51
|
Abstract
Vertebrates are endowed with a closed circulatory system, the evolution of which required novel structural and regulatory changes. Furthermore, immune cell trafficking paradigms adapted to the barriers imposed by the closed circulatory system. How did such changes occur mechanistically? We propose that spatial compartmentalization of the lipid mediator sphingosine 1-phosphate (S1P) may be one such mechanism. In vertebrates, S1P is spatially compartmentalized in the blood and lymphatic circulation, thus comprising a sharp S1P gradient across the endothelial barrier. Circulatory S1P has critical roles in maturation and homeostasis of the vascular system as well as in immune cell trafficking. Physiological functions of S1P are tightly linked to shear stress, the key biophysical stimulus from blood flow. Thus, circulatory S1P confinement could be a primordial strategy of vertebrates in the development of a closed circulatory system. This review discusses the cellular and molecular basis of the S1P gradients and aims to interpret its physiological significance as a key feature of the closed circulatory system.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Vascular Biology Program, Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115; ,
| | - Timothy Hla
- Vascular Biology Program, Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115; ,
| |
Collapse
|
52
|
Pitman MR, Costabile M, Pitson SM. Recent advances in the development of sphingosine kinase inhibitors. Cell Signal 2016; 28:1349-1363. [DOI: 10.1016/j.cellsig.2016.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
|
53
|
Lynch KR, Thorpe SB, Santos WL. Sphingosine kinase inhibitors: a review of patent literature (2006-2015). Expert Opin Ther Pat 2016; 26:1409-1416. [PMID: 27539678 DOI: 10.1080/13543776.2016.1226282] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Sphingosine kinase (SphK1 & SphK2) is the sole source of the pleiotropic lipid mediator, sphingosine-1-phosphate (S1P). S1P has been implicated in a variety of diseases such as cancer, Alzheimer's disease, sickle cell disease and fibrosis and thus the biosynthetic route to S1P is a logical target for drug discovery. Areas covered: In this review, the authors consider the SphK inhibitor patent literature from 2006-2016 Q1 with the emphasis on composition of matter utility patents. The Espacenet database was queried with the search term 'sphingosine AND kinase' to identify relevant literature. Expert opinion: Early inhibitor discovery focused on SphK1 with a bias towards oncology indications. Structurally, the reported inhibitors occupy the sphingosine 'J-shaped' binding pocket. The lack of cytotoxicity with improved SphK1 inhibitors raises doubt about the enzyme as an oncology target. SphK2 inhibitors are featured in more recent patent applications. Interestingly, both SphK1 and SphK2 inhibition and gene 'knockout' share opposing effects on circulating S1P levels: SphK1 inhibition/gene ablation decreases, while SphK2 inhibition/gene ablation increases, blood S1P. As understanding of S1P's physiological roles increases and more drug-like SphK inhibitors emerge, inhibiting one or both SphK isotypes could provide unique strategies for treating disease.
Collapse
Affiliation(s)
- Kevin R Lynch
- a Department of Pharmacology , University of Virginia , Charlottesville , VA , USA
| | | | - Webster L Santos
- c Department of Chemistry and Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , VA , USA
| |
Collapse
|
54
|
Biwer LA, Taddeo EP, Kenwood BM, Hoehn KL, Straub AC, Isakson BE. Two functionally distinct pools of eNOS in endothelium are facilitated by myoendothelial junction lipid composition. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:671-9. [PMID: 27106139 PMCID: PMC4869716 DOI: 10.1016/j.bbalip.2016.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/10/2016] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
In resistance arteries, endothelial cells (EC) make contact with smooth muscle cells (SMC), forming myoendothelial junctions (MEJ). Endothelial nitric oxide synthase (eNOS) is present in the luminal side of the EC (apical EC) and the basal side of the EC (MEJ). To test if these eNOS pools acted in sync or separately, we co-cultured ECs and SMCs, then stimulated SMCs with phenylephrine (PE). Adrenergic activation causes inositol [1,4,5] triphosphate (IP3) to move from SMC to EC through gap junctions at the MEJ. PE increases MEJ eNOS phosphorylation (eNOS-P) at S1177, but not in EC. Conversely, we used bradykinin (BK) to increase EC calcium; this increased EC eNOS-P but did not affect MEJ eNOS-P. Inhibiting gap junctions abrogated the MEJ eNOS-P after PE, but had no effect on BK eNOS-P. Differential lipid composition between apical EC and MEJ may account for the compartmentalized eNOS-P response. Indeed, DAG and phosphatidylserine are both enriched in MEJ. These lipids are cofactors for PKC activity, which was significantly increased at the MEJ after PE. Because PKC activity also relies on endoplasmic reticulum (ER) calcium release, we used thapsigargin and xestospongin C, BAPTA, and PKC inhibitors, which caused significant decreases in MEJ eNOS-P after PE. Functionally, BK inhibited leukocyte adhesion and PE caused an increase in SMC cGMP. We hypothesize that local lipid composition of the MEJ primes PKC and eNOS-P for stimulation by PE, allowing for compartmentalized function of eNOS in the blood vessel wall.
Collapse
Affiliation(s)
- Lauren A Biwer
- Department of Molecular Physiology and Biophysics, University of Virginia, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, USA
| | - Evan P Taddeo
- Department of Pharmacology, University of Virginia, USA
| | | | - Kyle L Hoehn
- Department of Pharmacology, University of Virginia, USA; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Australia
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Heart, Lung, Blood and Vascular Medicine Institute; University of Pittsburgh, USA
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, University of Virginia, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, USA.
| |
Collapse
|
55
|
Elevation of serum sphingosine-1-phosphate attenuates impaired cardiac function in experimental sepsis. Sci Rep 2016; 6:27594. [PMID: 27277195 PMCID: PMC4899780 DOI: 10.1038/srep27594] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022] Open
Abstract
Serum levels of the lipid mediator sphingosine-1-phosphate (S1P) are reduced in septic patients and are inversely associated with disease severity. We show that serum S1P is reduced in human sepsis and in murine models of sepsis. We then investigated whether pharmacological or genetic approaches that alter serum S1P may attenuate cardiac dysfunction and whether S1P signaling might serve as a novel theragnostic tool in sepsis. Mice were challenged with lipopolysaccharide and peptidoglycan (LPS/PepG). LPS/PepG resulted in an impaired systolic contractility and reduced serum S1P. Administration of the immunomodulator FTY720 increased serum S1P, improved impaired systolic contractility and activated the phosphoinositide 3-kinase (PI3K)-pathway in the heart. Cardioprotective effects of FTY720 were abolished following administration of a S1P receptor 2 (S1P2) antagonist or a PI3K inhibitor. Sphingosine kinase-2 deficient mice had higher endogenous S1P levels and the LPS/PepG-induced impaired systolic contractility was attenuated in comparison with wild-type mice. Cardioprotective effects of FTY720 were confirmed in polymicrobial sepsis. We show here for the first time that the impaired left ventricular systolic contractility in experimental sepsis is attenuated by FTY720. Mechanistically, our results indicate that activation of S1P2 by increased serum S1P and the subsequent activation of the PI3K-Akt survival pathway significantly contributes to the observed cardioprotective effect of FTY720.
Collapse
|
56
|
Houck JD, Dawson TK, Kennedy AJ, Kharel Y, Naimon ND, Field SD, Lynch KR, Macdonald TL. Structural Requirements and Docking Analysis of Amidine-Based Sphingosine Kinase 1 Inhibitors Containing Oxadiazoles. ACS Med Chem Lett 2016; 7:487-92. [PMID: 27190598 DOI: 10.1021/acsmedchemlett.6b00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/01/2016] [Indexed: 12/18/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent growth-signaling lipid that has been implicated in cancer progression, inflammation, sickle cell disease, and fibrosis. Two sphingosine kinases (SphK1 and 2) are the source of S1P; thus, inhibitors of the SphKs have potential as targeted cancer therapies and will help to clarify the roles of S1P and the SphKs in other hyperproliferative diseases. Recently, we reported a series of amidine-based inhibitors with high selectivity for SphK1 and potency in the nanomolar range. However, these inhibitors display a short half-life. With the goal of increasing metabolic stability and maintaining efficacy, we designed an analogous series of molecules containing oxadiazole moieties. Generation of a library of molecules resulted in the identification of the most selective inhibitor of SphK1 reported to date (705-fold selectivity over SphK2), and we found that potency and selectivity vary significantly depending on the particular oxadiazole isomer employed. The best inhibitors were subjected to in silico molecular dynamics docking analysis, which revealed key insights into the binding of amidine-based inhibitors by SphK1. Herein, the design, synthesis, biological evaluation, and docking analysis of these molecules are described.
Collapse
Affiliation(s)
- Joseph D. Houck
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States
| | - Thomas K. Dawson
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States
| | - Andrew J. Kennedy
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22904, United States
| | - Niels D. Naimon
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States
| | - Saundra D. Field
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22904, United States
| | - Timothy L. Macdonald
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22904, United States
| |
Collapse
|
57
|
Pyne S, Adams DR, Pyne NJ. Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. Prog Lipid Res 2016; 62:93-106. [PMID: 26970273 DOI: 10.1016/j.plipres.2016.03.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/24/2022]
Abstract
Sphingosine kinases (isoforms SK1 and SK2) catalyse the formation of a bioactive lipid, sphingosine 1-phosphate (S1P). S1P is a well-established ligand of a family of five S1P-specific G protein coupled receptors but also has intracellular signalling roles. There is substantial evidence to support a role for sphingosine kinases and S1P in health and disease. This review summarises recent advances in the area in relation to receptor-mediated signalling by S1P and novel intracellular targets of this lipid. New evidence for a role of each sphingosine kinase isoform in cancer, the cardiovascular system, central nervous system, inflammation and diabetes is discussed. There is continued research to develop isoform selective SK inhibitors, summarised here. Analysis of the crystal structure of SK1 with the SK1-selective inhibitor, PF-543, is used to identify residues that could be exploited to improve selectivity in SK inhibitor development for future therapeutic application.
Collapse
Affiliation(s)
- Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| | - David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK.
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
58
|
Congdon MD, Kharel Y, Brown AM, Lewis SN, Bevan DR, Lynch KR, Santos WL. Structure-Activity Relationship Studies and Molecular Modeling of Naphthalene-Based Sphingosine Kinase 2 Inhibitors. ACS Med Chem Lett 2016; 7:229-34. [PMID: 26985306 DOI: 10.1021/acsmedchemlett.5b00304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/02/2016] [Indexed: 12/26/2022] Open
Abstract
The two isoforms of sphingosine kinase (SphK1 and SphK2) are the only enzymes that phosphorylate sphingosine to sphingosine-1-phosphate (S1P), which is a pleiotropic lipid mediator involved in a broad range of cellular processes including migration, proliferation, and inflammation. SphKs are targets for various diseases such as cancer, fibrosis, and Alzheimer's and sickle cell disease. Herein, we disclose the structure-activity profile of naphthalene-containing SphK inhibitors and molecular modeling studies that reveal a key molecular switch that controls SphK selectivity.
Collapse
Affiliation(s)
- Molly D. Congdon
- Department
of Chemistry, ‡Department of Biochemistry, and §Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yugesh Kharel
- Department
of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | | | | | | | - Kevin R. Lynch
- Department
of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L. Santos
- Department
of Chemistry, ‡Department of Biochemistry, and §Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|