51
|
Farasyn T, Crowe A, Hatley O, Neuhoff S, Alam K, Kanyo J, Lam TT, Ding K, Yue W. Preincubation With Everolimus and Sirolimus Reduces Organic Anion-Transporting Polypeptide (OATP)1B1- and 1B3-Mediated Transport Independently of mTOR Kinase Inhibition: Implication in Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions. J Pharm Sci 2019; 108:3443-3456. [PMID: 31047942 PMCID: PMC6759397 DOI: 10.1016/j.xphs.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
Organic anion transporting polypeptides (OATP)1B1 and OATP1B3 mediate hepatic uptake of many drugs including lipid-lowering statins. Current studies determined the OATP1B1/1B3-mediated drug-drug interaction (DDI) potential of mammalian target of rapamycin (mTOR) inhibitors, everolimus and sirolimus, using R-value and physiologically based pharmacokinetic models. Preincubation with everolimus and sirolimus significantly decreased OATP1B1/1B3-mediated transport even after washing and decreased inhibition constant values up to 8.3- and 2.9-fold for OATP1B1 and both 2.7-fold for OATP1B3, respectively. R-values of everolimus, but not sirolimus, were greater than the FDA-recommended cutoff value of 1.1. Physiologically based pharmacokinetic models predict that everolimus and sirolimus have low OATP1B1/1B3-mediated DDI potential against pravastatin. OATP1B1/1B3-mediated transport was not affected by preincubation with INK-128 (10 μM, 1 h), which does however abolish mTOR kinase activity. The preincubation effects of everolimus and sirolimus on OATP1B1/1B3-mediated transport were similar in cells before preincubation with vehicle control or INK-128, suggesting that inhibition of mTOR activity is not a prerequisite for the preincubation effects observed for everolimus and sirolimus. Nine potential phosphorylation sites of OATP1B1 were identified by phosphoproteomics; none of these are the predicted mTOR phosphorylation sites. We report the everolimus/sirolimus-preincubation-induced inhibitory effects on OATP1B1/1B3 and relatively low OATP1B1/1B3-mediated DDI potential of everolimus and sirolimus.
Collapse
Affiliation(s)
- Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Oliver Hatley
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jean Kanyo
- Yale MS & Proteomics Resource, Yale University, New Haven, Connecticut 06520
| | - TuKiet T Lam
- Yale MS & Proteomics Resource, Yale University, New Haven, Connecticut 06520; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
52
|
Montonye ML, Tian DD, Arman T, Lynch KD, Hagenbuch B, Paine MF, Clarke JD. A Pharmacokinetic Natural Product-Disease-Drug Interaction: A Double Hit of Silymarin and Nonalcoholic Steatohepatitis on Hepatic Transporters in a Rat Model. J Pharmacol Exp Ther 2019; 371:385-393. [PMID: 31420525 DOI: 10.1124/jpet.119.260489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
Patients with nonalcoholic steatohepatitis (NASH) exhibit altered hepatic protein expression of metabolizing enzymes and transporters and altered xenobiotic pharmacokinetics. The botanical natural product silymarin, which has been investigated as a treatment of NASH, contains flavonolignans that inhibit organic anion-transporting polypeptide (OATP) transporter function. The purpose of this study was to assess the individual and combined effects of NASH and silymarin on the disposition of the model OATP substrate pitavastatin. Male Sprague Dawley rats were fed a control or a methionine- and choline-deficient diet (NASH model) for 8 weeks. Silymarin (10 mg/kg) or vehicle followed by pitavastatin (0.5 mg/kg) were administered intravenously, and the pharmacokinetics were determined. NASH increased mean total flavonolignan area under the plasma concentration-time curve (AUC0-120 min) 1.7-fold. Silymarin increased pitavastatin AUC0-120 min in both control and NASH animals approx. 2-fold. NASH increased pitavastatin plasma concentrations from 2 to 40 minutes, but AUC0-120 min was unchanged. The combination of silymarin and NASH had the greatest effect on pitavastatin AUC0-120 min, which increased 2.9-fold compared with control vehicle-treated animals. NASH increased the total amount of pitavastatin excreted into the bile 2.7-fold compared with control animals, whereas silymarin decreased pitavastatin biliary clearance approx. 3-fold in both control and NASH animals. This double hit of NASH and silymarin on hepatic uptake transporters is another example of a multifactorial pharmacokinetic interaction that may have a greater impact on drug disposition than each hit alone. SIGNIFICANCE STATEMENT: Multifactorial effects on xenobiotic pharmacokinetics are within the next frontier for precision medicine research and clinical application. The combination of silymarin and NASH is a probable clinical scenario that can affect drug uptake, liver concentrations, biliary elimination, and ultimately, efficacy and toxicity.
Collapse
Affiliation(s)
- Michelle L Montonye
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Dan-Dan Tian
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Bruno Hagenbuch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Mary F Paine
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| |
Collapse
|
53
|
Trueck C, Hsin CH, Scherf-Clavel O, Schaeffeler E, Lenssen R, Gazzaz M, Gersie M, Taubert M, Quasdorff M, Schwab M, Kinzig M, Sörgel F, Stoffel MS, Fuhr U. A Clinical Drug-Drug Interaction Study Assessing a Novel Drug Transporter Phenotyping Cocktail With Adefovir, Sitagliptin, Metformin, Pitavastatin, and Digoxin. Clin Pharmacol Ther 2019; 106:1398-1407. [PMID: 31247117 DOI: 10.1002/cpt.1564] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Abstract
A new probe drug cocktail containing substrates of important drug transporters was tested for mutual interactions in a clinical trial. The cocktail consisted of (predominant transporter; primary phenotyping metric): 10 mg adefovir-dipivoxil (OAT1; renal clearance (CLR )), 100 mg sitagliptin (OAT3; CLR ), 500 mg metformin (several renal transporters; CLR ), 2 mg pitavastatin (OATP1B1; clearance/F), and 0.5 mg digoxin (intestinal P-gp, renal P-gp, and OATP4C1; peak plasma concentration (Cmax ) and CLR ). Using a randomized six-period, open change-over design, single oral doses were administrated either concomitantly or separately to 24 healthy male and female volunteers. Phenotyping metrics were evaluated by noncompartmental analysis and compared between periods by the standard average bioequivalence approach (boundaries for ratios 0.80-1.25). Primary metrics supported the absence of relevant interactions, whereas secondary metrics suggested that mainly adefovir was a victim of minor drug-drug interactions (DDIs). All drugs were well tolerated. This cocktail may be another useful tool to assess transporter-based DDIs in vivo.
Collapse
Affiliation(s)
- Christina Trueck
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Chih-Hsuan Hsin
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Oliver Scherf-Clavel
- Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
| | - Elke Schaeffeler
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Rebekka Lenssen
- Hospital Pharmacy, University Hospital Cologne, Cologne, Germany
| | - Malaz Gazzaz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany.,Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Marleen Gersie
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Max Taubert
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Maria Quasdorff
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Matthias Schwab
- University of Tuebingen, Tuebingen, Germany.,Department of Clinical Pharmacology, University Hospital Tuebingen, Tuebingen, Germany.,Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Martina Kinzig
- Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
| | - Fritz Sörgel
- Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany.,Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Marc S Stoffel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Uwe Fuhr
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| |
Collapse
|
54
|
Yagi Y, Kimura H, Okuda H, Ono M, Nakamoto Y, Togashi K, Saji H. Evaluation of [18F]pitavastatin as a positron emission tomography tracer for in vivo organic transporter polypeptide function. Nucl Med Biol 2019; 74-75:25-31. [DOI: 10.1016/j.nucmedbio.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
|
55
|
Nie Y, Yang J, Liu S, Sun R, Chen H, Long N, Jiang R, Gui C. Genetic polymorphisms of human hepatic OATPs: functional consequences and effect on drug pharmacokinetics. Xenobiotica 2019; 50:297-317. [DOI: 10.1080/00498254.2019.1629043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yingmin Nie
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jingjie Yang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shuai Liu
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ruiqi Sun
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Huihui Chen
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Nan Long
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Rui Jiang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chunshan Gui
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
56
|
Evaluation of transporter-mediated hepatobiliary transport of newly developed 18F-labeled pitavastatin derivative, PTV-F1, in rats by PET imaging. Drug Metab Pharmacokinet 2019; 34:317-324. [PMID: 31331824 DOI: 10.1016/j.dmpk.2019.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022]
Abstract
Quantitative evaluations of the functions of uptake and efflux transporters directly in vivo is desired to understand an efficient hepatobiliary transport of substrate drugs. Pitavastatin is a substrate of organic anion transporting polypeptides (OATPs) and canalicular efflux transporters; thus, it can be a suitable probe for positron-emission tomography (PET) imaging of hepatic transporter functions. To characterize the performance of [18F]PTV-F1, an analogue of pitavastatin, we investigated the impact of rifampicin (a typical OATP inhibitor) coadministration or Bcrp (breast cancer resistance protein) knockout on [18F]PTV-F1 hepatic uptake and efflux in rats by PET imaging. After intravenous administration, [18F]PTV-F1 selectively accumulated in the liver, and the radioactivity detected in plasma, liver, and bile mainly derived from the parent PTV-F1 during the PET study (∼40 min). Coadministration of rifampicin largely decreased the hepatic uptake of [18F]PTV-F1 by 73%. Because of its lower clearance in rats, [18F]PTV-F1 is more sensitive for monitoring changes in hepatic OATP1B function that other previously reported OATP1B PET probes. Rifampicin coadministration also significantly decreased the biliary excretion of radioactivity by 65%. Bcrp knockout did not show a significant impact on its biliary excretion.[18F]PTV-F1 enables quantitative analysis of the hepatobiliary transport system for organic anions.
Collapse
|
57
|
Li R. Estimating In Vivo Fractional Contribution of OATP1B1 to Human Hepatic Active Uptake by Mechanistically Modeling Pharmacogenetic Data. AAPS JOURNAL 2019; 21:69. [DOI: 10.1208/s12248-019-0337-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/27/2019] [Indexed: 01/03/2023]
|
58
|
Crowe A, Zheng W, Miller J, Pahwa S, Alam K, Fung KM, Rubin E, Yin F, Ding K, Yue W. Characterization of Plasma Membrane Localization and Phosphorylation Status of Organic Anion Transporting Polypeptide (OATP) 1B1 c.521 T>C Nonsynonymous Single-Nucleotide Polymorphism. Pharm Res 2019; 36:101. [PMID: 31093828 DOI: 10.1007/s11095-019-2634-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/27/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Membrane transport protein organic anion transporting polypeptide (OATP) 1B1 mediates hepatic uptake of many drugs (e.g. statins). The OATP1B1 c.521 T > C (p. V174A) polymorphism has reduced transport activity. Conflicting in vitro results exist regarding whether V174A-OATP1B1 has reduced plasma membrane localization; no such data has been reported in physiologically relevant human liver tissue. Other potential changes, such as phosphorylation, of the V174A-OATP1B1 protein have not been explored. Current studies characterized the plasma membrane localization of V174A-OATP1B1 in genotyped human liver tissue and cell culture and compared the phosphorylation status of V174A- and wild-type (WT)-OATP1B1. METHODS Localization of V174A- and WT-OATP1B1 were determined in OATP1B1 c.521 T > C genotyped human liver tissue (n = 79) by immunohistochemistry and in transporter-overexpressing human embryonic kidney (HEK) 293 and HeLa cells by surface biotinylation and confocal microscopy. Phosphorylation and transport of OATP1B1 was determined using 32P-orthophosphate labeling and [3H]estradiol-17β-glucuronide accumulation, respectively. RESULTS All three methods demonstrated predominant plasma membrane localization of both V174A- and WT-OATP1B1 in human liver tissue and in cell culture. Compared to WT-OATP1B1, the V174A-OATP1B1 has significantly increased phosphorylation and reduced transport. CONCLUSIONS We report novel findings of increased phosphorylation, but not impaired membrane localization, in association with the reduced transport function of the V174A-OATP1B1.
Collapse
Affiliation(s)
- Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Wei Zheng
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Erin Rubin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feng Yin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
59
|
Zhang Y, Panfen E, Fancher M, Sinz M, Marathe P, Shen H. Dissecting the Contribution of OATP1B1 to Hepatic Uptake of Statins Using the OATP1B1 Selective Inhibitor Estropipate. Mol Pharm 2019; 16:2342-2353. [DOI: 10.1021/acs.molpharmaceut.8b01226] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yueping Zhang
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Erika Panfen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Marcus Fancher
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Michael Sinz
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Punit Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
60
|
Türková A, Zdrazil B. Current Advances in Studying Clinically Relevant Transporters of the Solute Carrier (SLC) Family by Connecting Computational Modeling and Data Science. Comput Struct Biotechnol J 2019; 17:390-405. [PMID: 30976382 PMCID: PMC6438991 DOI: 10.1016/j.csbj.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
Organic anion and cation transporting proteins (OATs, OATPs, and OCTs), as well as the Multidrug and Toxin Extrusion (MATE) transporters of the Solute Carrier (SLC) family are playing a pivotal role in the discovery and development of new drugs due to their involvement in drug disposition, drug-drug interactions, adverse drug effects and related toxicity. Computational methods to understand and predict clinically relevant transporter interactions can provide useful guidance at early stages in drug discovery and design, especially if they include contemporary data science approaches. In this review, we summarize the current state-of-the-art of computational approaches for exploring ligand interactions and selectivity for these drug (uptake) transporters. The computational methods discussed here by highlighting interesting examples from the current literature are ranging from semiautomatic data mining and integration, to ligand-based methods (such as quantitative structure-activity relationships, and combinatorial pharmacophore modeling), and finally structure-based methods (such as comparative modeling, molecular docking, and molecular dynamics simulations). We are focusing on promising computational techniques such as fold-recognition methods, proteochemometric modeling or techniques for enhanced sampling of protein conformations used in the context of these ADMET-relevant SLC transporters with a special focus on methods useful for studying ligand selectivity.
Collapse
Affiliation(s)
- Alžběta Türková
- Department of Pharmaceutical Chemistry, Divison of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Divison of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
61
|
Loisios-Konstantinidis I, Paraiso RLM, Fotaki N, McAllister M, Cristofoletti R, Dressman J. Application of the relationship between pharmacokinetics and pharmacodynamics in drug development and therapeutic equivalence: a PEARRL review. J Pharm Pharmacol 2019; 71:699-723. [DOI: 10.1111/jphp.13070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/19/2019] [Indexed: 12/18/2022]
Abstract
Abstract
Objectives
The objective of this review was to provide an overview of pharmacokinetic/pharmacodynamic (PK/PD) models, focusing on drug-specific PK/PD models and highlighting their value added in drug development and regulatory decision-making.
Key findings
Many PK/PD models, with varying degrees of complexity and physiological understanding have been developed to evaluate the safety and efficacy of drug products. In special populations (e.g. paediatrics), in cases where there is genetic polymorphism and in other instances where therapeutic outcomes are not well described solely by PK metrics, the implementation of PK/PD models is crucial to assure the desired clinical outcome. Since dissociation between the pharmacokinetic and pharmacodynamic profiles is often observed, it is proposed that physiologically based pharmacokinetic and PK/PD models be given more weight by regulatory authorities when assessing the therapeutic equivalence of drug products.
Summary
Modelling and simulation approaches already play an important role in drug development. While slowly moving away from ‘one-size fits all’ PK methodologies to assess therapeutic outcomes, further work is required to increase confidence in PK/PD models in translatability and prediction of various clinical scenarios to encourage more widespread implementation in regulatory decision-making.
Collapse
Affiliation(s)
| | - Rafael L M Paraiso
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, Faculty of Science, University of Bath, Bath, UK
| | | | - Rodrigo Cristofoletti
- Division of Therapeutic Equivalence, Brazilian Health Surveillance Agency (ANVISA), Brasilia, Brazil
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
62
|
Takahashi T, Uno Y, Yamazaki H, Kume T. Functional characterization for polymorphic organic anion transporting polypeptides (OATP/SLCO
1B1, 1B3, 2B1) of monkeys recombinantly expressed with various OATP probes. Biopharm Drug Dispos 2019; 40:62-69. [DOI: 10.1002/bdd.2171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/15/2018] [Accepted: 01/02/2019] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd., Kainan; Wakayama 642-0017 Japan
| | | | - Toshiyuki Kume
- Mitsubishi Tanabe Pharma Corporation, Toda; Saitama 335-8505 Japan
| |
Collapse
|
63
|
Alam K, Farasyn T, Ding K, Yue W. Characterization of Liver- and Cancer-type-Organic Anion Transporting Polypeptide (OATP) 1B3 Messenger RNA Expression in Normal and Cancerous Human Tissues. Drug Metab Lett 2019; 12:24-32. [PMID: 29577869 DOI: 10.2174/1872312812666180326110146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Membrane transport protein organic anion transporting polypeptide (OATP) 1B3 mediates the cellular uptake of many clinically important drugs including anti-cancer drugs (e.g., paclitaxel). In addition to the well-recognized hepatic expression and function of OATP1B3 [herein named liver-type (Lt) OATP1B3], OATP1B3 also expresses in cancers and has been postulated to play a role in cancer therapy, presumably by facilitating the influx of anti-cancer drugs. Recently, a cancer type (Ct)-OATP1B3 mRNA variant was identified in colon and lung cancer tissues, which encodes truncated Ct-OATP1B3 with negligible transport activity. Other than in colon and lung cancers, reports on mRNA expression of OATP1B3 in other cancers cannot distinguish between the Ltand Ct-OATP1B3. OBJECTIVE The current studies were designed to characterize the expression of Lt- and Ct-OATP1B3 mRNA in ovarian, prostate, bladder, breast, and lung tissues. METHODS Lt- and Ct-OATP1B3 isoform-specific PCR primers were utilized to determine the mRNA levels of Lt- and Ct-OATP1B3, respectively. An expression vector expressing green fluorescent protein (GFP)-tagged Lt-OATP1B3 was transiently transfected into the ovarian cancer cell line SKOV3. Confocal live-cell microscopy was utilized to determine the localization of GFP-Lt-OATP1B3 in SKOV3 cells. RESULTS For the first time, Lt-OATP1B3 mRNA was detected in ovarian, prostate, bladder and breast cancers. The localization of GFP-Lt-OATP1B3 on the plasma membrane of SKOV3 cells after transient transfection was readily detected by confocal microscopy. CONCLUSION Our findings are supportive of the potential role of Lt-OATP1B3 in cancer cells.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
64
|
Crowe A, Miller J, Yue W. Genotyping of the OATP1B1 c. 521 T>C Polymorphism from the Formalin-Fixed Paraffin-Embedded (FFPE) Tissue Specimens: An Optimized Protocol. Bio Protoc 2019; 9:e3343. [DOI: 10.21769/bioprotoc.3343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
65
|
Fujino R, Hashizume K, Aoyama S, Maeda K, Ito K, Toshimoto K, Lee W, Ninomiya SI, Sugiyama Y. Strategies to improve the prediction accuracy of hepatic intrinsic clearance of three antidiabetic drugs: Application of the extended clearance concept and consideration of the effect of albumin on CYP2C metabolism and OATP1B-mediated hepatic uptake. Eur J Pharm Sci 2018; 125:181-192. [DOI: 10.1016/j.ejps.2018.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/03/2018] [Accepted: 09/28/2018] [Indexed: 01/20/2023]
|
66
|
Kim SJ, Lee KR, Miyauchi S, Sugiyama Y. Extrapolation of In Vivo Hepatic Clearance from In Vitro Uptake Clearance by Suspended Human Hepatocytes for Anionic Drugs with High Binding to Human Albumin: Improvement of In Vitro-to-In Vivo Extrapolation by Considering the “Albumin-Mediated” Hepatic Uptake Mechanism on the Basis of the “Facilitated-Dissociation Model”. Drug Metab Dispos 2018; 47:94-103. [DOI: 10.1124/dmd.118.083733] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
|
67
|
Chan P, Shao L, Tomlinson B, Zhang Y, Liu ZM. An evaluation of pitavastatin for the treatment of hypercholesterolemia. Expert Opin Pharmacother 2018; 20:103-113. [PMID: 30482061 DOI: 10.1080/14656566.2018.1544243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Li Shao
- The VIP Department, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Brian Tomlinson
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuzhen Zhang
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Zhong-Min Liu
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
68
|
Tan ML, Zhao P, Zhang L, Ho YF, Varma MVS, Neuhoff S, Nolin TD, Galetin A, Huang SM. Use of Physiologically Based Pharmacokinetic Modeling to Evaluate the Effect of Chronic Kidney Disease on the Disposition of Hepatic CYP2C8 and OATP1B Drug Substrates. Clin Pharmacol Ther 2018; 105:719-729. [PMID: 30074626 PMCID: PMC8246729 DOI: 10.1002/cpt.1205] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) differentially affects the pharmacokinetics (PK) of nonrenally cleared drugs via certain pathways (e.g., cytochrome P450 (CYP)2D6); however, the effect on CYP2C8‐mediated clearance is not well understood because of overlapping substrate specificity with hepatic organic anion‐transporting polypeptides (OATPs). This study used physiologically based pharmacokinetic (PBPK) modeling to delineate potential changes in CYP2C8 or OATP1B activity in patients with CKD. Drugs analyzed are predominantly substrates of CYP2C8 (rosiglitazone and pioglitazone), OATP1B (pitavastatin), or both (repaglinide). Following initial model verification, pharmacokinetics (PK) of these drugs were simulated in patients with severe CKD considering changes in glomerular filtration rate (GFR), plasma protein binding, and activity of either CYP2C8 and/or OATP1B in a stepwise manner. The PBPK analysis suggests that OATP1B activity could be decreased up to 60% in severe CKD, whereas changes to CYP2C8 are negligible. This improved understanding of CKD effect on clearance pathways could be important to inform the optimal use of nonrenally eliminated drugs in patients with CKD.
Collapse
Affiliation(s)
- Ming-Liang Tan
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ping Zhao
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.,Quantitative Sciences, Global Health-Integrated Development, Bill and Melinda Gates Foundation, Seattle, Washington, USA
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yunn-Fang Ho
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Manthena V S Varma
- Pharmacokinetics, Pharmacodynamics & Metabolism Department-New Chemical Entities, Pfizer Inc., Groton, Connecticut, USA
| | | | - Thomas D Nolin
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, and Department of Medicine Renal-Electrolyte Division, Schools of Pharmacy and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Heath Sciences, University of Manchester, Manchester, UK
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
69
|
Uchiyama H, Tsujimoto M, Kimura A, Yuki E, Saiki T, Yoshida T, Furukubo T, Izumi S, Yamakawa T, Tachiki H, Minegaki T, Nishiguchi K. Effects of Uremic Serum Residue on OATP1B1- and OATP1B3-Mediated Pravastatin Uptake in OATP-Expressing HEK293 Cells and Human Hepatocytes. Ther Apher Dial 2018; 23:126-132. [PMID: 30318712 DOI: 10.1111/1744-9987.12758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022]
Abstract
Patients with end-stage renal disease have increased plasma concentrations of statins, which is a risk factor for rhabdomyolysis, as well as elevated levels of uremic toxins (UTs). We investigated the effects of uremic serum residue and UTs on organic anion-transporting peptide (OATP1B1)- and OATP1B3-mediated pravastatin uptake. We evaluated the effects of normal serum residue with four UTs (hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furan propionate, indole-3-acetic acid, and 3-indoxyl sulfate) and uremic serum residue on pravastatin uptake by OATP1B1- or OATP1B3-expressing HEK293 cells. Furthermore, we assessed the contribution of each transporter using cryopreserved human hepatocytes. Uremic serum residue and UTs significantly inhibited OATP1B1-mediated pravastatin uptake. Uremic serum residue accelerated OATP1B3-mediated pravastatin uptake, while UTs had no effect. There was no difference in pravastatin uptake between uremic- and normal serum residue-treated hepatocytes. The results suggest that the effects of uremic serum on pravastatin hepatic uptake may be considered negligible in end-stage renal disease patients.
Collapse
Affiliation(s)
- Hitoshi Uchiyama
- Scientific Research and Business Development Department, Towa Pharmaceutical Co. Ltd
| | - Masayuki Tsujimoto
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Akari Kimura
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Eriko Yuki
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takashi Saiki
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takuya Yoshida
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Pharmacy Service, Shirasagi Hospital, Osaka, Japan
| | - Taku Furukubo
- Department of Pharmacy Service, Shirasagi Hospital, Osaka, Japan
| | - Satoshi Izumi
- Department of Pharmacy Service, Shirasagi Hospital, Osaka, Japan
| | | | - Hidehisa Tachiki
- Scientific Research and Business Development Department, Towa Pharmaceutical Co. Ltd
| | - Tetsuya Minegaki
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kohshi Nishiguchi
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Science, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
70
|
Nakamura Y, Nakanishi T, Tamai I. Membrane Transporters Contributing to PGE 2 Distribution in Central Nervous System. Biol Pharm Bull 2018; 41:1337-1347. [DOI: 10.1248/bpb.b18-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshinobu Nakamura
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
71
|
Abstract
Transporters play important roles in absorption, distribution, metabolism, and elimination (ADME) processes, as well as drug pharmacokinetics (PK) and pharmacodynamics (PD). They are also important in maintaining the homeostasis of endogenous compounds and nutrients in the body. Increasing evidences also suggest that they are important in mediating drug-drug interactions (DDIs). While the significance of transporters in drug pharmacodynamics and DDIs are beyond the scope of this overview, the basic concepts of transporters, their contributions in membrane permeation processes, and their roles in influencing drug ADME pathway and PK will be discussed. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yan Zhang
- Drug Metabolism Pharmacokinetics & Clinical Pharmacology, Incyte Corporation, Wilmington, Delaware
| |
Collapse
|
72
|
Comprehensive Substrate Characterization of 22 Antituberculosis Drugs for Multiple Solute Carrier (SLC) Uptake Transporters In Vitro. Antimicrob Agents Chemother 2018; 62:AAC.00512-18. [PMID: 30012768 DOI: 10.1128/aac.00512-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/08/2018] [Indexed: 12/30/2022] Open
Abstract
The substrate potentials of antituberculosis drugs on solute carrier (SLC) transporters are not well characterized to date, despite a well-established understanding of their drug dispositions and pharmacokinetics. In this study, we investigated comprehensively the substrate potentials of the 22 currently available antituberculosis drugs for SLC family transporter-mediated uptake, using Xenopus laevis oocytes and stably transfected HEK-293 cells in vitro The result suggested that ethambutol, isoniazid, amoxicillin, and prothionamide act as novel substrates for the SLC transporters. In addition, in the presence of representative transporter inhibitors, the uptake of the antituberculosis drugs was markedly decreased compared with the uptake in the absence of inhibitor, suggesting involvement of the corresponding transporters. A cellular uptake study was performed, and the Km values of ethambutol were found to be 526.1 ± 15.6, 212.0 ± 20.1, 336.8 ± 20.1, and 455.0 ± 28 μM for organic cation transporter 1 (OCT1), OCT2, OCTN1, and OCTN2, respectively. Similarly, the Km of prothionamide was 805.8 ± 23.4 μM for OCT1, while the Km values of isoniazid and amoxicillin for organic anion transporter 3 (OAT3) were 233.7 ± 14.1 and 161.4 ± 10.6 μM, respectively. The estimated in vivo drug-drug interaction indexes from in vitro transporter inhibition kinetics for verapamil, probenecid, and ibuprofen against ethambutol, prothionamide, isoniazid, and amoxicillin were found to show potential for clinical drug interactions. In conclusion, this is the first study that demonstrated 22 antituberculosis drug interactions with transporters. This study will be helpful for mechanistic understanding of the disposition, drug-drug interactions, and pharmacokinetics of these antituberculosis drugs.
Collapse
|
73
|
Chothe PP, Wu SP, Ye Z, Hariparsad N. Assessment of Transporter-Mediated and Passive Hepatic Uptake Clearance Using Rifamycin-SV as a Pan-Inhibitor of Active Uptake. Mol Pharm 2018; 15:4677-4688. [PMID: 29996058 DOI: 10.1021/acs.molpharmaceut.8b00654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of in vitro data for the quantitative prediction of transporter-mediated clearance is critical. Central to this evaluation is the use of hepatocytes, since they contain the full complement of transporters and metabolic enzymes. In general, uptake clearance (CLuptake) is evaluated by measuring the appearance of compound in the cell. Passive clearance (CLpd) is often determined by conducting parallel studies at 4 °C or by attempting to saturate uptake pathways. Both approaches have their limitations. Recent studies have proposed the use of Rifamycin-SV (RFV) as a pan-inhibitor of hepatic uptake pathways. In our studies, we confirm that transport activity of all major hepatic uptake transporters is inhibited significantly by RFV at 1 mM (OATP1B1, 1B3, and 2B1 = NTCP (80%), OCT1 (65%), OAT2 (60%)). Under these incubation conditions, we found that the free intracellular concentration of RFV is ∼175 μM and that several major CYPs and UGTs can be reversibly inhibited. Using this approach, we also determined CLuptake and CLpd of nine known OATP substrates across three different lots of human hepatocytes. The scaling factors generated for these compounds at 37 °C with RFV and 4 °C were found to be similar. The CLpd of passively permeable compounds like metoprolol and semagacestat were found to be higher at 37 °C compared to 4 °C, indicating a temperature effect on these compounds. In addition, our data also suggests that incorporation of medium concentrations into CLuptake and CLpd calculations may be critical for highly protein bound and highly lipophilic drugs. Overall, our data indicate that RFV, instead of 4 °C, can be reliably used to measure CLuptake and CLpd of drugs.
Collapse
Affiliation(s)
- Paresh P Chothe
- Drug Metabolism and Pharmacokinetics , Vertex Pharmaceuticals Incorporated , Boston , Massachusetts 02210 , United States
| | - Shu-Pei Wu
- Drug Metabolism and Pharmacokinetics , Vertex Pharmaceuticals Incorporated , Boston , Massachusetts 02210 , United States
| | - Zhengqi Ye
- Drug Metabolism and Pharmacokinetics , Vertex Pharmaceuticals Incorporated , Boston , Massachusetts 02210 , United States
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics , Vertex Pharmaceuticals Incorporated , Boston , Massachusetts 02210 , United States
| |
Collapse
|
74
|
Bradbury P, Traini D, Ammit AJ, Young PM, Ong HX. Repurposing of statins via inhalation to treat lung inflammatory conditions. Adv Drug Deliv Rev 2018; 133:93-106. [PMID: 29890243 DOI: 10.1016/j.addr.2018.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
Despite many therapeutic advancements over the past decade, the continued rise in chronic inflammatory lung diseases incidence has driven the need to identify and develop new therapeutic strategies, with superior efficacy to treat these diseases. Statins are one class of drug that could potentially be repurposed as an alternative treatment for chronic lung diseases. They are currently used to treat hypercholesterolemia by inhibiting the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, that catalyses the rate limiting step in the mevalonate biosynthesis pathway, a key intermediate in cholesterol metabolism. Recent research has identified statins to have other protective pleiotropic properties including anti-inflammatory, anti-oxidant, muco-inhibitory effects that may be beneficial for the treatment of chronic inflammatory lung diseases. However, clinical studies have yielded conflicting results. This review will summarise some of the current evidences for statins pleiotropic effects that could be applied for the treatment of chronic inflammatory lung diseases, their mechanisms of actions, and the potential to repurpose statins as an inhaled therapy, including a detailed discussion on their different physical-chemical properties and how these characteristics could ultimately affect treatment efficacies. The repurposing of statins from conventional anti-cholesterol oral therapy to inhaled anti-inflammatory formulation is promising, as it provides direct delivery to the airways, reduced risk of side effects, increased bioavailability and tailored physical-chemical properties for enhanced efficacy.
Collapse
|
75
|
Heo JK, Kim HJ, Lee GH, Ohk B, Lee S, Song KS, Song IS, Liu KH, Yoon YR. Simultaneous Determination of Five Cytochrome P450 Probe Substrates and Their Metabolites and Organic Anion Transporting Polypeptide Probe Substrate in Human Plasma Using Liquid Chromatography-Tandem Mass Spectrometry. Pharmaceutics 2018; 10:pharmaceutics10030079. [PMID: 30004443 PMCID: PMC6160928 DOI: 10.3390/pharmaceutics10030079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 11/23/2022] Open
Abstract
A rapid and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of organic anion transporting polypeptide 1B1 (OATP1B1) and cytochrome P450 (P450) probe substrates and their phase I metabolites in human plasma was developed. The OATP1B1 (pitavastatin) and five P450 probe substrates, caffeine (CYP1A2), losartan (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), and midazolam (CYP3A) and their metabolites were extracted from human plasma (50 µL) using methanol. Analytes were separated on a C18 column followed by selected reaction monitoring detection using MS/MS. All analytes were separated simultaneously within a 9 min run time. The developed method was fully validated over the expected clinical concentration range for all analytes tested. The intra- and inter-day precisions for all analytes were lower than 11.3% and 8.82%, respectively, and accuracy was 88.5–117.3% and 96.1–109.2%, respectively. The lower limit of quantitation was 0.05 ng/mL for dextromethorphan, dextrorphan, midazolam, and 1′-hydroxymidazolam; 0.5 ng/mL for losartan, EXP-3174, omeprazole, 5′-hydroxyomeprazole, and pitavastatin; and 5 ng/mL for caffeine and paraxanthine. The method was successfully used in a pharmacokinetic study in healthy subjects after oral doses of five P450 and OATP1B1 probes. This analytical method provides a simple, sensitive, and accurate tool for the determination of OATP1B1 and five major P450 activities in vivo drug interaction studies.
Collapse
Affiliation(s)
- Jae-Kyung Heo
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hyun-Ji Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Ga-Hyun Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Boram Ohk
- Clinical Trial Center, Kyungpook National University Hospital, Daegu 41566, Korea.
- Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, College of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Kyung-Sik Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Im Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Young-Ran Yoon
- Clinical Trial Center, Kyungpook National University Hospital, Daegu 41566, Korea.
- Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, College of Medicine, Kyungpook National University, Daegu 41944, Korea.
| |
Collapse
|
76
|
Rocha KCE, Pereira BMV, Rodrigues AC. An update on efflux and uptake transporters as determinants of statin response. Expert Opin Drug Metab Toxicol 2018; 14:613-624. [PMID: 29842801 DOI: 10.1080/17425255.2018.1482276] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Statins are used in the treatment of dyslipidemia promoting primary and secondary prevention against detrimental cardiovascular events. ATP-binding cassette (ABC) and solute carrier (SLC) membrane transporters transport statins across the cell membrane. Differences in drug transporter tissue expression and activity contribute to variability in statin pharmacokinetics (PK) and response. Areas covered: The purpose of this review is to discuss factors impacting transporter expression and the effect this has on statin efficacy and safety. Previous studies have demonstrated that genetic polymorphisms, drug-drug interactions (DDI), nuclear receptors, and microRNAs affect statin PK and pharmacodynamics. Expert opinion: Genetic variants of ABCG2 and SLCO1B1 transporters affect statin PK and, as a result, the intended lipid-lowering response. However, the effect size is small, limiting its applicability in clinical practice. Furthermore, genetic variants do not totally explain the observed intervariability in statin response. Thus, it is likely that transcriptional and post-transcriptional regulation of drug transporters are also highly involved. Further studies are required to understand the contribution of each of these new factors in statin disposition and toxicity.
Collapse
Affiliation(s)
- Karina Cunha E Rocha
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , SP , Brazil
| | - Beatriz Maria Veloso Pereira
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , SP , Brazil
| | - Alice Cristina Rodrigues
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , SP , Brazil
| |
Collapse
|
77
|
Chang JH, Zhang X, Messick K, Chen YC, Chen E, Cheong J, Ly J. Unremarkable impact of Oatp inhibition on the liver concentration of fluvastatin, lovastatin and pitavastatin in wild-type and Oatp1a/1b knockout mouse. Xenobiotica 2018; 49:602-610. [DOI: 10.1080/00498254.2018.1478167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jae H. Chang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Xiaolin Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Kirsten Messick
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Yi-Chen Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Eugene Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Jonathan Cheong
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| | - Justin Ly
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
78
|
Zhang W, Xiong X, Chen L, Liu M, Xiong Y, Zhang H, Huang S, Xia C. Hepatic Uptake Mechanism of Ophiopogonin D Mediated by Organic Anion Transporting Polypeptides. Eur J Drug Metab Pharmacokinet 2018; 42:669-676. [PMID: 27815731 DOI: 10.1007/s13318-016-0384-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Ophiopogonin D (OPD) is one of the main active ingredients of SMI (Shenmai injection) which is widely used in clinical practice in China. Our previous study indicated that OPD might be transported from blood into liver mediated by organic anion transporting polypeptides (OATPs/oatps). This study aims to explore the hepatic uptake mechanism of OPD in rat and human. METHODS Rosuvastatin (a competitive inhibitor of oatp1b2, oatp1a1, and oatp1a4), glycyrrhizic acid (a specific inhibitor of oatp1b2), digoxin (a specific inhibitor of oatp1a4), bromosulfophthalein (BSP), and ibuprofen (a specific inhibitor of oatp1a1) were used to study the uptake of OPD in rat hepatocytes. Furthermore, the uptake of OPD in human OATP1B1*1a-HEK293T cells was also investigated, and rosuvastatin, BSP, rifampin, and glycyrrhizic acid were all used as the competitive inhibitor of OATP1B1. RESULTS OPD can be taken in rat primary hepatocytes with K m (Michaelis Menten constant) of 8.10 μM and V max (maximum velocity) of 54.39 nmol/min/mg protein. The uptake of OPD in rat hepatocytes was inhibited significantly by rosuvastatin and glycyrrhizic acid. However, digoxin, BSP, and ibuprofen had no effect on the uptake of OPD in rat hepatocytes. OPD can also be transported by OATP1B1*1a-HEK293T cells with K m of 5.50 μΜ and V max of 29.07 nmol/min/mg protein. Compared with rosuvastatin, OPD has a higher affinity with OATP1B1 and can be transported faster in unit time. Rosuvastatin, BSP, rifampin, and glycyrrhizic acid all exhibited a certain extent inhibitory effect on the transport of OPD in OATP1B1*1a-HEK293T cells. CONCLUSIONS Overall, this study indicates OATP1B1 in human and oatp1b2 in rats might participate in the hepatic uptake of OPD.
Collapse
Affiliation(s)
- Wen Zhang
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China.,Chengdu Fifth People's Hospital, Chengdu, 611130, People's Republic of China
| | - Xiaomin Xiong
- Jiangxi Health Occupation College, Nanchang, 330201, People's Republic of China
| | - Lin Chen
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Mingyi Liu
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Yuqing Xiong
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Hong Zhang
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Shibo Huang
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
79
|
Izumi S, Nozaki Y, Kusuhara H, Hotta K, Mochizuki T, Komori T, Maeda K, Sugiyama Y. Relative Activity Factor (RAF)-Based Scaling of Uptake Clearance Mediated by Organic Anion Transporting Polypeptide (OATP) 1B1 and OATP1B3 in Human Hepatocytes. Mol Pharm 2018; 15:2277-2288. [DOI: 10.1021/acs.molpharmaceut.8b00138] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saki Izumi
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research
Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Yoshitane Nozaki
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research
Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical
Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-003, Japan
| | - Koichiro Hotta
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research
Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Toshiki Mochizuki
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research
Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Takafumi Komori
- Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research
Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki 300-2635, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical
Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-003, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, 1-6 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| |
Collapse
|
80
|
Mitra P, Weinheimer S, Michalewicz M, Taub ME. Prediction and Quantification of Hepatic Transporter-Mediated Uptake of Pitavastatin Utilizing a Combination of the Relative Activity Factor Approach and Mechanistic Modeling. Drug Metab Dispos 2018; 46:953-963. [PMID: 29666154 DOI: 10.1124/dmd.118.080614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Quantification of the fraction transported (ft) by a particular transporter will facilitate more robust estimations of transporter interactions. Using pitavastatin as a model uptake transporter substrate, we investigated the utility of the relative activity factor (RAF) approach and mechanistic modeling to estimate ft in hepatocytes. The transporters evaluated were organic anion-transporting polypeptides OATP1B1 and OATP1B3 and sodium-taurocholate cotransporting polypeptide. Transporter-expressing human embryonic kidney 293 cells and human hepatocytes were used for determining RAF values, which were then incorporated into the mechanistic model to simulate hepatocyte uptake of pitavastatin over time. There was excellent agreement between simulated and observed hepatocyte uptake of pitavastatin, indicating the suitability of this approach for translation of uptake from individual transporter-expressing cells to more holistic in vitro models. Subsequently, ft values were determined. The largest contributor to hepatocyte uptake of pitavastatin was OATP1B1, which correlates with what is known about the in vivo disposition of pitavastatin. The ft values were then used for evaluating in vitro-in vivo correlations of hepatic uptake inhibition with OATP inhibitors rifampicin and cyclosporine. Predictions were compared with previously reported plasma exposure changes of pitavastatin with these inhibitors. Although hepatic uptake inhibition of pitavastatin was 2-3-fold underpredicted, incorporation of scaling factors (SFs) into RAF values significantly improved the predictive ability. We propose that calibration of hepatocytes with standard transporter substrates and inhibitors would allow for determination of system-specific SFs, which could subsequently be used for refining predictions of clinical DDI potential for new chemical entities that undergo active hepatic uptake.
Collapse
Affiliation(s)
- Pallabi Mitra
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Samantha Weinheimer
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Meeghan Michalewicz
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| |
Collapse
|
81
|
Kaneko KI, Tanaka M, Ishii A, Katayama Y, Nakaoka T, Irie S, Kawahata H, Yamanaga T, Wada Y, Miyake T, Toshimoto K, Maeda K, Cui Y, Enomoto M, Kawamura E, Kawada N, Kawabe J, Shiomi S, Kusuhara H, Sugiyama Y, Watanabe Y. A Clinical Quantitative Evaluation of Hepatobiliary Transport of [ 11C]Dehydropravastatin in Humans Using Positron Emission Tomography. Drug Metab Dispos 2018; 46:719-728. [PMID: 29555827 DOI: 10.1124/dmd.118.080408] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/13/2018] [Indexed: 12/25/2022] Open
Abstract
Various positron emission tomography (PET) probes have been developed to assess in vivo activities in humans of drug transporters, which aid in the prediction of pharmacokinetic properties of drugs and the impact of drug-drug interactions. We developed a new PET probe, sodium (3R, 5R)-3, 5-dihydroxy-7-((1S, 2S, 6S, 8S)-6-hydroxy-2-methyl-8- ((1-[11C]-(E)-2-methyl-but-2-enoyl) oxy) -1, 2, 6, 7, 8, 8a-hexahydronaphthalen-1-yl) heptanoate ([11C]DPV), and demonstrated its usefulness for the quantitative investigation of Oatps (gene symbol SLCO) and Mrp2 (gene symbol ABCC2) in rats. To further analyze the species differences and verify the pharmacokinetic parameters in humans, serial PET scanning of the abdominal region with [11C]DPV was performed in six healthy volunteers with and without an OATP1Bs and MRP2 inhibitor, rifampicin (600 mg, oral), in a crossover fashion. After intravenous injection, [11C]DPV rapidly distributed to the liver and kidney followed by secretion into the bile and urine. Rifampicin significantly reduced the liver distribution of [11C]DPV 3-fold, resulting in a 7.5-fold reduced amount of excretion into the bile and the delayed elimination of [11C]DPV from the blood circulation. The hepatic uptake clearance (CLuptake, liver) and canalicular efflux clearance (CLint, bile) of [11C]DPV (544 ± 204 and 10.2 ± 3.5 µl/min per gram liver, respectively) in humans were lower than the previously reported corresponding parameters in rats (1800 and 298 µl/min per gram liver, respectively) (Shingaki et al., 2013). Furthermore, rifampicin treatment significantly reduced CLuptake, liver and CLint, bile by 58% and 44%, respectively. These results suggest that PET imaging with [11C]DPV is an effective tool for quantitatively characterizing the OATP1Bs and MRP2 functions in the human hepatobiliary transport system.
Collapse
Affiliation(s)
| | - Masaaki Tanaka
- Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Akira Ishii
- Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Yumiko Katayama
- RIKEN Center for Life Science Technologies , Kobe, Japan,RIKEN Center for Molecular imaging Sciences, Kobe, Japan
| | | | - Satsuki Irie
- RIKEN Center for Life Science Technologies , Kobe, Japan
| | - Hideki Kawahata
- Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Takashi Yamanaga
- Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Yasuhiro Wada
- RIKEN Center for Life Science Technologies , Kobe, Japan,RIKEN Center for Molecular imaging Sciences, Kobe, Japan
| | - Takeshi Miyake
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Innovation Center, Kanagawa, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Yilong Cui
- RIKEN Center for Life Science Technologies , Kobe, Japan,RIKEN Center for Molecular imaging Sciences, Kobe, Japan
| | - Masaru Enomoto
- Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Etsushi Kawamura
- Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Norifumi Kawada
- Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Joji Kawabe
- Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Susumu Shiomi
- Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, Kanagawa, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies , Kobe, Japan,RIKEN Center for Molecular imaging Sciences, Kobe, Japan
| |
Collapse
|
82
|
Alam K, Crowe A, Wang X, Zhang P, Ding K, Li L, Yue W. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int J Mol Sci 2018. [PMID: 29538325 PMCID: PMC5877716 DOI: 10.3390/ijms19030855] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Xueying Wang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Pengyue Zhang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA.
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA.
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| |
Collapse
|
83
|
Schaefer M, Morinaga G, Matsui A, Schänzle G, Bischoff D, Süssmuth RD. Quantitative Expression of Hepatobiliary Transporters and Functional Uptake of Substrates in Hepatic Two-Dimensional Sandwich Cultures: A Comparative Evaluation of Upcyte and Primary Human Hepatocytes. Drug Metab Dispos 2017; 46:166-177. [DOI: 10.1124/dmd.117.078238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
|
84
|
Alam K, Farasyn T, Crowe A, Ding K, Yue W. Treatment with proteasome inhibitor bortezomib decreases organic anion transporting polypeptide (OATP) 1B3-mediated transport in a substrate-dependent manner. PLoS One 2017; 12:e0186924. [PMID: 29107984 PMCID: PMC5673231 DOI: 10.1371/journal.pone.0186924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/10/2017] [Indexed: 01/26/2023] Open
Abstract
OATP1B1 and OATP1B3 mediate hepatic uptake of many drugs (e.g., statins) and can mediate transporter-mediated drug-drug-interactions (DDIs). Bortezomib is the first-in-class proteasome inhibitor drug approved by the U. S. Food and Drug Administration for the treatment of multiple myeloma. The potential of bortezomib to cause OATP-mediated DDIs has not been assessed. The current study investigated the involvement of the ubiquitin-proteasome system (UPS) in OATP1B1 and OATP1B3 degradation and determined the effects of proteasome inhibitors on OATP1B1- and OATP1B3-mediated transport. Co-immunoprecipitation of FLAG-OATP1B1/1B3 and HA-ubiquitin was observed in human embryonic kidney (HEK) 293 cells co-transfected with FLAG-tagged OATP1B1/OATP1B3 and hemagglutinin (HA)-tagged ubiquitin, suggesting that OATP1B1 and OATP1B3 can be ubiquitin-modified. Although blocking proteasome activity by bortezomib treatment (50 nM, 7 h) increased the endogenous ubiquitin-conjugated FLAG-OATP1B1 and FLAG-OATP1B3 in HEK293-FLAG-OATP1B1 and-OATP1B3 cells, such treatment did not affect the total protein levels of OATP1B1 and OATP1B3, suggesting that the UPS plays a minor role in degradation of OATP1B1 and OATP1B3 under current constitutive conditions. Pretreatment with bortezomib (50-250 nM, 2-7 h) significantly decreased transport of [3H]CCK-8, a specific OATP1B3 substrate, in HEK293-OATP1B3 and human sandwich-cultured hepatocytes (SCH). However, bortezomib pretreatment had negligible effects on the transport of [3H]E217βG and [3H]pitavastatin, dual substrates of OATP1B1 and OATP1B3, in HEK293-OATP1B1/1B3 cells and/or human SCH. Compared with vehicle control treatment, bortezomib pretreatment significantly decreased the maximal transport velocity (Vmax) of OATP1B3-mediated transport of CCK-8 (92.25 ± 14.2 vs. 133.95 ± 15.5 pmol/mg protein/min) without affecting the affinity constant (Km) values. Treatment with other proteasome inhibitors MG132, epoxomicin, and carfilzomib also significantly decreased OATP1B3-mediated [3H]CCK-8 transport. In summary, the current studies for the first time report ubiquitination of OATP1B1 and OATP1B3 and the apparent substrate-dependent inhibitory effect of bortezomib on OATP1B3-mediated transport. The data suggest that bortezomib has a low risk of causing OATP-mediated DDIs.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- * E-mail:
| |
Collapse
|
85
|
Ishida K, Ullah M, Tóth B, Juhasz V, Unadkat JD. Successful Prediction of In Vivo Hepatobiliary Clearances and Hepatic Concentrations of Rosuvastatin Using Sandwich-Cultured Rat Hepatocytes, Transporter-Expressing Cell Lines, and Quantitative Proteomics. Drug Metab Dispos 2017; 46:66-74. [PMID: 29084782 DOI: 10.1124/dmd.117.076539] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/25/2017] [Indexed: 01/13/2023] Open
Abstract
We determined whether in vivo transporter-mediated hepatobiliary clearance (CL) and hepatic concentrations of rosuvastatin (RSV) in the rat could be predicted by transport activity in sandwich-cultured rat hepatocytes (SCRHs) and/or transporter-expressing cell lines scaled by differences in transporter protein expression between SCRHs, cell lines, and rat liver. The predicted hepatobiliary CLs and hepatic concentrations of RSV were compared with our previously published positron emission tomography imaging data. Sinusoidal uptake CL ([Formula: see text]) and efflux (canalicular and sinusoidal) CLs of [3H]-RSV in SCRHs were evaluated in the presence and absence of Ca2+ and in the absence and presence of 1 mM unlabeled RSV (to estimate passive diffusion CL). [Formula: see text] of RSV into cells expressing organic anion transporting polypeptide (Oatp) 1a1, 1a4, and 1b2 was also determined. Protein expression of Oatps in SCRHs and Oatp-expressing cells was quantified by liquid chromatography tandem mass spectrometry. SCRHs well predicted the in vivo RSV sinusoidal and canalicular efflux CLs but significantly underestimated in vivo [Formula: see text]. Oatp expression in SCRHs was significantly lower than that in the rat liver. [Formula: see text], based on RSV [Formula: see text] into Oatp-expressing cells (active transport) plus passive diffusion CL in SCRHs, scaled by the difference in protein expression in Oatp cells versus SCRH versus rat liver, was within 2-fold of that observed in SCRHs or in vivo. In vivo hepatic RSV concentrations were well predicted by Oatp-expressing cells after correcting [Formula: see text] for Oatp protein expression. This is the first demonstration of the successful prediction of in vivo hepatobiliary CLs and hepatic concentrations of RSV using transporter-expressing cells and SCRHs.
Collapse
Affiliation(s)
- Kazuya Ishida
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Mohammed Ullah
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Beáta Tóth
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Viktoria Juhasz
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| |
Collapse
|
86
|
Mathialagan S, Costales C, Tylaska L, Kimoto E, Vildhede A, Johnson J, Johnson N, Sarashina T, Hashizume K, Isringhausen CD, Vermeer LMM, Wolff AR, Rodrigues AD. In vitro studies with two human organic anion transporters: OAT2 and OAT7. Xenobiotica 2017; 48:1037-1049. [DOI: 10.1080/00498254.2017.1384595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sumathy Mathialagan
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Chester Costales
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Laurie Tylaska
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Emi Kimoto
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Anna Vildhede
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Jillian Johnson
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Nathaniel Johnson
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | | | | | | | | | | | - A. David Rodrigues
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| |
Collapse
|
87
|
Morse BL, MacGuire JG, Marino AM, Zhao Y, Fox M, Zhang Y, Shen H, Griffith Humphreys W, Marathe P, Lai Y. Physiologically Based Pharmacokinetic Modeling of Transporter-Mediated Hepatic Clearance and Liver Partitioning of OATP and OCT Substrates in Cynomolgus Monkeys. AAPS JOURNAL 2017; 19:1878-1889. [PMID: 29019117 DOI: 10.1208/s12248-017-0151-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023]
Abstract
In the present investigations, we evaluate in vitro hepatocyte uptake and partitioning for the prediction of in vivo clearance and liver partitioning. Monkeys were intravenously co-dosed with rosuvastatin and bosentan, substrates of the organic anion transporting polypeptides (OATPs), and metformin, a substrate of organic cation transporter 1 (OCT1). Serial plasma and liver samples were collected over time. Liver and plasma unbound fraction was determined using equilibrium dialysis. In vivo unbound partitioning (Kpu,u) for rosuvastatin, bosentan, and metformin, calculated from total concentrations in the liver and plasma, were 243, 553, and 15, respectively. A physiologically based pharmacokinetic monkey model that incorporates active and passive hepatic uptake was developed to fit plasma and liver concentrations. In addition, a two-compartment model was used to fit in vitro hepatic uptake curves in suspended monkey hepatocyte to determine active uptake, passive diffusion, and intracellular unbound fraction parameters. At steady-state in the model, in vitro Kpu,u was determined. The results demonstrated that in vitro values under-predicted in vivo active uptake for rosuvastatin, bosentan, and metformin by 6.7-, 28-, and 1.5-fold, respectively, while passive diffusion was over-predicted. In vivo Kpu,u values were under-predicted from in vitro data by 30-, 79-, and 3-fold. In conclusion, active uptake and liver partitioning in monkeys for OATP substrates were greatly under-predicted from in vitro hepatocyte uptake, while OCT-mediated uptake and partitioning scaled reasonably well from in vitro, demonstrating substrate- and transporter-dependent scaling factors. The combination of in vitro experimental and modeling approaches proved useful for assessing prediction of in vivo intracellular partitioning.
Collapse
Affiliation(s)
- Bridget L Morse
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA.,Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jamus G MacGuire
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Anthony M Marino
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yue Zhao
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Maxine Fox
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | | | - Punit Marathe
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA. .,Drug Metabolism, Gilead Sciences Inc., Foster City, California, 94404, USA.
| |
Collapse
|
88
|
Different Involvement of OAT in Renal Disposition of Oral Anticoagulants Rivaroxaban, Dabigatran, and Apixaban. J Pharm Sci 2017; 106:2524-2534. [DOI: 10.1016/j.xphs.2017.04.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/14/2022]
|
89
|
Wang C, Huo X, Wang C, Meng Q, Liu Z, Sun P, Cang J, Sun H, Liu K. Organic Anion–Transporting Polypeptide and Efflux Transporter–Mediated Hepatic Uptake and Biliary Excretion of Cilostazol and Its Metabolites in Rats and Humans. J Pharm Sci 2017; 106:2515-2523. [DOI: 10.1016/j.xphs.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/24/2023]
|
90
|
Marie S, Cisternino S, Buvat I, Declèves X, Tournier N. Imaging Probes and Modalities for the Study of Solute Carrier O (SLCO)-Transport Function In Vivo. J Pharm Sci 2017; 106:2335-2344. [DOI: 10.1016/j.xphs.2017.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/04/2017] [Accepted: 04/17/2017] [Indexed: 01/26/2023]
|
91
|
Berinstein E, Levy A. Recent developments and future directions for the use of pharmacogenomics in cardiovascular disease treatments. Expert Opin Drug Metab Toxicol 2017; 13:973-983. [PMID: 28792790 DOI: 10.1080/17425255.2017.1363887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Cardiovascular disease is still the leading cause of death worldwide. There are many environmental and genetic factors that play a role in the development of cardiovascular disease. The treatment of cardiovascular disease is beginning to move in the direction of personalized medicine by using biomarkers from the patient's genome to design more effective treatment plans. Pharmacogenomics have already uncovered many links between genetic variation and response of many different drugs. Areas covered: This article will focus on the main polymorphisms that impact the risk of adverse effects and response efficacy of statins, clopidogrel, aspirin, β-blockers, warfarin dalcetrapib and vitamin E. The genes discussed include SLCO1B1, ABCB1, CYP3A4, CYP3A5, CYP2C19, PTGS1, PTGS2, ADRB1, ADCY9, CYP2C19, PON1, CES1, PEAR1, GPIIIa, CYP2D6, CKORC1, CYP2C9 and Hp. Expert opinion: Although there are some convincing results that have already been incorporated in the labelling treatment guidelines, most gene-drug relationships have been inconsistent. A better understanding of the relationships between genetic factors and drug response will provide more opportunities for personalized diagnosis and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Elliot Berinstein
- a Technion Faculty of Medicine , Technion Israel Institute of Technology , Haifa , Israel
| | - Andrew Levy
- a Technion Faculty of Medicine , Technion Israel Institute of Technology , Haifa , Israel
| |
Collapse
|
92
|
Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of Hepatic Transporters in Clinical Disposition of Drugs and Their Metabolites. J Clin Pharmacol 2017; 56 Suppl 7:S23-39. [PMID: 27385177 DOI: 10.1002/jcph.671] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/16/2015] [Indexed: 01/04/2023]
Abstract
This review provides a practical clinical perspective on the relevance of hepatic transporters in pharmacokinetics and drug-drug interactions (DDIs). Special emphasis is placed on transporters with clear relevance to clinical DDIs, efficacy, and safety. Basolateral OATP1B1 and 1B3 emerged as important hepatic drug uptake pathways, sites for systemic DDIs, and sources of pharmacogenetic variability. As the first step in hepatic drug removal from the circulation, OATPs are an important determinant of systemic pharmacokinetics, specifically influencing systemic absorption, clearance, and hepatic distribution for subsequent metabolism and/or excretion. Biliary excretion of parent drugs is a less prevalent clearance pathway than metabolism or urinary excretion, but BCRP and MRP2 are critically important to biliary/fecal elimination of drug metabolites. Inhibition of biliary excretion is typically not apparent at the level of systemic pharmacokinetics but can markedly increase liver exposure. Basolateral efflux transporters MRP3 and MRP4 mediate excretion of parent drugs and, more commonly, polar metabolites from hepatocytes into blood. Basolateral excretion is an area in need of further clinical investigation, which will necessitate studies more complex than just systemic pharmacokinetics. Clinical relevance of hepatic uptake is relatively well appreciated, and clinical consequences of hepatic excretion (biliary and basolateral) modulation remain an active research area.
Collapse
Affiliation(s)
- Mitesh Patel
- Mechanistic Safety and Disposition, GlaxoSmithKline, King of Prussia, PA, USA
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, Hertfordshire, UK
| | | |
Collapse
|
93
|
Pahwa S, Alam K, Crowe A, Farasyn T, Neuhoff S, Hatley O, Ding K, Yue W. Pretreatment With Rifampicin and Tyrosine Kinase Inhibitor Dasatinib Potentiates the Inhibitory Effects Toward OATP1B1- and OATP1B3-Mediated Transport. J Pharm Sci 2017; 106:2123-2135. [PMID: 28373111 PMCID: PMC5511785 DOI: 10.1016/j.xphs.2017.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Present studies determined the effects of pretreatment with rifampicin, an organic anion-transporting polypeptide (OATP) inhibitor, and the tyrosine kinase inhibitor dasatinib on OATP1B1- and OATP1B3-mediated transport, and evaluated the OATP-mediated drug-drug interaction potential of dasatinib using the static R-value and dynamic physiologically based pharmacokinetic models. Rifampicin and dasatinib pretreatment significantly decreased OATP1B1- and OATP1B3-mediated transport. Rifampicin pretreatment also significantly decreased [3H]-pitavastatin and [3H]-CCK-8 accumulation in human sandwich-cultured hepatocytes. Present studies revealed that estrone-3-sulfate is a less-sensitive OATP1B1 substrate than estradiol-17β-glucuronide in assessing rifampicin pretreatment effects. Pretreatment with rifampicin and dasatinib reduced the inhibition constant (Ki) values against OATP1B1 by 3 and 2.1 fold and against OATP1B3 by 2.4 and 2.1 fold, respectively. The in vitro rifampicin Ki values after preincubation are comparable to the estimated in vivo Ki reported previously. Models predict that dasatinib has a low potential to cause OATP1B1- and OATP1B3-mediated drug-drug interactions. Time-lapse confocal microscopy demonstrated that rifampicin and dasatinib pretreatment did not affect plasma membrane localization of green-fluorescent protein-tagged OATP1B1 (GFP-OATP1B1) and GFP-OATP1B3 in human embryonic kidney 293 stable cell lines. In summary, we report novel findings that pretreatment with rifampicin and dasatinib potentiates the inhibitory effects toward OATP1B1 and OATP1B3 without affecting plasma membrane levels of the transporters.
Collapse
Affiliation(s)
- Sonia Pahwa
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117
| | - Sibylle Neuhoff
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield S2 4SU, UK
| | - Oliver Hatley
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield S2 4SU, UK
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117.
| |
Collapse
|
94
|
Lee DY, Chae HW, Shim HJ. In vitro
evaluation of potential transporter-mediated drug interactions of evogliptin. Biopharm Drug Dispos 2017; 38:398-403. [DOI: 10.1002/bdd.2083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 04/19/2017] [Accepted: 05/01/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Dae Y. Lee
- Dong-A Socio R&D Center; Yongin South Korea
| | | | | |
Collapse
|
95
|
|
96
|
Zhou F, Zhu L, Wang K, Murray M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev 2017; 116:21-36. [PMID: 27320645 DOI: 10.1016/j.addr.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Drug pharmacokinetics is influenced by the function of metabolising enzymes and influx/efflux transporters. Genetic variability of these genes is known to impact on clinical therapies. Solute Carrier Transporters (SLCs) are the primary influx transporters responsible for the cellular uptake of drug molecules, which consequently, impact on drug efficacy and toxicity. The Organic Anion Transporting Polypeptides (OATPs), Organic Anion Transporters (OATs) and Organic Cation Transporters (OCTs/OCTNs) are the most important SLCs involved in drug disposition. The information regarding the influence of SLC polymorphisms on drug pharmacokinetics is limited and remains a hot topic of pharmaceutical research. This review summarises the recent advance in the pharmacogenomics of SLCs with an emphasis on human OATPs, OATs and OCTs/OCTNs. Our current appreciation of the degree of variability in these transporters may contribute to better understanding the inter-patient variation of therapies and thus, guide the optimisation of clinical treatments.
Collapse
|
97
|
Takehara I, Terashima H, Nakayama T, Yoshikado T, Yoshida M, Furihata K, Watanabe N, Maeda K, Ando O, Sugiyama Y, Kusuhara H. Investigation of Glycochenodeoxycholate Sulfate and Chenodeoxycholate Glucuronide as Surrogate Endogenous Probes for Drug Interaction Studies of OATP1B1 and OATP1B3 in Healthy Japanese Volunteers. Pharm Res 2017; 34:1601-1614. [PMID: 28550384 DOI: 10.1007/s11095-017-2184-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/15/2017] [Indexed: 01/26/2023]
Abstract
PURPOSE To assess the use of glycochenodeoxycholate-3-sulfate (GCDCA-S) and chenodeoxycholate 3- or 24-glucuronide (CDCA-3G or -24G) as surrogate endogenous substrates in the investigation of drug interactions involving OATP1B1 and OATP1B3. METHODS Uptake of GCDCA-S and CDCA-24G was examined in HEK293 cells transfected with cDNA for OATP1B1, OATP1B3, and NTCP and in cryopreserved human hepatocytes. Plasma concentrations of bile acids and their metabolites (GCDCA-S, CDCA-3G, and CDCA-24G) were determined by LC-MS/MS in eight healthy volunteers with or without administration of rifampicin (600 mg, po). RESULTS GCDCA-S and CDCA-24G were substrates for OATP1B1, OATP1B3, and NTCP. The uptake of [3H]atorvastatin, GCDCA-S, and CDCA-24G by human hepatocytes was significantly inhibited by both rifampicin and pioglitazone, whereas that of taurocholate was inhibited only by pioglitazone. Rifampicin elevated plasma concentrations of GCDCA-S more than those of other bile acids. The area under the plasma concentration-time curve for GCDCA-S was 20.3 times higher in rifampicin-treated samples. CDCA-24G could be detected only in plasma from the rifampicin-treatment phase, and CDCA-3G was undetectable in both phases. CONCLUSIONS We identified GCDCA-S and CDCA-24G as substrates of NTCP, OATP1B1, and OATP1B3. GCDCA-S is a surrogate endogenous probe for the assessment of drug interactions involving hepatic OATP1B1 and OATP1B3.
Collapse
Affiliation(s)
- Issey Takehara
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Biomarker Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Hanano Terashima
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeshi Nakayama
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takashi Yoshikado
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| | - Miwa Yoshida
- P-One Clinic, Keikokai Medical Corp, Tokyo, Japan
| | | | - Nobuaki Watanabe
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Osamu Ando
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
98
|
Possible Role of Organic Cation Transporters in the Distribution of [ 11C]Sulpiride, a Dopamine D 2 Receptor Antagonist. J Pharm Sci 2017; 106:2558-2565. [PMID: 28499878 DOI: 10.1016/j.xphs.2017.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 11/21/2022]
Abstract
We synthesized [11C]sulpiride as a positron emission tomography probe for investigating the drug distribution in the human body. [11C]Sulpiride was injected to healthy male subjects in either tracer dose of [11C]sulpiride (approximately 222 MBq) or with therapeutic dose of sulpiride (500 mg, peroral) 3 h before the injection in a crossover fashion. Whole-body positron emission tomography imaging demonstrated that [11C]sulpiride accumulated exceedingly in the bladder, followed by liver, gall bladder, and kidney, respectively, at 30 min after the injection, whereas scarcely in the brain. Oral dose of sulpiride decreased the hepatic accumulation of the radioactivity by 60%. From in vitro experiments, we found that sulpiride is a substrate of hOCT1 (Km 2.6 μM), hOCT2 (Km 68 μM), hMATE1 (Km 40 μM), and hMATE2-K (Km 60 μM). Moreover, the uptake of sulpiride by human hepatocytes was diminished by tetraethylammonium, and saturable with Km of 18 μM. Oct1/2 double knockout mice and wild-type mice received Mate1 inhibitors (pyrimethamine/cimetidine) manifested reduced renal clearance of sulpiride, accompanied with its accumulation in the plasma. In conclusion, we found that sulpiride is a substrate of OCT1, OCT2, MATE1, and MATE2-K, and this suggests that [11C]sulpiride would be a useful radioligand to investigate the organic cation transporters in humans.
Collapse
|
99
|
Miyake T, Mizuno T, Mochizuki T, Kimura M, Matsuki S, Irie S, Ieiri I, Maeda K, Kusuhara H. Involvement of Organic Cation Transporters in the Kinetics of Trimethylamine N-oxide. J Pharm Sci 2017; 106:2542-2550. [PMID: 28479364 DOI: 10.1016/j.xphs.2017.04.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
Recent studies suggest that trimethylamine N-oxide (TMAO) is associated with the development of chronic kidney disease and heart failure. In this study, we investigated the importance of organic cation transporters (OCTs) in the clearance and tissue distribution of TMAO. The low-affinity and high-capacity transport of TMAO by mouse and human OCT1 and OCT2 was observed. Uptake and efflux of TMAO by the mouse hepatocytes as well as TMAO uptake into mouse kidney slices were significantly decreased by the addition of tetraethylammonium or Oct1/2 double knockout (dKO). Plasma concentrations of endogenous TMAO and TMAO-d9 given by intravenous infusion was 2-fold higher in Oct1/2 dKO than in wild-type mice due to significant decrease in its renal clearance. These results indicate that OCTs have a crucial role in the kinetics of TMAO in mice. In human, however, the OCT2-mediated tubular secretion in the urinary excretion of TMAO was insignificant because the renal clearance of TMAO was similar to that of creatinine in both young and elderly subjects, suggesting the species difference in the urinary excretion mechanisms of TMAO between mouse and human.
Collapse
Affiliation(s)
- Takeshi Miyake
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Miyuki Kimura
- Fukuoka Mirai Hospital Clinical Research Center, Fukuoka 813-0017, Japan
| | - Shunji Matsuki
- Fukuoka Mirai Hospital Clinical Research Center, Fukuoka 813-0017, Japan
| | - Shin Irie
- Fukuoka Mirai Hospital Clinical Research Center, Fukuoka 813-0017, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
100
|
Evaluation of para-Aminosalicylic Acid as a Substrate of Multiple Solute Carrier Uptake Transporters and Possible Drug Interactions with Nonsteroidal Anti-inflammatory Drugs In Vitro. Antimicrob Agents Chemother 2017; 61:AAC.02392-16. [PMID: 28223391 DOI: 10.1128/aac.02392-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/15/2017] [Indexed: 11/20/2022] Open
Abstract
para-Aminosalicylic acid (PAS) is a second-line antituberculosis drug that has been used to treat multidrug-resistant and extensively drug-resistant tuberculosis for more than 60 years. Renal secretion and glomerular filtration are the major pathways for the elimination of PAS. We comprehensively studied PAS transport by using cell lines that overexpressed various transporters and found that PAS acts as a novel substrate of an organic anionic polypeptide (OATP1B1), organic cationic transporters (OCT1 and OCT2), and organic anion transporters (OAT1 and OAT3) but is not a substrate of any ATP-binding cassette (ABC) transporters. Net PAS uptake was measured, and the transport affinities (Km values) for OATP1B1, OCT1, OCT2, OAT1, and OAT3 were found to be 50.0, 20.3, 28.7, 78.1, and 100.1 μM, respectively. The net uptake rates suggested that renal OAT1 and OAT3 play relatively major roles in PAS elimination. The representative inhibitors rifampin for OATP1B1, probenecid for OAT1 and OAT3, and verapamil for OCT1 and OCT2 greatly inhibited PAS uptake, suggesting that PAS is dependent on multiple transporters for uptake. We also evaluated nonsteroidal anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPIs), and metformin for the inhibition of PAS uptake via these transporters. Half-maximal (50%) inhibitory concentrations (IC50s) were kinetically determined and used to predict the drug-drug interactions (DDIs) affecting these transporters' activity toward PAS. We found that rifampin, probenecid, ibuprofen, naproxen, cimetidine, and quinidine each exhibited a significant potential for in vivo DDIs with PAS. In this study, PAS was found to be a novel substrate of several transporters, and drugs that inhibit these transporters can reduce PAS elimination.
Collapse
|