51
|
Badea ML, Iconaru SL, Groza A, Chifiriuc MC, Beuran M, Predoi D. Peppermint Essential Oil-Doped Hydroxyapatite Nanoparticles with Antimicrobial Properties. Molecules 2019; 24:E2169. [PMID: 31181843 PMCID: PMC6600389 DOI: 10.3390/molecules24112169] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/07/2023] Open
Abstract
This study aimed at developing an antimicrobial material based on hydroxyapatite (HAp) and peppermint essential oil (P-EO) in order to stimulate the antimicrobial activity of hydroxyapatite. The molecular spectral features and morphology of the P-EO, HAp and hydroxyapatite coated with peppermint essential oil (HAp-P) were analyzed using Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The coating of the HAp with the P-EO did not affect the ellipsoidal shape of the nanoparticles. The overlapping of IR bands of P-EO and HAp in the HAp-P spectrum determined the formation of the broad molecular bands that were observed in the spectral regions of 400-1000 cm-1 and 1000-1200 cm-1. The antibacterial activity of the P-EO, HAp and HAp-P were also tested against different Gram-positive bacteria (methicillin-resistant Staphylococcus aureus (MRSA) 388, S. aureus ATCC 25923, S. aureus ATCC 6538, E. faecium DSM 13590), Gram-negative bacteria (Escherichia coli ATCC 25922, E. coli C5, P. aeruginosa ATCC 27853, P. aeruginosa ATCC 9027) and a fungal strain of Candida parapsilosis. The results of the present study revealed that the antimicrobial activity of HAp-P increased significantly over that of HAp.
Collapse
Affiliation(s)
- Monica Luminita Badea
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine, 59 Mărăşti Blvd., 011464 Bucharest, Romania.
| | - Simona Liliana Iconaru
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania.
| | - Andreea Groza
- Low Temperature Plasma Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG 36, 077125 Magurele, Romania.
| | - Mariana Carmen Chifiriuc
- Microbiology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, 77206 Bucharest, Romania.
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania.
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, 014461 Bucharest, Romania.
| | - Daniela Predoi
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania.
| |
Collapse
|
52
|
Kajanus J, Antonsson T, Carlsson L, Jurva U, Pettersen A, Sundell J, Inghardt T. Potassium channel blocking 1,2-bis(aryl)ethane-1,2-diamines active as antiarrhythmic agents. Bioorg Med Chem Lett 2019; 29:1241-1245. [DOI: 10.1016/j.bmcl.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/19/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
|
53
|
In Vitro and In Vivo Correlation of Hepatic Fraction of Metabolism by P450 in Dogs. J Pharm Sci 2018; 108:1017-1026. [PMID: 30244007 DOI: 10.1016/j.xphs.2018.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/04/2023]
Abstract
1-Aminobenzotriazole (ABT) has been widely used as a nonspecific mechanism-based inhibitor of cytochrome P450 (P450) enzymes. It is extensively used in preclinical studies to determine the relative contribution of oxidative metabolism mediated by P450 in vitro and in vivo. The aim of present study was to understand the translation of fraction metabolized by P450 in dog hepatocytes to in vivo using ABT, for canagliflozin, known to be cleared by P450-mediated oxidation and UDP-glucuronosyltransferases-mediated glucuronidation, and 3 drug discovery project compounds mainly cleared by hepatic metabolism. In a dog hepatocyte, intrinsic clearance assay with and without preincubation of ABT, 3 Lilly compounds exhibited a wide range of fraction metabolized by P450. Subsequent metabolite profiling in dog hepatocytes demonstrated a combination of metabolism by P450 and UDP-glucuronosyltransferases. In vivo, dogs were pretreated with 50 mg/kg ABT or vehicle at 2 h before intravenous administration of canagliflozin and Lilly compounds. The areas under the concentration-time curve (AUC) were compared for the ABT-pretreated and vehicle-pretreated groups. The measured AUCABT/AUCveh ratios were correlated to fraction of metabolism by P450 in dog hepatocytes, suggesting that in vitro ABT inhibition in hepatocytes is useful to rank order compounds for in vivo fraction of metabolism assessment.
Collapse
|
54
|
Lindmark B, Lundahl A, Kanebratt KP, Andersson TB, Isin EM. Human hepatocytes and cytochrome P450-selective inhibitors predict variability in human drug exposure more accurately than human recombinant P450s. Br J Pharmacol 2018; 175:2116-2129. [PMID: 29574682 PMCID: PMC5980217 DOI: 10.1111/bph.14203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Drugs metabolically eliminated by several enzymes are less vulnerable to variable compound exposure in patients due to drug-drug interactions (DDI) or if a polymorphic enzyme is involved in their elimination. Therefore, it is vital in drug discovery to accurately and efficiently estimate and optimize the metabolic elimination profile. EXPERIMENTAL APPROACH CYP3A and/or CYP2D6 substrates with well described variability in vivo in humans due to CYP3A DDI and CYP2D6 polymorphism were selected for assessment of fraction metabolized by each enzyme (fmCYP ) in two in vitro systems: (i) human recombinant P450s (hrP450s) and (ii) human hepatocytes combined with selective P450 inhibitors. Increases in compound exposure in poor versus extensive CYP2D6 metabolizers and by the strong CYP3A inhibitor ketoconazole were mathematically modelled and predicted changes in exposure were compared with in vivo data. KEY RESULTS Predicted changes in exposure were within twofold of reported in vivo values using fmCYP estimated in human hepatocytes and there was a strong linear correlation between predicted and observed changes in exposure (r2 = 0.83 for CYP3A, r2 = 0.82 for CYP2D6). Predictions using fmCYP in hrP450s were not as accurate (r2 = 0.55 for CYP3A, r2 = 0.20 for CYP2D6). CONCLUSIONS AND IMPLICATIONS The results suggest that variability in human drug exposure due to DDI and enzyme polymorphism can be accurately predicted using fmCYP from human hepatocytes and CYP-selective inhibitors. This approach can be efficiently applied in drug discovery to aid optimization of candidate drugs with a favourable metabolic elimination profile and limited variability in patients.
Collapse
Affiliation(s)
- Bo Lindmark
- Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development Biotech UnitAstraZenecaGothenburgSweden
| | - Anna Lundahl
- Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development Biotech UnitAstraZenecaGothenburgSweden
| | - Kajsa P Kanebratt
- Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development Biotech UnitAstraZenecaGothenburgSweden
| | - Tommy B Andersson
- Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development Biotech UnitAstraZenecaGothenburgSweden
| | - Emre M Isin
- Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development Biotech UnitAstraZenecaGothenburgSweden
| |
Collapse
|
55
|
Zhang P, Wu H, Chiang C, Wang L, Binkheder S, Wang X, Zeng D, Quinney SK, Li L. Translational Biomedical Informatics and Pharmacometrics Approaches in the Drug Interactions Research. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 7:90-102. [PMID: 29193890 PMCID: PMC5824109 DOI: 10.1002/psp4.12267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022]
Abstract
Drug interaction is a leading cause of adverse drug events and a major obstacle for current clinical practice. Pharmacovigilance data mining, pharmacokinetic modeling, and text mining are computation and informatic tools on integrating drug interaction knowledge and generating drug interaction hypothesis. We provide a comprehensive overview of these translational biomedical informatics methodologies with related databases. We hope this review illustrates the complementary nature of these informatic approaches and facilitates the translational drug interaction research.
Collapse
Affiliation(s)
- Pengyue Zhang
- Department of Biomedical InformaticsCollege of Medicine, the Ohio State UniversityColumbusOhioUSA
| | - Heng‐Yi Wu
- Department of Biomedical InformaticsCollege of Medicine, the Ohio State UniversityColumbusOhioUSA
| | - Chien‐Wei Chiang
- Department of Biomedical InformaticsCollege of Medicine, the Ohio State UniversityColumbusOhioUSA
| | - Lei Wang
- Department of Biomedical InformaticsCollege of Medicine, the Ohio State UniversityColumbusOhioUSA
- Intelligent Systems and Bioinformatics Institute, College of Automation, Harbin Engineering UniversityHarbinHeilongjiangChina
| | - Samar Binkheder
- Department of Biohealth InformaticsIndiana University School of Informatics and ComputingIndianapolisIndianaUSA
- Medical Informatics Unit, College of Medicine, King Saud UniversityRiyadhSaudi Arabia
| | - Xueying Wang
- Intelligent Systems and Bioinformatics Institute, College of Automation, Harbin Engineering UniversityHarbinHeilongjiangChina
| | - Donglin Zeng
- Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Sara K. Quinney
- Department of Obstetrics and GynecologyIndiana UniversityIndianapolisIndianaUSA
| | - Lang Li
- Department of Biomedical InformaticsCollege of Medicine, the Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
56
|
Dusek J, Carazo A, Trejtnar F, Hyrsova L, Holas O, Smutny T, Micuda S, Pavek P. Steviol, an aglycone of steviol glycoside sweeteners, interacts with the pregnane X (PXR) and aryl hydrocarbon (AHR) receptors in detoxification regulation. Food Chem Toxicol 2017; 109:130-142. [DOI: 10.1016/j.fct.2017.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/20/2017] [Accepted: 09/01/2017] [Indexed: 01/01/2023]
|
57
|
Prediction of drug–drug interaction potential using physiologically based pharmacokinetic modeling. Arch Pharm Res 2017; 40:1356-1379. [DOI: 10.1007/s12272-017-0976-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
|
58
|
Di L. Reaction phenotyping to assess victim drug-drug interaction risks. Expert Opin Drug Discov 2017; 12:1105-1115. [DOI: 10.1080/17460441.2017.1367280] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, CT, USA
| |
Collapse
|
59
|
Dixit VA, Lal LA, Agrawal SR. Recent advances in the prediction of non‐
CYP450
‐mediated drug metabolism. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vaibhav A. Dixit
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management (SPTM)Shri Vile Parle Kelavani Mandal's (SVKM's), Narsee Monjee Institute of Management Studies (NMIMS)ShirpurIndia
| | - L. Arun Lal
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management (SPTM)Shri Vile Parle Kelavani Mandal's (SVKM's), Narsee Monjee Institute of Management Studies (NMIMS)ShirpurIndia
| | - Simran R. Agrawal
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management (SPTM)Shri Vile Parle Kelavani Mandal's (SVKM's), Narsee Monjee Institute of Management Studies (NMIMS)ShirpurIndia
| |
Collapse
|
60
|
Vimercati S, Büchi M, Zielinski J, Peduto N, Mevissen M. Testosterone metabolism of equine single CYPs of the 3A subfamily compared to the human CYP3A4. Toxicol In Vitro 2017; 41:83-91. [DOI: 10.1016/j.tiv.2017.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
|
61
|
Fukuchi Y, Toshimoto K, Mori T, Kakimoto K, Tobe Y, Sawada T, Asaumi R, Iwata T, Hashimoto Y, Nunoya KI, Imawaka H, Miyauchi S, Sugiyam Y. Analysis of Nonlinear Pharmacokinetics of a Highly Albumin-Bound Compound: Contribution of Albumin-Mediated Hepatic Uptake Mechanism. J Pharm Sci 2017; 106:2704-2714. [PMID: 28465151 DOI: 10.1016/j.xphs.2017.04.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022]
Abstract
The cause of nonlinear pharmacokinetics (PK) (more than dose-proportional increase in exposure) of a urea derivative under development (compound A: anionic compound [pKa: 4.4]; LogP: 6.5; and plasma protein binding: 99.95%) observed in a clinical trial was investigated. Compound A was metabolized by CYP3A4, UGT1A1, and UGT1A3 with unbound Km of 3.3-17.8 μmol/L. OATP1B3-mediated uptake of compound A determined in the presence of human serum albumin (HSA) showed that unbound Km and Vmax decreased with increased HSA concentration. A greater decrease in unbound Km than in Vmax resulted in increased uptake clearance (Vmax/unbound Km) with increased HSA concentration, the so-called albumin-mediated uptake. At 2% HSA concentration, unbound Km was 0.00657 μmol/L. A physiologically based PK model assuming saturable hepatic uptake nearly replicated clinical PK of compound A. Unbound Km for hepatic uptake estimated from the model was 0.000767 μmol/L, lower than the in vitro unbound Km at 2% HSA concentration, whereas decreased Km with increased concentration of HSA in vitro indicated lower Km at physiological HSA concentration (4%-5%). In addition, unbound Km values for metabolizing enzymes were much higher than unbound Km for OATP1B3, indicating that the nonlinear PK of compound A is primarily attributed to saturated OATP1B3-mediated hepatic uptake of compound A.
Collapse
Affiliation(s)
- Yukina Fukuchi
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Company, Ltd., Ibaraki, Japan
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Kanagawa, Japan
| | - Takanori Mori
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Company, Ltd., Ibaraki, Japan
| | - Keisuke Kakimoto
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Company, Ltd., Ibaraki, Japan
| | - Yoshifusa Tobe
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Company, Ltd., Ibaraki, Japan
| | - Takeshi Sawada
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Company, Ltd., Ibaraki, Japan
| | - Ryuta Asaumi
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Company, Ltd., Ibaraki, Japan
| | - Takeyuki Iwata
- Oncology Clinical Development Planning, Ono Pharmaceutical Company, Ltd., Osaka, Japan
| | - Yoshitaka Hashimoto
- Translational Medicine Center, Ono Pharmaceutical Company, Ltd., Osaka, Japan
| | - Ken-Ichi Nunoya
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Company, Ltd., Ibaraki, Japan
| | - Haruo Imawaka
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Company, Ltd., Ibaraki, Japan.
| | - Seiji Miyauchi
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Kanagawa, Japan
| | - Yuichi Sugiyam
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Kanagawa, Japan
| |
Collapse
|
62
|
Fowler S, Morcos PN, Cleary Y, Martin-Facklam M, Parrott N, Gertz M, Yu L. Progress in Prediction and Interpretation of Clinically Relevant Metabolic Drug-Drug Interactions: a Minireview Illustrating Recent Developments and Current Opportunities. CURRENT PHARMACOLOGY REPORTS 2017; 3:36-49. [PMID: 28261547 PMCID: PMC5315728 DOI: 10.1007/s40495-017-0082-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review gives a perspective on the current "state of the art" in metabolic drug-drug interaction (DDI) prediction. We highlight areas of successful prediction and illustrate progress in areas where limits in scientific knowledge or technologies prevent us from having full confidence. RECENT FINDINGS Several examples of success are highlighted. Work done for bitopertin shows how in vitro and clinical data can be integrated to give a model-based understanding of pharmacokinetics and drug interactions. The use of interpolative predictions to derive explicit dosage recommendations for untested DDIs is discussed using the example of ibrutinib, and the use of DDI predictions in lieu of clinical studies in new drug application packages is exemplified with eliglustat and alectinib. Alectinib is also an interesting case where dose adjustment is unnecessary as the activity of a major metabolite compensates sufficiently for changes in parent drug exposure. Examples where "unusual" cytochrome P450 (CYP) and non-CYP enzymes are responsible for metabolic clearance have shown the importance of continuing to develop our repertoire of in vitro regents and techniques. The time-dependent inhibition assay using human hepatocytes suspended in full plasma allowed improved DDI predictions, illustrating the importance of continued in vitro assay development and refinement. SUMMARY During the past 10 years, a highly mechanistic understanding has been developed in the area of CYP-mediated metabolic DDIs enabling the prediction of clinical outcome based on preclinical studies. The combination of good quality in vitro data and physiologically based pharmacokinetic modeling may now be used to evaluate DDI risk prospectively and are increasingly accepted in lieu of dedicated clinical studies.
Collapse
Affiliation(s)
- Stephen Fowler
- Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Peter N. Morcos
- Pharmaceutical Reseach and Early Development, Roche Innovation Center New York, F. Hoffmann-La Roche Ltd., 430 East 29th Street, New York City, NY USA
| | - Yumi Cleary
- Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Meret Martin-Facklam
- Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Neil Parrott
- Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Michael Gertz
- Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Li Yu
- Pharmaceutical Reseach and Early Development, Roche Innovation Center New York, F. Hoffmann-La Roche Ltd., 430 East 29th Street, New York City, NY USA
| |
Collapse
|
63
|
Einolf HJ, Zhou J, Won C, Wang L, Rebello S. A Physiologically-Based Pharmacokinetic Modeling Approach To Predict Drug-Drug Interactions of Sonidegib (LDE225) with Perpetrators of CYP3A in Cancer Patients. Drug Metab Dispos 2017; 45:361-374. [PMID: 28122787 DOI: 10.1124/dmd.116.073585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/18/2017] [Indexed: 11/22/2022] Open
Abstract
Sonidegib (Odomzo) is an orally available Smoothened inhibitor for the treatment of advanced basal cell carcinoma. Sonidegib was found to be metabolized primarily by cytochrome P450 (CYP)3A in vitro. The effect of multiple doses of the strong CYP3A perpetrators, ketoconazole (KTZ) and rifampin (RIF), on sonidegib pharmacokinetics (PK) after a single 800 mg dose in healthy subjects was therefore assessed. These data were used to verify a physiologically-based pharmacokinetic (PBPK) model developed to 1) bridge the clinical drug-drug interaction (DDI) study of sonidegib with KTZ and RIF in healthy subjects to the marketed dose (200 mg) in patients 2) predict acute (14 days) versus long-term dosing of the perpetrators with sonidegib at steady state and 3) predict the effect of moderate CYP3A perpetrators on sonidegib exposure in patients. Treatment of healthy subjects with KTZ resulted in an increased sonidegib exposure of 2.25- and 1.49-fold (area under the curve0-240h and maximal concentration respectively), and RIF decreased exposure by 72% and 54%, respectively. The model simulated the single- and/or multiple-dose PK of sonidegib (healthy subjects and patients) within ∼50% of observed values. The effect of KTZ and RIF on sonidegib in healthy subjects was also simulated well, and the predicted DDI in patients was slightly less and independent of sonidegib dose. At steady state, sonidegib was predicted to have a higher DDI magnitude with strong or moderate CYP3A perpetrators compared with a single dose. Different dosing regimens of sondigeb with the perpetrators were also simulated and provided guidance to the current dosing recommendations incorporated in the product label.
Collapse
Affiliation(s)
- Heidi J Einolf
- Department of Drug Metabolism and Pharmacokinetics (H.J.E., L.W., S.R.) and Oncology Clinical Pharmacology (J.Z., C.W.), Novartis, East Hanover, New Jersey 07936
| | - Jocelyn Zhou
- Department of Drug Metabolism and Pharmacokinetics (H.J.E., L.W., S.R.) and Oncology Clinical Pharmacology (J.Z., C.W.), Novartis, East Hanover, New Jersey 07936
| | - Christina Won
- Department of Drug Metabolism and Pharmacokinetics (H.J.E., L.W., S.R.) and Oncology Clinical Pharmacology (J.Z., C.W.), Novartis, East Hanover, New Jersey 07936
| | - Lai Wang
- Department of Drug Metabolism and Pharmacokinetics (H.J.E., L.W., S.R.) and Oncology Clinical Pharmacology (J.Z., C.W.), Novartis, East Hanover, New Jersey 07936
| | - Sam Rebello
- Department of Drug Metabolism and Pharmacokinetics (H.J.E., L.W., S.R.) and Oncology Clinical Pharmacology (J.Z., C.W.), Novartis, East Hanover, New Jersey 07936
| |
Collapse
|
64
|
Siu YA, Lai WG. Impact of Probe Substrate Selection on Cytochrome P450 Reaction Phenotyping Using the Relative Activity Factor. Drug Metab Dispos 2016; 45:183-189. [PMID: 27934636 DOI: 10.1124/dmd.116.073510] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022] Open
Abstract
Accurately assessing the contribution of cytochrome P450 (P450) isoforms to overall metabolic clearance is important for prediction of clinical drug-drug interactions (DDIs). The relative activity factor (RAF) approach in P450 reaction phenotyping assumes that the interaction between P450-selective probes and testing systems is the same as the interaction of drug candidate with those systems. To test this assumption, an intersystem clearance ratio (ICR) was created to evaluate the difference in values between RAF-scaled intrinsic clearance (CLint) and measured CLint in human liver microsomes (HLMs). The RAF value for CYP3A4 or CYP2C9 derived from a particular P450-selective probe reaction was applied to calculate RAF-scaled CLint for other probe reactions of the same P450 isoform in a crossover manner and compared with the measured HLM CLint When RAF derived from midazolam or nifedipine was used for CYP3A4, the ICR for testosterone 6β-hydroxylation was 31 and 25, respectively, suggesting significantly diverse interactions of CYP3A4 probes with the testing systems. Such ICR differences were less profound among probes for CYP2C9. In addition, these RAF values were applied to losartan and meloxicam, whose metabolism is mostly CYP2C9 mediated. Only using the RAF derived from testosterone for CYP3A4 produced the expected CYP2C9 contribution of 72%-87% and 47%-69% for metabolism of losartan and meloxicam, respectively. RAF derived from other CYP3A4 probes would have attributed predominantly to CYP3A4 and led to incorrect prediction of DDIs. Our study demonstrates a significant impact of probe substrate selection on P450 phenotyping using the RAF approach, and the ICR may provide a potential solution.
Collapse
Affiliation(s)
- Y Amy Siu
- Drug Metabolism and Pharmacokinetics Department, Biopharmaceutical Assessments, Eisai Inc., Andover, Massachusetts
| | - W George Lai
- Drug Metabolism and Pharmacokinetics Department, Biopharmaceutical Assessments, Eisai Inc., Andover, Massachusetts
| |
Collapse
|
65
|
Sager JE, Tripathy S, Price LSL, Nath A, Chang J, Stephenson-Famy A, Isoherranen N. In vitro to in vivo extrapolation of the complex drug-drug interaction of bupropion and its metabolites with CYP2D6; simultaneous reversible inhibition and CYP2D6 downregulation. Biochem Pharmacol 2016; 123:85-96. [PMID: 27836670 DOI: 10.1016/j.bcp.2016.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023]
Abstract
Bupropion is a widely used antidepressant and smoking cessation aid and a strong inhibitor of CYP2D6 in vivo. Bupropion is administered as a racemic mixture of R- and S-bupropion and has stereoselective pharmacokinetics. Four primary metabolites of bupropion, threo- and erythro-hydrobupropion and R,R- and S,S-OH-bupropion, circulate at higher concentrations than the parent drug and are believed to contribute to the efficacy and side effects of bupropion as well as to the CYP2D6 inhibition. However, bupropion and its metabolites are only weak inhibitors of CYP2D6 in vitro, and the magnitude of the in vivo drug-drug interactions (DDI) caused by bupropion cannot be explained by the in vitro data even when CYP2D6 inhibition by the metabolites is accounted for. The aim of this study was to quantitatively explain the in vivo CYP2D6 DDI magnitude by in vitro DDI data. Bupropion and its metabolites were found to inhibit CYP2D6 stereoselectively with up to 10-fold difference in inhibition potency between enantiomers. However, the reversible inhibition or active uptake into hepatocytes did not explain the in vivo DDIs. In HepG2 cells and in plated human hepatocytes bupropion and its metabolites were found to significantly downregulate CYP2D6 mRNA in a concentration dependent manner. The in vivo DDI was quantitatively predicted by significant down-regulation of CYP2D6 mRNA and reversible inhibition of CYP2D6 by bupropion and its metabolites. This study is the first example of a clinical DDI resulting from CYP down-regulation and first demonstration of a CYP2D6 interaction resulting from transcriptional regulation.
Collapse
Affiliation(s)
- Jennifer E Sager
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Sasmita Tripathy
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Lauren S L Price
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Justine Chang
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Alyssa Stephenson-Famy
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| |
Collapse
|
66
|
Abstract
Cells need to strictly control their internal milieu, a function which is performed by the plasma membrane. Selective passage of molecules across the plasma membrane is controlled by transport proteins. As the liver is the central organ for drug metabolism, hepatocytes are equipped with numerous drug transporters expressed at the plasma membrane. Drug disposition includes absorption, distribution, metabolism, and elimination of a drug and hence multiple passages of drugs and their metabolites across membranes. Consequently, understanding the exact mechanisms of drug transporters is essential both in drug development and in drug therapy. While many drug transporters are expressed in hepatocytes, and some of them are well characterized, several transporters have only recently been identified as new drug transporters. Novel powerful tools to deorphanize (drug) transporters are being applied and show promising results. Although a large set of tools are available for studying transport in vitro and in isolated cells, tools for studying transport in living organisms, including humans, are evolving now and rely predominantly on imaging techniques, e.g. positron emission tomography. Imaging is an area which, certainly in the near future, will provide important insights into "transporters at work" in vivo.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
67
|
Templeton IE, Chen Y, Mao J, Lin J, Yu H, Peters S, Shebley M, Varma MV. Quantitative Prediction of Drug-Drug Interactions Involving Inhibitory Metabolites in Drug Development: How Can Physiologically Based Pharmacokinetic Modeling Help? CPT Pharmacometrics Syst Pharmacol 2016; 5:505-515. [PMID: 27642087 PMCID: PMC5080647 DOI: 10.1002/psp4.12110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022] Open
Abstract
This subteam under the Drug Metabolism Leadership Group (Innovation and Quality Consortium) investigated the quantitative role of circulating inhibitory metabolites in drug-drug interactions using physiologically based pharmacokinetic (PBPK) modeling. Three drugs with major circulating inhibitory metabolites (amiodarone, gemfibrozil, and sertraline) were systematically evaluated in addition to the literature review of recent examples. The application of PBPK modeling in drug interactions by inhibitory parent-metabolite pairs is described and guidance on strategic application is provided.
Collapse
Affiliation(s)
| | - Y Chen
- Genentech, South San Francisco, California, USA
| | - J Mao
- Genentech, South San Francisco, California, USA
| | - J Lin
- Pfizer Inc., Groton, Connecticut, USA
| | - H Yu
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | | | - M Shebley
- AbbVie Inc., North Chicago, Illinois, USA
| | - M V Varma
- Pfizer Inc., Groton, Connecticut, USA.
| |
Collapse
|