brungart DS. Effects of spectral smearing and temporal fine-structure distortion on the fluctuating-masker benefit for speech at a fixed signal-to-noise ratio. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:473-88. [PMID: 21786913 PMCID: PMC3155596 DOI: 10.1121/1.3589440] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Normal-hearing listeners receive less benefit from momentary dips in the level of a fluctuating masker for speech processed to degrade spectral detail or temporal fine structure (TFS) than for unprocessed speech. This has been interpreted as evidence that the magnitude of the fluctuating-masker benefit (FMB) reflects the ability to resolve spectral detail and TFS. However, the FMB for degraded speech is typically measured at a higher signal-to-noise ratio (SNR) to yield performance similar to normal speech for the baseline (stationary-noise) condition. Because the FMB decreases with increasing SNR, this SNR difference might account for the reduction in FMB for degraded speech. In this study, the FMB for unprocessed and processed (TFS-removed or spectrally smeared) speech was measured in a paradigm that adjusts word-set size, rather than SNR, to equate stationary-noise performance across processing conditions. Compared at the same SNR and percent-correct level (but with different set sizes), processed and unprocessed stimuli yielded a similar FMB for four different fluctuating maskers (speech-modulated noise, one opposite-gender interfering talker, two same-gender interfering talkers, and 16-Hz interrupted noise). These results suggest that, for these maskers, spectral or TFS distortions do not directly impair the ability to benefit from momentary dips in masker level.
Collapse
Affiliation(s)
- Joshua G W Bernstein
- Army Audiology and Speech Center, Walter Reed Army Medical Center, Washington, DC 20307, USA.
| | | |
Collapse
|
73
|
Assessment of auditory nonlinearity for listeners with different hearing losses using temporal masking and categorical loudness scaling. Hear Res 2011; 280:177-91. [PMID: 21669269 DOI: 10.1016/j.heares.2011.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 04/20/2011] [Accepted: 05/18/2011] [Indexed: 11/21/2022]
Abstract
A dysfunction or loss of outer hair cells (OHC) and inner hair cells (IHC), assumed to be present in sensorineural hearing-impaired listeners, affects the processing of sound both at and above the listeners' hearing threshold. A loss of OHC may be responsible for a reduction of cochlear gain, apparent in the input/output function of the basilar membrane and steeper-than-normal growth of loudness with level (recruitment). IHC loss is typically assumed to cause a level-independent loss of sensitivity. In the current study, parameters reflecting individual auditory processing were estimated using two psychoacoustic measurement techniques. Hearing loss presumably attributable to IHC damage and low-level (cochlear) gain were estimated using temporal masking curves (TMC). Hearing loss attributable to OHC (HL(OHC)) was estimated using adaptive categorical loudness scaling (ACALOS) and by fitting a loudness model to measured loudness functions. In a group of listeners with thresholds ranging from normal to mild-to-moderately impaired, the loss in low-level gain derived from TMC was found to be equivalent with HL(OHC) estimates inferred from ACALOS. Furthermore, HL(OHC) estimates obtained using both measurement techniques were highly consistent. Overall, the two methods provide consistent measures of auditory nonlinearity in individual listeners, with ACALOS offering better time efficiency.
Collapse
|
74
|
Nelson DA, Kreft HA, Anderson ES, Donaldson GS. Spatial tuning curves from apical, middle, and basal electrodes in cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:3916-33. [PMID: 21682414 PMCID: PMC3135148 DOI: 10.1121/1.3583503] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Forward-masked psychophysical spatial tuning curves (fmSTCs) were measured in 15 cochlear-implant subjects, 10 using monopolar stimulation and 5 using bipolar stimulation. In each subject, fmSTCs were measured at several probe levels on an apical, middle, and basal electrode using a fixed-level probe stimulus and variable-level maskers. Tuning curve slopes and bandwidths did not change significantly with probe level for electrodes located in the apical, middle, or basal region although a few subjects exhibited dramatic changes in tuning at the extremes of the probe level range. Average tuning curve slopes and bandwidths did not vary significantly across electrode regions. Spatial tuning curves were symmetrical and similar in width across the three electrode regions. However, several subjects demonstrated large changes in slope and/or bandwidth across the three electrode regions, indicating poorer tuning in localized regions of the array. Cochlear-implant users exhibited bandwidths that were approximately five times wider than normal-hearing acoustic listeners but were in the same range as acoustic listeners with moderate cochlear hearing loss. No significant correlations were found between spatial tuning parameters and speech recognition; although a weak relation was seen between middle electrode tuning and transmitted information for vowel second formant frequency.
Collapse
Affiliation(s)
- David A Nelson
- Clinical Psychoacoustics Laboratory, Department of Otolaryngology, University of Minnesota, MMC396, 420 Delaware St. S.E., Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
75
|
A behavioral measure of the cochlear changes underlying temporary threshold shifts. Hear Res 2011; 277:78-87. [PMID: 21439366 DOI: 10.1016/j.heares.2011.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/09/2011] [Accepted: 03/15/2011] [Indexed: 11/21/2022]
Abstract
It is well documented that exposure to recreational noise may result in a temporary threshold shift (TTS) due to cochlear dysfunction. A forward-masking paradigm was used to estimate the relative contribution of inner hair cell (IHC) and outer hair cell (OHC) dysfunction to TTS. Eighteen normal-hearing adults completed a test battery before, immediately after, and one week after attending a loud music venue. Personal dosimeters recorded mean equivalent exposure levels of 99.0 dB A. Shortly after exposure, there was an average TTS of 10.8 dB at 4 kHz, and an average reduction in the estimated gain provided by the OHCs of 11.5 dB. Gain reduction correlated significantly with TTS. The results suggest that OHC dysfunction can account almost entirely for the raised thresholds. For the test battery conducted a week after exposure, all measures showed recovery to pre-exposure values.
Collapse
|
76
|
Rodríguez J, Neely ST, Jesteadt W, Tan H, Gorga MP. Comparison of distortion-product otoacoustic emission growth rates and slopes of forward-masked psychometric functions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:864-875. [PMID: 21361444 PMCID: PMC3070994 DOI: 10.1121/1.3523340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 05/30/2023]
Abstract
Slopes of forward-masked psychometric functions (FM PFs) were compared with distortion-product otoacoustic emission (DPOAE) input/output (I/O) parameters at 1 and 6 kHz to test the hypothesis that these measures provide similar estimates of cochlear compression. Implicit in this hypothesis is the assumption that both DPOAE I/O and FM PF slopes are functionally related to basilar-membrane (BM) response growth. FM PF-slope decreased with signal level, but this effect was reduced or reversed with increasing hearing loss; there was a trend of decreasing psychometric function (PF) slope with increasing frequency, consistent with greater compression at higher frequencies. DPOAE I/O functions at 6 kHz exhibited an increase in the breakpoint of a two-segment slope as a function of hearing loss with a concomitant decrease in the level of the distortion product (L(d)). Results of the comparison between FM PF and DPOAE I/O parameters revealed only a weak correlation, suggesting that one or both of these measures may provide unreliable information about BM compression.
Collapse
Affiliation(s)
- Joyce Rodríguez
- Starkey Hearing Research Center, 2150 Shattuck Avenue, Suite 408, Berkeley, California 94704-1345, USA.
| | | | | | | | | |
Collapse
|
77
|
Jepsen ML, Dau T. Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:262-81. [PMID: 21303008 DOI: 10.1121/1.3518768] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study considered consequences of sensorineural hearing loss in ten listeners. The characterization of individual hearing loss was based on psychoacoustic data addressing audiometric pure-tone sensitivity, cochlear compression, frequency selectivity, temporal resolution, and intensity discrimination. In the experiments it was found that listeners with comparable audiograms can show very different results in the supra-threshold measures. In an attempt to account for the observed individual data, a model of auditory signal processing and perception [Jepsen et al., J. Acoust. Soc. Am. 124, 422-438 (2008)] was used as a framework. The parameters of the cochlear processing stage of the model were adjusted to account for behaviorally estimated individual basilar-membrane input-output functions and the audiogram, from which the amounts of inner hair-cell and outer hair-cell losses were estimated as a function of frequency. All other model parameters were left unchanged. The predictions showed a reasonably good agreement with the measured individual data in the frequency selectivity and forward masking conditions while the variation of intensity discrimination thresholds across listeners was underestimated by the model. The model and the associated parameters for individual hearing-impaired listeners might be useful for investigating effects of individual hearing impairment in more complex conditions, such as speech intelligibility in noise.
Collapse
Affiliation(s)
- Morten L Jepsen
- Centre for Applied Hearing Research, Department of Electrical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | | |
Collapse
|
78
|
Eustaquio-Martín A, Lopez-Poveda EA. Isoresponse versus isoinput estimates of cochlear filter tuning. J Assoc Res Otolaryngol 2010; 12:281-99. [PMID: 21104288 DOI: 10.1007/s10162-010-0252-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022] Open
Abstract
The tuning of a linear filter may be inferred from the filter's isoresponse (e.g., tuning curves) or isoinput (e.g., isolevel curves) characteristics. This paper provides a theoretical demonstration that for nonlinear filters with compressive response characteristics like those of the basilar membrane, isoresponse measures can suggest strikingly sharper tuning than isoinput measures. The practical significance of this phenomenon is demonstrated by inferring the 3-dB-down bandwidths (BW(3dB)) of human auditory filters at 500 and 4,000 Hz from behavioral isoresponse and isoinput measures obtained with sinusoidal and notched noise forward maskers. Inferred cochlear responses were compressive for the two types of maskers. Consistent with expectations, low-level BW(3dB) estimates obtained from isoresponse conditions were considerably narrower than those obtained from isolevel conditions: 69 vs. 174 Hz, respectively, at 500 Hz, and 280 vs. 464 Hz, respectively, at 4,000 Hz. Furthermore, isoresponse BW(3dB) decreased with increasing level while corresponding isolevel estimates remained approximately constant at 500 Hz or increased slightly at 4 kHz. It is suggested that comparisons between isoresponse supra-threshold human tuning and threshold animal neural tuning should be made with caution.
Collapse
Affiliation(s)
- Almudena Eustaquio-Martín
- Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Calle Pintor Fernando Gallego 1, Salamanca, Spain
| | | |
Collapse
|
79
|
Epp B, Verhey JL, Mauermann M. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:1870-1883. [PMID: 20968359 DOI: 10.1121/1.3479755] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A model of the cochlea was used to bridge the gap between model approaches commonly used to investigate phenomena related to otoacoustic emissions and more filter-based model approaches often used in psychoacoustics. In the present study, a nonlinear and active one-dimensional transmission line model was developed that accounts for several aspects of physiological data with a single fixed parameter set. The model shows plausible excitation patterns and an input-output function similar to the linear-compressive-linear function as hypothesized in psychoacoustics. The model shows realistic results in a two-tone suppression paradigm and a plausible growth function of the 2f(1)-f(2) component of distortion product otoacoustic emissions. Finestructure was found in simulated stimulus-frequency otoacoustic emissions (SFOAE) with realistic levels and rapid phase rotation. A plausible "threshold in quiet" including finestructure and spontaneous otoacoustic emissions (SOAE) could be simulated. It is further shown that psychoacoustical data of modulation detection near threshold can be explained by the mechanical dynamics of the modeled healthy cochlea. It is discussed that such a model can be used to investigate the representation of acoustic signals in healthy and impaired cochleae at this early stage of the auditory pathway for both, physiological as well as psychoacoustical paradigms.
Collapse
Affiliation(s)
- Bastian Epp
- Neuroacoustics, Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, Oldenburg 26111, Germany.
| | | | | |
Collapse
|
80
|
Roverud E, Strickland EA. The time course of cochlear gain reduction measured using a more efficient psychophysical technique. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:1203-14. [PMID: 20815456 PMCID: PMC2945748 DOI: 10.1121/1.3473695] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 05/09/2023]
Abstract
In a previous study it was shown that an on-frequency precursor intended to activate the medial olivocochlear reflex (MOCR) at the signal frequency reduces the gain estimated from growth-of-masking (GOM) functions. This is called the temporal effect (TE). In Expt. 1 a shorter method of measuring this change in gain is established. GOM functions were measured with an on- and off-frequency precursor presented before the masker and signal, and used to estimate Input/Output functions. The change in gain estimated in this way was very similar to that estimated from comparing two points measured with a single fixed masker level on the lower legs of the GOM functions. In Expt. 2, the TE was measured as a function of precursor duration and signal delay. For short precursor durations and short delays the TE increased (buildup) or remained constant as delay increased, then decreased. The TE also increased with precursor duration for the shortest delay. The results were fitted with a model based on the time course of the MOCR. The model fitted the data well, and predicted the buildup. This buildup is not consistent with exponential decay predicted by neural adaptation or persistence of excitation.
Collapse
Affiliation(s)
- Elin Roverud
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907-2038, USA.
| | | |
Collapse
|
81
|
Plack CJ, Arifianto D. On- and off-frequency compression estimated using a new version of the additivity of forward masking technique. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:771-786. [PMID: 20707447 DOI: 10.1121/1.3455844] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
On- and off-frequency compression at the 4000- and 8000-Hz cochlear places were estimated using a new version of the additivity of forward masking (AFM) technique, that measures the effects of combining two non-overlapping forward maskers. Instead of measuring signal thresholds to estimate compression of the signal as in the original AFM technique, the decrease in masker threshold in the combined-masker condition compared to the individual-masker conditions is used to estimate compression of the masker at the signal place. By varying masker frequency it is possible to estimate off-frequency compression. The maskers were 500-Hz-wide bands of noise, and the signal was a brief pure tone. Compression at different levels was estimated using different overall signal levels, or different masker-signal intervals. It was shown that the new AFM technique and the original AFM technique produce consistent results. Considerable compression was observed for maskers well below the signal frequency, suggesting that the assumption of off-frequency linearity used in other techniques may not be valid. Reducing the duration of the first masker from 200 to 20 ms reduced the compression exponent in some cases, suggesting a possible influence of olivocochlear efferent activity.
Collapse
Affiliation(s)
- Christopher J Plack
- Human Communication and Deafness Division, University of Manchester, Manchester M13 9PL, United Kingdom.
| | | |
Collapse
|
82
|
Wojtczak M, Oxenham AJ. Recovery from on- and off-frequency forward masking in listeners with normal and impaired hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:247-256. [PMID: 20649220 PMCID: PMC2921427 DOI: 10.1121/1.3436566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 05/29/2023]
Abstract
The aim of this study was to investigate the possible mechanisms underlying an effect reported earlier [Wojtczak, M., and Oxenham, A. J. (2009). J. Acoust. Soc. Am. 125, 270-281] in normal-hearing listeners, whereby recovery from forward masking can be slower for off-frequency tonal maskers than for on-frequency tonal maskers that produce the same amount of masking at a 0-ms masker-signal delay. To rule out potential effects of confusion between the tonal signal and tonal masker, one condition used a noise-band forward masker. To test whether the effect involved temporal build-up, another condition used a short-duration (30-ms) forward masker. To test whether the effect is dependent on normal cochlear function, conditions were tested in five listeners with sensorineural hearing loss. For the 150-ms noise maskers, the data from normal-hearing listeners replicated the findings from the previous study that used tonal maskers. In contrast, no significant difference in recovery from on- and off-frequency masking was observed for the 30-ms tonal maskers in normal-hearing listeners, or for the 150-ms tonal maskers in hearing-impaired listeners. Overall, the results are consistent with a mechanism based on efferent feedback that affects the recovery from forward masking in the normal auditory system.
Collapse
Affiliation(s)
- Magdalena Wojtczak
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
83
|
Johannesen PT, Lopez-Poveda EA. Correspondence between behavioral and individually "optimized" otoacoustic emission estimates of human cochlear input/output curves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:3602-3613. [PMID: 20550260 DOI: 10.1121/1.3377087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Previous studies have shown a high within-subject correspondence between distortion product otoacoustic emission (DPOAE) input/output (I/O) curves and behaviorally inferred basilar membrane (BM) I/O curves for frequencies above approximately 2 kHz. For lower frequencies, DPOAE I/O curves contained notches and plateaus that did not have a counterpart in corresponding behavioral curves. It was hypothesized that this might improve by using individualized optimal DPOAE primary levels. Here, data from previous studies are re-analyzed to test this hypothesis by comparing behaviorally inferred BM I/O curves and DPOAE I/O curves measured with well-established group-average primary levels and two individualized primary level rules: one optimized to maximize DPOAE levels and one intended for primaries to evoke comparable BM responses at the f(2) cochlear region. Test frequencies were 0.5, 1, and 4 kHz. Behavioral I/O curves were obtained from temporal (forward) masking curves. Results showed high within-subject correspondence between behavioral and DPOAE I/O curves at 4 kHz only, regardless of the primary level rule. Plateaus and notches were equally common in low-frequency DPOAE I/O curves for individualized and group-average DPOAE primary levels at 0.5 and 1 kHz. Results are discussed in terms of the adequacy of DPOAE I/O curves for inferring individual cochlear nonlinearity characteristics.
Collapse
Affiliation(s)
- Peter T Johannesen
- Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
84
|
Gregan MJ, Nelson PB, Oxenham AJ. Effects of background noise level on behavioral estimates of basilar-membrane compression. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:3018-25. [PMID: 21117751 PMCID: PMC2882661 DOI: 10.1121/1.3365311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 05/30/2023]
Abstract
Hearing-impaired (HI) listeners often show poorer performance on psychoacoustic tasks than do normal-hearing (NH) listeners. Although some such deficits may reflect changes in suprathreshold sound processing, others may be due to stimulus audibility and the elevated absolute thresholds associated with hearing loss. Masking noise can be used to raise the thresholds of NH to equal the thresholds in quiet of HI listeners. However, such noise may have other effects, including changing peripheral response characteristics, such as the compressive input-output function of the basilar membrane in the normal cochlea. This study estimated compression behaviorally across a range of background noise levels in NH listeners at a 4 kHz signal frequency, using a growth of forward masking paradigm. For signals 5 dB or more above threshold in noise, no significant effect of broadband noise level was found on estimates of compression. This finding suggests that broadband noise does not significantly alter the compressive response of the basilar membrane to sounds that are presented well above their threshold in the noise. Similarities between the performance of HI listeners and NH listeners in threshold-equalizing noise are therefore unlikely to be due to a linearization of basilar-membrane responses to suprathreshold stimuli in the NH listeners.
Collapse
Affiliation(s)
- Melanie J Gregan
- Department of Speech-Language-Hearing Science, University of Minnesota, 164 Pillsbury Drive SE, Minneapolis, Minnesota 55455
| | | | | |
Collapse
|
85
|
Wojtczak M, Oxenham AJ. On- and off-frequency forward masking by Schroeder-phase complexes. J Assoc Res Otolaryngol 2009; 10:595-607. [PMID: 19626368 DOI: 10.1007/s10162-009-0180-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022] Open
Abstract
Forward masking by harmonic tone complexes was measured for on- and off-frequency maskers as a function of masker phase curvature for two masker durations (30 and 200 ms). For the lowest signal frequency (1 kHz), the results matched predictions based on the expected interactions between the phase curvature and amplitude compression of peripheral auditory filtering. For the higher signal frequencies (2 and 6 kHz), the data increasingly departed from predictions in two respects. First, the effects of the masker phase curvature became stronger with increasing masker duration, inconsistent with the expected effects of the fast-acting compression and time-invariant phase response of basilar membrane filtering. Second, significant effects of masker phase curvature were observed for the off-frequency masker using a 6-kHz signal, inconsistent with predictions based on linear processing of stimuli well below the signal frequency. New predictions were generated assuming an additional effect with a longer time constant, consistent with the influence of medial olivocochlear efferent activation on otoacoustic emissions in humans. Reasonable agreement between the predicted and the measured effects suggests that efferent activation is a potential candidate mechanism to explain certain spectro-temporal masking effects in human hearing.
Collapse
Affiliation(s)
- Magdalena Wojtczak
- Department of Psychology, University of Minnesota, 75 East River Rd, Minneapolis, MN, 55455, USA.
| | | |
Collapse
|
86
|
Lopez-Poveda EA, Johannesen PT, Merchán MA. Estimation of the degree of inner and outer hair cell dysfunction from distortion product otoacoustic emission input/output functions. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/16513860802622491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
87
|
Stenfelt S. Towards understanding the specifics of cochlear hearing loss: A modelling approach. Int J Audiol 2009; 47 Suppl 2:S10-5. [DOI: 10.1080/14992020802307396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
88
|
Auditory intensity discrimination as a function of level-rove and tone duration in normal-hearing and impaired subjects: The “mid-level hump” revisited. Hear Res 2009; 253:107-15. [PMID: 19345257 DOI: 10.1016/j.heares.2009.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/23/2022]
|
89
|
Otoacoustic emission theories and behavioral estimates of human basilar membrane motion are mutually consistent. J Assoc Res Otolaryngol 2009; 10:511-23. [PMID: 19526267 DOI: 10.1007/s10162-009-0176-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022] Open
Abstract
When two pure tones (or primaries) of slightly different frequencies (f (1) and f (2)) are presented to the ear, new frequency components are generated by nonlinear interaction of the primaries within the cochlea. These new components can be recorded in the ear canal as otoacoustic emissions (OAE). The level of the 2f (1)-f (2) OAE component is known as the distortion product otoacoustic emission (DPOAE) and is regarded as an indicator of the physiological state of the cochlea. The current view is that maximal level DPOAEs occur for primaries that produce equal excitation at the f (2) cochlear region, but this notion cannot be directly tested in living humans because it is impossible to record their cochlear responses while monitoring their ear canal DPOAE levels. On the other hand, it has been claimed that the temporal masking curve (TMC) method of inferring human basilar membrane responses allows measurement of the levels of equally effective pure tones at any given cochlear site. The assumptions of this behavioral method, however, lack firm physiological support in humans. Here, the TMC method was applied to test the current notion on the conditions that maximize DPOAE levels in humans. DPOAE and TMC results were mutually consistent for frequencies of 1 and 4 kHz and for levels below around 65 dB sound pressure level. This match supports the current view on the generation of maximal level DPOAEs as well as the assumptions of the behavioral TMC method.
Collapse
|
90
|
Bernstein JGW, Grant KW. Auditory and auditory-visual intelligibility of speech in fluctuating maskers for normal-hearing and hearing-impaired listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:3358-72. [PMID: 19425676 DOI: 10.1121/1.3110132] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Speech intelligibility for audio-alone and audiovisual (AV) sentences was estimated as a function of signal-to-noise ratio (SNR) for a female target talker presented in a stationary noise, an interfering male talker, or a speech-modulated noise background, for eight hearing-impaired (HI) and five normal-hearing (NH) listeners. At the 50% keywords-correct performance level, HI listeners showed 7-12 dB less fluctuating-masker benefit (FMB) than NH listeners, consistent with previous results. Both groups showed significantly more FMB under AV than audio-alone conditions. When compared at the same stationary-noise SNR, FMB differences between listener groups and modalities were substantially smaller, suggesting that most of the FMB differences at the 50% performance level may reflect a SNR dependence of the FMB. Still, 1-5 dB of the FMB difference between listener groups remained, indicating a possible role for reduced audibility, limited spectral or temporal resolution, or an inability to use auditory source-segregation cues, in directly limiting the ability to listen in the dips of a fluctuating masker. A modified version of the extended speech-intelligibility index that predicts a larger FMB at less favorable SNRs accounted for most of the FMB differences between listener groups and modalities. Overall, these data suggest that HI listeners retain more of an ability to listen in the dips of a fluctuating masker than previously thought. Instead, the fluctuating-masker difficulties exhibited by HI listeners may derive from the reduced FMB associated with the more favorable SNRs they require to identify a reasonable proportion of the target speech.
Collapse
Affiliation(s)
- Joshua G W Bernstein
- Army Audiology and Speech Center, Walter Reed Army Medical Center, Washington, DC 20307, USA.
| | | |
Collapse
|
91
|
Reed CM, Braida LD, Zurek PM. Review article: review of the literature on temporal resolution in listeners with cochlear hearing impairment: a critical assessment of the role of suprathreshold deficits. Trends Amplif 2009; 13:4-43. [PMID: 19074452 PMCID: PMC2880464 DOI: 10.1177/1084713808325412] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A critical review of studies of temporal resolution in listeners with cochlear hearing impairment is presented with the aim of assessing evidence for suprathreshold deficits. Particular attention is paid to the roles of variables-such as stimulus audibility, overall stimulus level, and participant's age-which may complicate the interpretation of experimental findings in comparing the performance of hearing-impaired (HI) and normal-hearing (NH) listeners. On certain temporal tasks (e.g., gap detection), the performance of HI listeners appears to be degraded relative to that of NH listeners when compared at equal SPL (sound pressure level). For other temporal tasks (e.g., forward masking), HI performance is degraded relative to that of NH listeners when compared at equal sensation level. A relatively small group of studies exists, however, in which the effects of stimulus audibility and level (and occasionally participant's age) have been controlled through the use of noise-masked simulation of hearing loss in NH listeners. For some temporal tasks (including gap-detection, gap-duration discrimination, and detection of brief tones in modulated noise), the performance of HI listeners is well reproduced in the results of noise-masked NH listeners. For other tasks (i.e., temporal integration), noise-masked hearing-loss simulations do not reproduce the results of HI listeners. In three additional areas of temporal processing (duration discrimination, detection of temporal modulation in noise, and various temporal-masking paradigms), further studies employing control of stimulus audibility and level, as well as age, are necessary for a more complete understanding of the role of suprathreshold deficits in the temporal-processing abilities of HI listeners.
Collapse
Affiliation(s)
- Charlotte M Reed
- The Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | | | |
Collapse
|
92
|
Lilaonitkul W, Guinan JJ. Reflex control of the human inner ear: a half-octave offset in medial efferent feedback that is consistent with an efferent role in the control of masking. J Neurophysiol 2009; 101:1394-406. [PMID: 19118109 PMCID: PMC2666406 DOI: 10.1152/jn.90925.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 12/29/2008] [Indexed: 11/22/2022] Open
Abstract
The high sensitivity and frequency selectivity of the mammalian cochlea is due to amplification produced by outer hair cells (OHCs) and controlled by medial olivocochlear (MOC) efferents. Data from animals led to the view that MOC fibers provide frequency-specific inhibitory feedback; however, these studies did not measure intact MOC reflexes. To test whether MOC inhibition is primarily at the frequency that elicits the MOC activity, acoustically elicited MOC effects were quantified in humans by the change in otoacoustic emissions produced by 60-dB SPL tone and half-octave-band noise elicitors at different frequencies relative to a 40-dB SPL, 1-kHz probe tone. On average, all elicitors produced MOC effects that were skewed (elicitor frequencies -1 octave below the probe produced larger effects than those -1 octave above). The largest MOC effects were from elicitors below the probe frequency for contra- and bilateral elicitors but were from elicitors centered at the probe frequency for ipsilateral elicitors. Typically, ipsilateral elicitors produced larger effects than contralateral elicitors and bilateral elicitors produced effects near the ipsi+contra sum. Elicitors at levels down to 30-dB SPL produced similar patterns. Tuning curves (TCs) interpolated from these data were V-shaped with Q10s approximately 2. These are sharper than MOC-fiber TCs found near 1 kHz in cats and guinea pigs. Because cochlear amplification is skewed (more below the best frequency of a cochlear region), these data are consistent with an anti-masking role of MOC efferents that reduces masking by reducing the cochlear amplification seen at 1 kHz.
Collapse
Affiliation(s)
- Watjana Lilaonitkul
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
93
|
Wojtczak M, Oxenham AJ. Pitfalls in behavioral estimates of basilar-membrane compression in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:270-81. [PMID: 19173414 PMCID: PMC2677277 DOI: 10.1121/1.3023063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Psychoacoustic estimates of basilar-membrane compression often compare on- and off-frequency forward masking. Such estimates involve assuming that the recovery from forward masking for a given signal frequency is independent of masker frequency. To test this assumption, thresholds for a brief 4-kHz signal were measured as a function of masker-signal delay. Comparisons were made between on-frequency (4 kHz) and off-frequency (either 2.4 or 4.4 kHz) maskers, adjusted in level to produce the same amount of masking at a 0-ms delay between masker offset and signal onset. Consistent with the assumption, forward-masking recovery from a moderate-level (83 dB SPL) 2.4-kHz masker and a high-level (92 dB SPL) 4.4-kHz masker was the same as from the equivalent on-frequency maskers. In contrast, recovery from a high-level (92 dB SPL) 2.4-kHz forward masker was slower than from the equivalent on-frequency masker. The results were used to simulate temporal masking curves, taking into account the differences in on- and off-frequency masking recoveries at high levels. The predictions suggest that compression estimates assuming frequency-independent masking recovery may overestimate compression by as much as a factor of 2. The results suggest caution in interpreting forward-masking data in terms of basilar-membrane compression, particularly when high-level maskers are involved.
Collapse
Affiliation(s)
- Magdalena Wojtczak
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
94
|
Johannesen PT, Lopez-Poveda EA. Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:2149-2163. [PMID: 19062855 DOI: 10.1121/1.2968692] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The aim was to investigate the correlation between compression exponent, compression threshold, and cochlear gain for normal-hearing subjects as inferred from temporal masking curves (TMCs) and distortion-product otoacoustic emission (DPOAEs) input-output (I/O) curves. Care was given to reduce the influence of DPOAE fine structure on the DPOAE I/O curves. A high correlation between compression exponent estimates obtained with the two methods was found at 4 kHz but not at 0.5 and 1 kHz. One reason is that the DPOAE I/O curves show plateaus or notches that result in unexpectedly high compression estimates. Moderately high correlation was found between compression threshold estimates obtained with the two methods, although DPOAE-based values were around 7 dB lower than those based on TMCs. Both methods show that compression exponent and threshold are approximately constant across the frequency range from 0.5 to 4 kHz. Cochlear gain as estimated from TMCs was found to be approximately 16 dB greater at 4 than at 0.5 kHz. In conclusion, DPOAEs and TMCs may be used interchangeably to infer precise individual nonlinear cochlear characteristics at 4 kHz, but it remains unclear that the same applies to lower frequencies.
Collapse
Affiliation(s)
- Peter T Johannesen
- Unidad de Audicion Computacional y Psicoacustica, Instituto de Neurociencias de Castilla y Leon, Universidad de Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
95
|
Schairer KS, Messersmith J, Jesteadt W. Use of psychometric-function slopes for forward-masked tones to investigate cochlear nonlinearity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 124:2196-215. [PMID: 19062859 PMCID: PMC2600619 DOI: 10.1121/1.2968686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 05/24/2023]
Abstract
Schairer et al. [(2003). "Effects of peripheral nonlinearity on psychometric functions for forward-masked tones," J. Acoust. Soc. Am. 133, 1560-1573] demonstrated that cochlear nonlinearity is reflected in psychometric-function (PF) slopes for 4 kHz forward-masked tones. The goals of the current study were to use PF slopes to compare the degree of compression between signal frequencies of 0.25 and 4 kHz in listeners with normal hearing (LNH), and between LNH and listeners with cochlear hearing loss (LHL). Forward-masked thresholds were estimated in LNH and LHL using on- and off-frequency maskers and 0.25 and 4 kHz signals in three experiments. PFs were reconstructed from adaptive-procedure data for each subject in each condition. Trends in PF slopes across conditions suggest comparable compression at 0.25 and 4 kHz, and potentially a wider bandwidth of compression in relative frequency at 0.25 kHz. This is consistent with other recent behavioral studies that revise earlier estimates of less compression at lower frequencies. The preliminary results in LHL demonstrate that PF slopes are abnormally steep at frequencies with HL, but are similar to those for LNH at frequencies with NH. Overall, the results are consistent with the notion that PF slopes reflect degree of cochlear nonlinearity and can be used as an additional measure of compression across frequency.
Collapse
Affiliation(s)
- Kim S Schairer
- Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA.
| | | | | |
Collapse
|
96
|
Plack CJ, Oxenham AJ, Simonson AM, O'Hanlon CG, Drga V, Arifianto D. Estimates of compression at low and high frequencies using masking additivity in normal and impaired ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:4321-30. [PMID: 18537383 PMCID: PMC2680663 DOI: 10.1121/1.2908297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/20/2008] [Accepted: 03/21/2008] [Indexed: 05/26/2023]
Abstract
Auditory compression was estimated at 250 and 4000 Hz by using the additivity of forward masking technique, which measures the effects on signal threshold of combining two temporally nonoverlapping forward maskers. The increase in threshold in the combined-masker condition compared to the individual-masker conditions can be used to estimate compression. The signal was a 250 or 4000 Hz tone burst and the maskers (M1 and M2) were bands of noise. Signal thresholds were measured in the presence of M1 and M2 alone and combined for a range of masker levels. The results were used to derive response functions at each frequency. The procedure was conducted with normal-hearing and hearing-impaired listeners. The results suggest that the response function in normal ears is similar at 250 and 4000 Hz with a mid level compression exponent of about 0.2. However, compression extends over a smaller range of levels at 250 Hz. The results confirm previous estimates of compression using temporal masking curves (TMCs) without assuming a linear off-frequency reference as in the TMC procedure. The impaired ears generally showed less compression. Importantly, some impaired ears showed a linear response at 250 Hz, providing a further indication that low-frequency compression originates in the cochlea.
Collapse
Affiliation(s)
- Christopher J Plack
- Department of Psychology, Lancaster University, Lancaster LA1 4YF, United Kingdom.
| | | | | | | | | | | |
Collapse
|
97
|
Wojtczak M, Viemeister NF. Perception of suprathreshold amplitude modulation and intensity increments: Weber's law revisited. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:2220-2236. [PMID: 18397028 PMCID: PMC2394195 DOI: 10.1121/1.2839889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 01/03/2008] [Accepted: 01/11/2008] [Indexed: 05/26/2023]
Abstract
The perceived strength of intensity fluctuations evoked by suprathreshold sinusoidal amplitude modulation (AM) and the perceived size of intensity increments were compared across levels of a wideband noise and a 1-kHz tone. For the 1-kHz tone, the comparisons were made in quiet and in a high-pass noise. The data indicate that suprathreshold modulation depths and intensity increments, perceived as equivalent across levels, follow a pattern resembling Weber's law for noise and the "near miss" to Weber's law for a tone. The effect of a high-pass noise was largely consistent with that observed for AM and increment detection. The data suggest that Weber's law is not a direct consequence of the dependence of internal noise on stimulus level, as suggested by multiplicative internal noise models. Equal loudness ratios and equal loudness differences (computed using loudness for the stationary portions before and after the increment) accounted for the increment-matching data for noise and for the tone, respectively, but neither measure predicted the results for both types of stimuli. Predictions based on log-transformed excitation patterns and predictions using an equal number of intensity just-noticeable differences were in qualitative, but not quantitative, agreement with the data.
Collapse
Affiliation(s)
- Magdalena Wojtczak
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
98
|
Lopez-Poveda EA, Alves-Pinto A. A variant temporal-masking-curve method for inferring peripheral auditory compression. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:1544-54. [PMID: 18345842 DOI: 10.1121/1.2835418] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent studies have suggested that the degree of on-frequency peripheral auditory compression is similar for apical and basal cochlear sites and that compression extends to a wider range of frequencies in apical than in basal sites. These conclusions were drawn from the analysis of the slopes of temporal masking curves (TMCs) on the assumption that forward masking decays at the same rate for all probe and masker frequencies. The aim here was to verify this conclusion using a different assumption. TMCs for normal hearing listeners were measured for probe frequencies (f(P)) of 500 and 4000 Hz and for masker frequencies (f(M)) of 0.4, 0.55, and 1.0 times the probe frequency. TMCs were measured for probes of 9 and 15 dB sensation level. The assumption was that given a 6 dB increase in probe level, linear cochlear responses to the maskers should lead to a 6 dB vertical shift of the corresponding TMCs, while compressive responses should lead to bigger shifts. Results were consistent with the conclusions from earlier studies. It is argued that this supports the assumptions of the standard TMC method for inferring compression, at least in normal-hearing listeners.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, 37007 Salamanca, Spain.
| | | |
Collapse
|
99
|
Nelson DA, Donaldson GS, Kreft H. Forward-masked spatial tuning curves in cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:1522-43. [PMID: 18345841 PMCID: PMC2432425 DOI: 10.1121/1.2836786] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Forward-masked psychophysical spatial tuning curves (fmSTCs) were measured in twelve cochlear-implant subjects, six using bipolar stimulation (Nucleus devices) and six using monopolar stimulation (Clarion devices). fmSTCs were measured at several probe levels on a middle electrode using a fixed-level probe stimulus and variable-level maskers. The average fmSTC slopes obtained in subjects using bipolar stimulation (3.7 dBmm) were approximately three times steeper than average slopes obtained in subjects using monopolar stimulation (1.2 dBmm). Average spatial bandwidths were about half as wide for subjects with bipolar stimulation (2.6 mm) than for subjects with monopolar stimulation (4.6 mm). None of the tuning curve characteristics changed significantly with probe level. fmSTCs replotted in terms of acoustic frequency, using Greenwood's [J. Acoust. Soc. Am. 33, 1344-1356 (1961)] frequency-to-place equation, were compared with forward-masked psychophysical tuning curves obtained previously from normal-hearing and hearing-impaired acoustic listeners. The average tuning characteristics of fmSTCs in electric hearing were similar to the broad tuning observed in normal-hearing and hearing-impaired acoustic listeners at high stimulus levels. This suggests that spatial tuning is not the primary factor limiting speech perception in many cochlear implant users.
Collapse
Affiliation(s)
- David A Nelson
- Clinical Psychoacoustics Laboratory, Department of Otolaryngology, University of Minnesota, MMC396, 420 Delaware Street S.E., Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
100
|
Plack CJ, Skeels V. Temporal integration and compression near absolute threshold in normal and impaired ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:2236-44. [PMID: 17902859 DOI: 10.1121/1.2769829] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The decrease in absolute threshold with increasing stimulus duration (often referred to as "temporal integration") is greater for listeners with normal hearing than for listeners with sensorineural hearing loss. It has been suggested that the difference is related to reduced basilar-membrane (BM) compression in the impaired group. The present experiment tested this hypothesis by comparing temporal integration and BM compression in normal and impaired ears at low levels. Absolute thresholds were measured for 4, 24, and 44 ms pure-tone signals, with frequencies (f(s)) of 2 and 4 kHz. The difference between the absolute thresholds for the 4 and 24 ms signals was used as a measure of temporal integration. Compression near threshold was estimated by measuring the level of a 100 ms off-frequency (0.45f(s)) pure-tone forward masker required to mask a 44 ms pure-tone signal presented at sensation levels of 5 and 10 dB. There was a significant negative correlation between amount of temporal integration and absolute threshold. However, there was no correlation between absolute threshold and compression at low levels; both normal and impaired ears showed a nearly linear response. The results suggest that the differences in integration between normal and impaired ears cannot be explained by differences in BM compression.
Collapse
Affiliation(s)
- Christopher J Plack
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom.
| | | |
Collapse
|