51
|
Ali N, Yoshizumi M, Fujita Y, Izawa Y, Kanematsu Y, Ishizawa K, Tsuchiya K, Yano S, Sone S, Tamaki T. A novel Src kinase inhibitor, M475271, inhibits VEGF-induced human umbilical vein endothelial cell proliferation and migration. J Pharmacol Sci 2005; 98:130-41. [PMID: 15937404 DOI: 10.1254/jphs.fp0040850] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) was reported to be a potent proangiogenic factor that plays a pivotal role in both physiological and pathological angiogenesis. M475271, 4-quinazolinamine, N-(2-chloro-5-methoxyphenyl)-6-methoxy-7-[(1-methyl-4-piperidinyl) methoxy]-(9Cl), is a new anilinoquinazoline derivative that showed selective inhibition of Src kinase activity and tumor growth in vivo. Here, we examined the effect of M475271 on VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration and their intracellular mechanisms. Our findings showed that M475271 pretreatment resulted in a significant inhibition of VEGF-induced HUVEC proliferation, [(3)H]thymidine incorporation, and migration. M475271 inhibited VEGF-induced Flk-1 and Src phosphorylation and their association. Confocal laser microscopic examination confirmed the inhibitory effect of M475271 on VEGF-induced Flk-1/Src association. M475271 inhibited VEGF-induced extracellular signal-regulated kinase1/2 (ERK1/2) and p38 but not Akt activation in a concentration-dependent manner. M475271, PI3-K inhibitor, and p38 inhibitor inhibited VEGF-induced HUVEC proliferation and migration. However, a MEK1/2 inhibitor inhibited VEGF-induced proliferation but not migration. These findings suggest that M475271 attenuates VEGF-induced HUVEC proliferation and migration through the inhibition of signaling pathways involving Src, ERK1/2, and/or p38. Taken together, these data indicate that M475271 may be a useful candidate for inhibition of endothelial cell proliferation and migration relevant to angiogenesis.
Collapse
Affiliation(s)
- Nermin Ali
- Department of Pharmacology, The University of Tokushima Graduate School Institute of Health Biosciences, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Zhang A, Ding G, Huang S, Wu Y, Pan X, Guan X, Chen R, Yang T. c-Jun NH2-terminal kinase mediation of angiotensin II-induced proliferation of human mesangial cells. Am J Physiol Renal Physiol 2005; 288:F1118-24. [PMID: 15701817 DOI: 10.1152/ajprenal.00220.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiotensin II (ANG II) has been shown to activate c-Jun NH2-terminal kinase (JNK) in cultured mesangial cells, but the functional implication of this phenomenon remains to be determined, largely due to the lack of an effective approach to block JNK. Therefore, the present study was carried out to examine whether JNK is involved in ANG II-induced cell proliferation in cultured human mesangial cells (HMCs) with the use of a newly developed JNK-selective blocker, SP-600125. Within minutes, treatment with 100 nM ANG II activated all three members of MAP kinase family, including extracellular signal-regulated protein kinase (Erk) 1/2, JNK, and p38 in cultured HMCs, as assessed by immunoblotting detection of phosphorylation of MAP kinases. ANG II-dependent activation of JNK was further confirmed by detection of increased phosphorylation and transcription activity of c-Jun after the ANG II treatment. SP-600125 ranging from 5 to 10 μM almost completely abolished the activation of JNK by ANG II without affecting the activities of Erk1/2 and p38. After treatment with 100 ng ANG II, there was a steady increase in [3H]thymidine incorporation that was blocked by SP-60025 in a dose- and time-dependent manner. Similarly, SP-600125 dose dependently reduced the ANG II-induced increase in cell number. The antiproliferative effect of SP-60025 was further determined by cell-cycle analysis with flow cytometry. Twenty-four hours after ANG II treatment, 50% of the quiescent HMCs (G0/G1) progressed into the S phase, and the cell cycle progression was almost completely prevented in the presence of SP-60025. Our data suggest that JNK mediates the proliferative effect of ANG II in cultured HMCs and thus represents a novel therapeutic target for treatment of chronic renal diseases.
Collapse
Affiliation(s)
- Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, China
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Nishiyama A, Yao L, Fan Y, Kyaw M, Kataoka N, Hashimoto K, Nagai Y, Nakamura E, Yoshizumi M, Shokoji T, Kimura S, Kiyomoto H, Tsujioka K, Kohno M, Tamaki T, Kajiya F, Abe Y. Involvement of Aldosterone and Mineralocorticoid Receptors in Rat Mesangial Cell Proliferation and Deformability. Hypertension 2005; 45:710-6. [PMID: 15699469 DOI: 10.1161/01.hyp.0000154681.38944.9a] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We demonstrated recently that chronic administration of aldosterone to rats induces glomerular mesangial injury and activates mitogen-activated protein kinases including extracellular signal-regulated kinases 1/2 (ERK1/2). We also observed that the aldosterone-induced mesangial injury and ERK1/2 activation were prevented by treatment with a selective mineralocorticoid receptor (MR) antagonist, eplerenone, suggesting that the glomerular mesangium is a potential target for injuries induced by aldosterone via activation of MR. In the present study, we investigated whether MR is expressed in cultured rat mesangial cells (RMCs) and involved in aldosterone-induced RMC injury. MR expression and localization were evaluated by Western blotting analysis and fluorolabeling methods. Cell proliferation and micromechanical properties were determined by [
3
H]-thymidine uptake measurements and a nanoindentation technique using an atomic force microscope cantilever, respectively. ERK1/2 activity was measured by Western blotting analysis with an anti-phospho–ERK1/2 antibody. Protein expression and immunostaining revealed that MR was abundant in the cytoplasm of RMCs. Aldosterone (1 to 100 nmol/L) dose-dependently activated ERK1/2 in RMCs with a peak at 10 minutes. Pretreatment with eplerenone (10 μmol/L) significantly attenuated aldosterone-induced ERK1/2 phosphorylation. Aldosterone (100 nmol/L) treatment for 30 hours increased [
3
H]-thymidine incorporation and decreased the elastic modulus, indicating cellular proliferative and deforming effects of aldosterone, respectively. These aldosterone-induced changes in cellular characteristics were prevented by pretreatment with eplerenone or an ERK (MEK) inhibitor, PD988059 (100 μmol/L). The results indicate that aldosterone directly induces RMC proliferation and deformability through MR and ERK1/2 activation, which may contribute to the pathogenesis of glomerular mesangial injury.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Pharmacology, Kagawa Medical University 1750-1 Ikenobe, Miki-cho, Kita-gun Kagawa 761-0793, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Montiel M, de la Blanca EP, Jiménez E. Angiotensin II induces focal adhesion kinase/paxillin phosphorylation and cell migration in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2005; 327:971-8. [PMID: 15652490 DOI: 10.1016/j.bbrc.2004.12.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Indexed: 12/13/2022]
Abstract
In the present study, we demonstrated that Ang II provokes a transitory enhancement of focal adhesion kinase (FAK) and paxillin phosphorylation in human umbilical endothelial cells (HUVEC). Moreover, Ang II induces a time- and dose-dependent augmentation in cell migration, but does not affect HUVEC proliferation. The effect of Ang II on FAK and paxillin phosphorylation was markedly attenuated in cells pretreated with wortmannin and LY294002, indicating that phosphoinositide 3-kinase (PI3K) plays an important role in regulating FAK activation. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific inhibitor PP2 for Src family kinases, demonstrating the involvement of protein tyrosine kinases, and particularly Src family of tyrosine kinases, in the downstream signalling pathway of Ang II receptors. Furthermore, FAK and paxillin phosphorylation was markedly blocked after treatment of HUVEC with AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) phosphorylation. Pretreatment of cells with inhibitors of PI3K, Src family tyrosine kinases, and EGFR also decreased HUVEC migration. In conclusion, these results suggest that Ang II mediates an increase in FAK and paxillin phosphorylation and induces HUVEC migration through signal transduction pathways dependent on PI3K and Src tyrosine kinase activation and EGFR transactivation.
Collapse
Affiliation(s)
- Mercedes Montiel
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| | | | | |
Collapse
|
55
|
Touyz RM, Yao G, Schiffrin EL. Role of the actin cytoskeleton in angiotensin II signaling in human vascular smooth muscle cells. Can J Physiol Pharmacol 2005; 83:91-7. [PMID: 15759055 DOI: 10.1139/y05-006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiotensin II (Ang II) regulates vascular smooth muscle cell (VSMC) function by activating signaling cascades that promote vasoconstriction, growth, and inflammation. Subcellular mechanisms coordinating these processes are unclear. In the present study, we questioned the role of the actin cytoskeleton in Ang II mediated signaling through mitogen-activated protein (MAP) kinases and reactive oxygen species (ROS) in VSMCs. Human VSMCs were studied. Cells were exposed to Ang II (10–7 mol/L) in the absence and presence of cytochalasin B (10–6 mol/L, 60 min), which disrupts the actin cytoskeleton. Phosphorylation of p38MAP kinase, JNK, and ERK1/2 was assessed by immuno blotting. ROS generation was measured using the fluoroprobe chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (4 µmol/L). Interaction between the cytoskeleton and NADPH oxidase was determined by evaluating the presence of p47phox in the Triton X-100 insoluble membrane fraction. Ang II significantly increased phosphorylation of p38MAP kinase, JNK, and ERK1/2 (two- to threefold above control, p < 0.05). Cytochalasin B pretreatment attenuated p38MAP kinase and JNK effects (p < 0.05) without altering ERK1/2 phosphorylation. ROS formation, which was increased in Ang II stimulated cells, was significantly reduced by cytochalasin B (p < 0.01). p47phox, critically involved in NADPH oxidase activation, colocalized with the actin cytoskeleton in Ang II stimulated cells. Our data demonstrate that Ang II mediated ROS formation and activation of p38MAP kinase and JNK, but not ERK1/2, involves the actin cytoskeleton in VSMCs. In addition, Ang II promotes interaction between actin and p47phox. These data indicate that the cytoskeleton is involved in differential MAP kinase signaling and ROS generation by Ang II in VSMCs. Together, these studies suggest that the cytoskeleton may be a central point of crosstalk in growth- and redox-signaling pathways by Ang II, which may be important in the regulation of VSMC function.Key words: superoxide, NADPH oxidase, p38MAP kinase, JNK, ERK1/2.
Collapse
Affiliation(s)
- Rhian M Touyz
- Clinical Research Institute of Montreal, University of Montreal, Montreal, QC, Canada.
| | | | | |
Collapse
|
56
|
Samarakoon R, Higgins CE, Higgins SP, Kutz SM, Higgins PJ. Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-β1-stimulated smooth muscle cells is pp60c-src/MEK-dependent. J Cell Physiol 2005; 204:236-46. [PMID: 15622520 DOI: 10.1002/jcp.20279] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) stimulates expression of plasminogen activator inhibitor type-1 (PAI-1), a serine protease inhibitor (SERPIN) important in the control of stromal barrier proteolysis and cell-to-matrix adhesion. Pharmacologic agents that target MEK (PD98059, U0126) or src family (PP1) kinases attenuated TGF-beta1-dependent PAI-1 transcription in R22 aortic smooth muscle cells. Pretreatment with PP1 at concentrations that inhibited TGF-beta1-dependent PAI-1 expression also blocked ERK1/2 activation/nuclear accumulation suggesting that the required src kinase activity is upstream of ERK1/2 in the TGF-beta1-initiated signaling cascade. The IC(50) of the PP1-sensitive kinase, furthermore, specifically implied involvement of pp60(c-src) in PAI-1 induction. Indeed, addition of TGF-beta1 to quiescent R22 cells resulted in a 3-fold increase in pp60(c-src) autophosphorylation and kinase activity. Transfection of a dominant-negative pp60(c-src) construct, moreover, reduced TGF-beta1-induced PAI-1 expression levels to that of unstimulated controls or PP1-pretreated cells. A >/=170 kDa protein that co-immunoprecipitated with TGF-beta1-activated pp60(c-src) was also phosphorylated transiently in response to TGF-beta1. TGF-beta1 is known to transactivate the 170 kDa EGF receptor (EGFR) by autocrine HB-EGF or TGF-alpha mechanisms suggesting involvement of EGFR activation in certain TGF-beta1-initiated responses. Incubation of quiescent R22 cells with the EGFR-specific inhibitor AG1478 prior to growth factor (EGF or TGF-beta1) addition effectively blocked EGFR activation as determined by direct visualization of receptor internalization. AG1478 suppressed (in a dose-dependent fashion) EGF-induced PAI-1 protein levels and, at a final concentration of 2.5 muM, virtually eliminated EGF-dependent PAI-1 synthesis. More importantly, AG1478 similarly repressed inducible PAI-1 levels in TGF-beta1-stimulated R22 cultures. PP1, PD98059, and U0126 also inhibited TGF-beta1-dependent cell motility at concentrations that significantly attenuated PAI-1 expression. Consistent with the AG1478-associated reductions in EGF- and TGF-beta1-stimulated PAI-1 expression, pretreatment of R22 cell cultures with AG1478 effectively suppressed growth factor-stimulated cell motility. These data indicate that two major phenotypic characteristics of TGF-beta1-exposure (i.e., transcription of specific target genes [e.g., PAI-1], increased cell motility) are linked in the R22 vascular smooth muscle cell system, require pp60(c-src) kinase activity and MEK signaling and involve activation of an AG1478-sensitive (likely EGFR-dependent) pathway.
Collapse
Affiliation(s)
- Rohan Samarakoon
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York, USA
| | | | | | | | | |
Collapse
|
57
|
Natarajan K, Yin G, Berk BC. Scaffolds Direct Src-Specific Signaling in Response to Angiotensin II: New Roles for Cas and GIT1. Mol Pharmacol 2004; 65:822-5. [PMID: 15044610 DOI: 10.1124/mol.65.4.822] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kanchana Natarajan
- Department of Medicine and Center for Cardiovascular Research, University of Research School of Medicine and Dentistry, Aab Institute of Biomedical Sciences, Rochester, NY 14642, USA
| | | | | |
Collapse
|