51
|
Ma K, Zhang A, She X, Yang H, Wang K, Zhu Y, Gao X, Cui B. Disruption of Glutamate Release and Uptake-Related Protein Expression After Noise-Induced Synaptopathy in the Cochlea. Front Cell Dev Biol 2021; 9:720902. [PMID: 34422838 PMCID: PMC8373299 DOI: 10.3389/fcell.2021.720902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023] Open
Abstract
High-intensity noise can cause permanent hearing loss; however, short-duration medium-intensity noise only induces a temporary threshold shift (TTS) and damages synapses formed by inner hair cells (IHCs) and spiral ganglion nerves. Synaptopathy is generally thought to be caused by glutamate excitotoxicity. In this study, we investigated the expression levels of vesicle transporter protein 3 (Vglut3), responsible for the release of glutamate; glutamate/aspartate transporter protein (GLAST), responsible for the uptake of glutamate; and Na+/K+-ATPase α1 coupled with GLAST, in the process of synaptopathy in the cochlea. The results of the auditory brainstem response (ABR) and CtBP2 immunofluorescence revealed that synaptopathy was induced on day 30 after 100 dB SPL noise exposure in C57BL/6J mice. We found that GLAST and Na+/K+-ATPase α1 were co-localized in the cochlea, mainly in the stria vascularis, spiral ligament, and spiral ganglion cells. Furthermore, Vglut3, GLAST, and Na+/K+-ATPase α1 expression were disrupted after noise exposure. These results indicate that disruption of glutamate release and uptake-related protein expression may exacerbate the occurrence of synaptopathy.
Collapse
Affiliation(s)
- Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Anran Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kun Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yingwen Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
52
|
Abstract
Hearing loss is often caused by death of sensory hair cells (HCs) in the inner ear. HCs are vulnerable to some ototoxic drugs, such as aminoglycosides(AGs) and the cisplatin.The most predominant form of drug-induced cell death is apoptosis. Many efforts have been made to protect HCs from cell death after ototoxic drug exposure. These mechanisms and potential targets of HCs protection will be discussed in this review.And we also propose further investigation in the field of HCs necrosis and regeneration, as well as future clinical utilization.
Collapse
|
53
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
54
|
Autophagy: A Novel Horizon for Hair Cell Protection. Neural Plast 2021; 2021:5511010. [PMID: 34306061 PMCID: PMC8263289 DOI: 10.1155/2021/5511010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
As a general sensory disorder, hearing loss was a major concern worldwide. Autophagy is a common cellular reaction to stress that degrades cytoplasmic waste through the lysosome pathway. Autophagy not only plays major roles in maintaining intracellular homeostasis but is also involved in the development and pathogenesis of many diseases. In the auditory system, several studies revealed the link between autophagy and hearing protection. In this review, we aimed to establish the correlation between autophagy and hair cells (HCs) from the aspects of ototoxic drugs, aging, and acoustic trauma and discussed whether autophagy could serve as a potential measure in the protection of HCs.
Collapse
|
55
|
Sun F, Zhou K, Tian KY, Zhang XY, Liu W, Wang J, Zhong CP, Qiu JH, Zha DJ. Atrial Natriuretic Peptide Promotes Neurite Outgrowth and Survival of Cochlear Spiral Ganglion Neurons in vitro Through NPR-A/cGMP/PKG Signaling. Front Cell Dev Biol 2021; 9:681421. [PMID: 34268307 PMCID: PMC8276373 DOI: 10.3389/fcell.2021.681421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is a dominant public health issue affecting millions of people around the globe, which is correlated with the irreversible deterioration of the hair cells and spiral ganglion neurons (SGNs) within the cochlea. Strategies using bioactive molecules that regulate neurite regeneration and neuronal survival to reestablish connections between auditory epithelium or implanted electrodes and SGN neurites would become attractive therapeutic candidates for SNHL. As an intracellular second messenger, cyclic guanosine-3’,5’-monophosphate (cGMP) can be synthesized through activation of particulate guanylate cyclase-coupled natriuretic peptide receptors (NPRs) by natriuretic peptides, which in turn modulates multiple aspects of neuronal functions including neuronal development and neuronal survival. As a cardiac-derived hormone, atrial natriuretic peptide (ANP), and its specific receptors (NPR-A and NPR-C) are broadly expressed in the nervous system where they might be involved in the maintenance of diverse neural functions. Despite former literatures and our reports indicating the existence of ANP and its receptors within the inner ear, particularly in the spiral ganglion, their potential regulatory mechanisms underlying functional properties of auditory neurons are still incompletely understood. Our recently published investigation revealed that ANP could promote the neurite outgrowth of SGNs by activating NPR-A/cGMP/PKG cascade in a dose-dependent manner. In the present research, the influence of ANP and its receptor-mediated downstream signaling pathways on neurite outgrowth, neurite attraction, and neuronal survival of SGNs in vitro was evaluated by employing cultures of organotypic explant and dissociated neuron from postnatal rats. Our data indicated that ANP could support and attract neurite outgrowth of SGNs and possess a high capacity to improve neuronal survival of SGNs against glutamate-induced excitotoxicity by triggering the NPR-A/cGMP/PKG pathway. The neuroregenerative and neuroprotective effects of ANP/NPRA/cGMP/PKG-dependent signaling on SGNs would represent an attractive therapeutic candidate for hearing impairment.
Collapse
Affiliation(s)
- Fei Sun
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke Zhou
- Department of Laboratory Medicine, Institute of Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke-Yong Tian
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cui-Ping Zhong
- Department of Otolaryngology-Head and Neck Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Jian-Hua Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ding-Jun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
56
|
Ren W, Xu C, Zheng FJ, Lin TT, Jin P, Zhang Y, Guo WW, Liu CH, Zhou XY, Wang LL, Wang Y, Zhao H, Yang SM. A Porcine Congenital Single-Sided Deafness Model, Its Population Statistics and Degenerative Changes. Front Cell Dev Biol 2021; 9:672216. [PMID: 34178998 PMCID: PMC8226144 DOI: 10.3389/fcell.2021.672216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objective To describe and study the population statistics, hearing phenotype, and pathological changes of a porcine congenital single-sided deafness (CSSD) pedigree. Methods Click auditory brainstem response (ABR), full-frequency ABR, and distortion product otoacoustic emission (DPOAE) were used to assess the hearing phenotype of the strain. Tympanogram was used to assess the middle ear function since birth. Celloidin embedding-hematoxylin-eosin (CE-HE) stain and scanning electron microscopy (SEM) were used to study the pathological changes of cochlear microstructures. Chi-square analysis was used to analyze the relation between hearing loss and other phenotypes. Results The mating mood of CSSD with CSSD was most efficient in breeding-targeted CSSD phenotype (47.62%), and the prevalence of CSSD reached 46.67% till the fifth generation, where 42.22% were bilateral hearing loss (BHL) and 9.00% were normal hearing (NH) individuals. Hearing loss was proved to have no relation with coat color (P = 0.0841 > 0.05) and gender (P = 0.4621 > 0.05) by chi-square analysis. The deaf side of CSSD offspring in the fifth generation had no relation with that of their maternal parent (P = 0.2387 > 0.05). All individuals in this strain exhibited congenital severe to profound sensorineural hearing loss with no malformation and dysfunction of the middle ear. The good hearing ear of CSSD stayed stable over age. The deaf side of CSSD and BHL presented cochlear and saccular degeneration, and the hair cell exhibited malformation since birth and degenerated from the apex to base turn through time. The pathology in BHL cochlea progressed more rapidly than CSSD and till P30, the hair cell had been totally gone. The stria vascularis (SV) was normal since birth and degenerated through time and finally exhibited disorganization of three layers of cells. Conclusion This inbred porcine strain exhibited high and stable prevalence of CSSD, which highly resembled human non-syndromic CSSD disease. This porcine model could be used to further explore the etiology of CSSD and serve as an ideal tool for the studies of the effects of single-sided hearing deprivation on neural, cognitive, and behavioral developments and the benefits brought by CI in CSSD individuals.
Collapse
Affiliation(s)
- Wei Ren
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Cong Xu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Fan-Jun Zheng
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Ting-Ting Lin
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Yue Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei-Wei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Chuan-Hong Liu
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Xiao-Yang Zhou
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Lu-Lu Wang
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Hui Zhao
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Shi-Ming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| |
Collapse
|
57
|
Key Signaling Pathways Regulate the Development and Survival of Auditory Hair Cells. Neural Plast 2021; 2021:5522717. [PMID: 34194486 PMCID: PMC8214483 DOI: 10.1155/2021/5522717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
The loss of auditory sensory hair cells (HCs) is the most common cause of sensorineural hearing loss (SNHL). As the main sound transmission structure in the cochlea, it is necessary to maintain the normal shape and survival of HCs. In this review, we described and summarized the signaling pathways that regulate the development and survival of auditory HCs in SNHL. The role of the mitogen-activated protein kinase (MAPK), phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Notch/Wnt/Atoh1, calcium channels, and oxidative stress/reactive oxygen species (ROS) signaling pathways are the most relevant. The molecular interactions of these signaling pathways play an important role in the survival of HCs, which may provide a theoretical basis and possible therapeutic interventions for the treatment of hearing loss.
Collapse
|
58
|
Zhang Y, Lv Z, Liu Y, Cao H, Yang J, Wang B. PIN1 Protects Hair Cells and Auditory HEI-OC1 Cells against Senescence by Inhibiting the PI3K/Akt/mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9980444. [PMID: 34285767 PMCID: PMC8273041 DOI: 10.1155/2021/9980444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
A growing amount of evidence has confirmed the crucial role of the prolyl isomerase PIN1 in aging and age-related diseases. However, the mechanism of PIN1 in age-related hearing loss (ARHL) remains unclear. Pathologically, ARHL is primarily due to the loss and dysfunction of hair cells (HCs) and spiral ganglion cells (SGCs) in the cochlea. Therefore, in this study, we aimed to investigate the role of PIN1 in protecting hair cells and auditory HEI-OC1 cells from senescence. Enzyme-linked immunosorbent assays, immunohistochemistry, and immunofluorescence were used to detect the PIN1 protein level in the serum of ARHL patients and C57BL/6 mice in different groups, and in the SGCs and HCs of young and aged C57BL/6 mice. In addition, a model of HEI-OC1 cell senescence induced by H2O2 was used. Adult C57BL/6 mice were treated with juglone, or juglone and NAC, for 4 weeks. Interestingly, we found that the PIN1 protein expression decreased in the serum of patients with ARHL, in senescent HEI-OC1 cells, and in the cochlea of aged mice. Moreover, under H2O2 and juglone treatment, a large amount of ROS was produced, and phosphorylation of p53 was induced. Importantly, PIN1 expression was significantly increased by treatment with the p53 inhibitor pifithrin-α. Overexpression of PIN1 reversed the increased level of p-p53 and rescued HEI-OC1 cells from senescence. Furthermore, PIN1 mediated cellular senescence by the PI3K/Akt/mTOR signaling pathway. In vivo data from C57BL/6 mice showed that treatment with juglone led to hearing loss. Taken together, these findings demonstrated that PIN1 may act as a vital modulator in hair cell and HEI-OC1 cell senescence.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang 050000, China
| | - Zhe Lv
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang 050000, China
| | - Yudong Liu
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang 050000, China
- Department of Otorhinolaryngology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Huan Cao
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang 050000, China
| | - Jianwang Yang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang 050000, China
| | - Baoshan Wang
- Department of Otorhinolaryngology, The Second Hospital of Hebei Medical University, No. 215 West Heping Road, Shijiazhuang 050000, China
| |
Collapse
|
59
|
Deletion of Clusterin Protects Cochlear Hair Cells against Hair Cell Aging and Ototoxicity. Neural Plast 2021; 2021:9979157. [PMID: 34194490 PMCID: PMC8181089 DOI: 10.1155/2021/9979157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 01/06/2023] Open
Abstract
Hearing loss is a debilitating disease that affects 10% of adults worldwide. Most sensorineural hearing loss is caused by the loss of mechanosensitive hair cells in the cochlea, often due to aging, noise, and ototoxic drugs. The identification of genes that can be targeted to slow aging and reduce the vulnerability of hair cells to insults is critical for the prevention of sensorineural hearing loss. Our previous cell-specific transcriptome analysis of adult cochlear hair cells and supporting cells showed that Clu, encoding a secreted chaperone that is involved in several basic biological events, such as cell death, tumor progression, and neurodegenerative disorders, is expressed in hair cells and supporting cells. We generated Clu-null mice (C57BL/6) to investigate its role in the organ of Corti, the sensory epithelium responsible for hearing in the mammalian cochlea. We showed that the deletion of Clu did not affect the development of hair cells and supporting cells; hair cells and supporting cells appeared normal at 1 month of age. Auditory function tests showed that Clu-null mice had hearing thresholds comparable to those of wild-type littermates before 3 months of age. Interestingly, Clu-null mice displayed less hair cell and hearing loss compared to their wildtype littermates after 3 months. Furthermore, the deletion of Clu is protected against aminoglycoside-induced hair cell loss in both in vivo and in vitro models. Our findings suggested that the inhibition of Clu expression could represent a potential therapeutic strategy for the alleviation of age-related and ototoxic drug-induced hearing loss.
Collapse
|
60
|
Canonical Wnt Signaling Pathway on Polarity Formation of Utricle Hair Cells. Neural Plast 2021; 2021:9950533. [PMID: 34122536 PMCID: PMC8166501 DOI: 10.1155/2021/9950533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
As part of the inner ear, the vestibular system is responsible for sense of balance, which consists of three semicircular canals, the utricle, and the saccule. Increasing evidence has indicated that the noncanonical Wnt/PCP signaling pathway plays a significant role in the development of the polarity of the inner ear. However, the role of canonical Wnt signaling in the polarity of the vestibule is still not completely clear. In this study, we found that canonical Wnt pathway-related genes are expressed in the early stage of development of the utricle and change dynamically. We conditionally knocked out β-catenin, a canonical Wnt signaling core protein, and found that the cilia orientation of hair cells was disordered with reduced number of hair cells in the utricle. Moreover, regulating the canonical Wnt pathway (Licl and IWP2) in vitro also affected hair cell polarity and indicated that Axin2 may be important in this process. In conclusion, our results not only confirm that the regulation of canonical Wnt signaling affects the number of hair cells in the utricle but also provide evidence for its role in polarity development.
Collapse
|
61
|
Fu X, An Y, Wang H, Li P, Lin J, Yuan J, Yue R, Jin Y, Gao J, Chai R. Deficiency of Klc2 Induces Low-Frequency Sensorineural Hearing Loss in C57BL/6 J Mice and Human. Mol Neurobiol 2021; 58:4376-4391. [PMID: 34014435 DOI: 10.1007/s12035-021-02422-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
The transport system in cochlear hair cells (HCs) is important for their function, and the kinesin family of proteins transports numerous cellular cargos via the microtubule network in the cytoplasm. Here, we found that Klc2 (kinesin light chain 2), the light chain of kinesin-1 that mediates cargo binding and regulates kinesin-1 motility, is essential for cochlear function. We generated mice lacking Klc2, and they suffered from low-frequency hearing loss as early as 1 month of age. We demonstrated that deficiency of Klc2 resulted in abnormal transport of mitochondria and the down-regulation of the GABAA receptor family. In addition, whole-genome sequencing (WGS) of patient showed that KLC2 was related to low-frequency hearing in human. Hence, to explore therapeutic approaches, we developed adeno-associated virus containing the Klc2 wide-type cDNA sequence, and Klc2-null mice delivered virus showed apparent recovery, including decreased ABR threshold and reduced out hair cell (OHC) loss. In summary, we show that the kinesin transport system plays an indispensable and special role in cochlear HC function in mice and human and that mitochondrial localization is essential for HC survival.
Collapse
Affiliation(s)
- Xiaolong Fu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yachun An
- School of Life Science, Shandong University, Qingdao, China
| | - Hongyang Wang
- College of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Peipei Li
- School of Life Science, Shandong University, Qingdao, China
| | - Jing Lin
- Waksman Institute, the State University of New Jersey, RutgersNew Brunswick, NJ, USA
| | - Jia Yuan
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Rongyu Yue
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated To Shandong University, Jinan, China
| | - Yecheng Jin
- School of Life Science, Shandong University, Qingdao, China
| | - Jiangang Gao
- College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China. .,College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
62
|
Identification of Novel Compound Heterozygous MYO15A Mutations in Two Chinese Families with Autosomal Recessive Nonsyndromic Hearing Loss. Neural Plast 2021; 2021:9957712. [PMID: 34093702 PMCID: PMC8140830 DOI: 10.1155/2021/9957712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Congenital deafness is one of the most common causes of disability in humans, and more than half of cases are caused by genetic factors. Mutations of the MYO15A gene are the third most common cause of hereditary hearing loss. Using next-generation sequencing combined with auditory tests, two novel compound heterozygous variants c.2802_2812del/c.5681T>C and c.5681T>C/c.6340G>A in the MYO15A gene were identified in probands from two irrelevant Chinese families. Auditory phenotypes of the probands are consistent with the previously reported for recessive variants in the MYO15A gene. The two novel variants, c.2802_2812del and c.5681T>C, were identified as deleterious mutations by bioinformatics analysis. Our findings extend the MYO15A gene mutation spectrum and provide more information for rapid and precise molecular diagnosis of congenital deafness.
Collapse
|
63
|
Gong J, Qian P, Hu Y, Guo C, Wei G, Wang C, Cai C, Wang H, Liu D. Claudin h Is Essential for Hair Cell Morphogenesis and Auditory Function in Zebrafish. Front Cell Dev Biol 2021; 9:663995. [PMID: 34046408 PMCID: PMC8147561 DOI: 10.3389/fcell.2021.663995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
Hereditary hearing loss caused by defective hair cells is one of the most common congenital diseases, whose nosogenesis is still unclear because many of the causative genes remain unidentified. Claudins are one kind of transmembrane proteins that constitute the most important components of the tight junctions and paracellular barrier and play important roles in neurodevelopment. In this study, we investigated the function of claudin h in morphogenesis and auditory function of the hair cell in zebrafish. The results of in situ hybridization showed that claudin h was specifically localized in the otic vesicle and neuromasts in zebrafish embryos. The deficiency of claudin h caused significant reduction of otic vesicle size and loss of utricle otolith. Moreover, the startle response and vestibulo-ocular reflex experiments revealed that loss of claudin h led to serious hearing loss and vestibular dysfunction. Importantly, the confocal microscopy observation found that compared to the control zebrafish, the claudin h morphants and mutants displayed significantly reduced the number of cristae hair cells and shortened kinocilia. Besides, the deficiency of claudin h also caused the loss of hair cells in neuromasts which could be rescued by injecting claudin h mRNA into the mutant embryos at one cell stage. Furthermore, the immunohistochemistry experiments demonstrated remarkable apoptosis of hair cells in the neuromasts, which might contribute to the loss of hair cells number. Overall, these data indicated that claudin h is indispensable for the development of hair cells, vestibular function, and hearing ability of zebrafish.
Collapse
Affiliation(s)
- Jie Gong
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Peipei Qian
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Yuebo Hu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Chao Guo
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Guanyun Wei
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Cheng Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Chengyun Cai
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Haibo Wang
- Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| |
Collapse
|
64
|
Sun Z, Cheng Z, Gong N, Xu Z, Jin C, Wu H, Tao Y. Neural presbycusis at ultra-high frequency in aged common marmosets and rhesus monkeys. Aging (Albany NY) 2021; 13:12587-12606. [PMID: 33909598 PMCID: PMC8148503 DOI: 10.18632/aging.202936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The aging of the population and environmental noise have contributed to high rates of presbycusis, also known as age-related hearing loss (ARHL). Because mice have a relatively short life span, murine models have not been suitable for determining the mechanism of presbycusis development and methods of diagnosis. Although the common marmoset, a non-human primate (NHP), is an ideal animal model for studying age-related diseases, its auditory spectrum has not been systematically studied. Auditory brainstem responses (ABRs) from 38 marmosets of different ages demonstrated that auditory function correlated with age. Hearing loss in geriatric common marmosets started at ultra-high frequency (>16 kHz), then extended to lower frequencies. Despite age-related deterioration of ABR threshold and amplitude in marmosets, outer hair cell (OHC) function remained stable at all ages. Spiral ganglion neurons (SGNs), which are the first auditory neurons in the auditory system, were found to degenerate distinctly in aged common marmosets, indicating that neural degeneration caused presbycusis in these animals. Similarly, age-associated ABR deterioration without loss of OHC function was observed in another NHP, rhesus monkeys. Audiometry results from these two species of NHP suggested that NHPs were ideal for studying ARHL and that neural presbycusis at high frequency may be prevalent in primates.
Collapse
Affiliation(s)
- Zhuoer Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| | - Neng Gong
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhen Xu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, Shanghai 200011, P.R. China
| |
Collapse
|
65
|
Next-Generation Sequencing Identifies Pathogenic Variants in HGF, POU3F4, TECTA, and MYO7A in Consanguineous Pakistani Deaf Families. Neural Plast 2021; 2021:5528434. [PMID: 33976695 PMCID: PMC8084664 DOI: 10.1155/2021/5528434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 01/20/2023] Open
Abstract
Background Approximately 70% of congenital deafness is attributable to genetic causes. Incidence of congenital deafness is known to be higher in families with consanguineous marriage. In this study, we investigated the genetic causes in three consanguineous Pakistani families segregating with prelingual, severe-to-profound deafness. Results Through targeted next-generation sequencing of 414 genes known to be associated with deafness, homozygous variants c.536del (p. Leu180Serfs∗20) in TECTA, c.3719 G>A (p. Arg1240Gln) in MYO7A, and c.482+1986_1988del in HGF were identified as the pathogenic causes of enrolled families. Interestingly, in one large consanguineous family, an additional c.706G>A (p. Glu236Lys) variant in the X-linked POU3F4 gene was also identified in multiple affected family members causing deafness. Genotype-phenotype cosegregation was confirmed in all participating family members by Sanger sequencing. Conclusions Our results showed that the genetic causes of deafness are highly heterogeneous. Even within a single family, the affected members with apparently indistinguishable clinical phenotypes may have different pathogenic variants.
Collapse
|
66
|
Xue W, Tian Y, Xiong Y, Liu F, Feng Y, Chen Z, Yu D, Yin S. Transcriptomic Analysis Reveals an Altered Hcy Metabolism in the Stria Vascularis of the Pendred Syndrome Mouse Model. Neural Plast 2021; 2021:5585394. [PMID: 33959158 PMCID: PMC8075705 DOI: 10.1155/2021/5585394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Slc26a4-/- mice exhibit severer defects in the development of the cochlea and develop deafness, while the underlying mechanisms responsible for these effects remain unclear. Our study was to investigate the potential mechanism linking SLC26A4 deficiency to hearing loss. MATERIALS AND METHODS RNA sequencing was applied to analyze the differential gene expression of the stria vascularis (SV) from wildtype and Slc26a4-/- mice. GO and KEGG pathway analysis were performed. Quantitative RT-PCR was applied to validate the expression of candidate genes affected by Slc26a4. ELISA and immunofluorescence technique were used to detect the homocysteine (Hcy) level in serum, brain, and SV, respectively. RESULTS 183 upregulated genes and 63 downregulated genes were identified in the SV associated with Slc26a4 depletion. Transcriptomic profiling revealed that Slc26a4 deficiency significantly affected the expression of genes associated with cell adhesion, transmembrane transport, and the biogenesis of multicellular organisms. The SV from Slc26a4-/- mice exhibited a higher expression of Bhmt mRNAs, as well as altered homocysteine (Hcy) metabolism. CONCLUSIONS The altered expression of Bhmt results in a dramatic change in multiple biochemical reactions and a disruption of nutrient homeostasis in the endolymph which may contribute to hearing loss of Slc26a4 knockout mouse.
Collapse
Affiliation(s)
- Wenyue Xue
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yuxin Tian
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yuanping Xiong
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhengnong Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Dongzhen Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
67
|
Li Q, Liang P, Wang S, Li W, Wang J, Yang Y, An X, Chen J, Zha D. A novel KCNQ4 gene variant (c.857A>G; p.Tyr286Cys) in an extended family with non‑syndromic deafness 2A. Mol Med Rep 2021; 23:420. [PMID: 33846771 PMCID: PMC8025472 DOI: 10.3892/mmr.2021.12059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Deafness is one of the most common sensory disorders found in humans; notably, >60% of all cases of deafness have been attributed to genetic factors. Variants in potassium voltage-gated channel subfamily Q member 4 (KCNQ4) are etiologically linked to a type of progressive hearing loss, deafness non-syndromic autosomal dominant 2A (DFNA2A). In the present study, whole-exome sequencing (WES) was performed on three members of a five-generation Chinese family with 46 members with hearing loss. Pure tone audiometry and Sanger sequencing were performed for 11 family members to determine whether the novel variant in the KCNQ4 gene was segregated with the affected family members. In addition, evolutionary conservation analysis and computational tertiary structure protein prediction of the wild-type KCNQ4 protein and its variant were performed. The family exhibited autosomal dominant, progressive, post-lingual, non-syndromic sensorineural hearing loss. A novel co-segregating heterozygous missense variant (c.857A>G; p.Tyr286Cys) in the glycine-tyrosine-glycine signature sequence in the pore region of the KCNQ4 channel was identified. This variant was predicted to result in a tyrosine-to-cysteine substitution at position 286 in the KCNQ4 protein. The tyrosine at position 286 is well conserved across different species. The substitution of tyrosine with cysteine would affect the structure of the pore region, resulting in the loss of channel function. The KCNQ4 gene is one of the most common mutated genes observed in patients with autosomal dominant, non-syndromic hearing loss. Taken together, for the family analyzed in the present study, performing WES in conjunction with Sanger sequencing has led to the detection of a novel, potentially causative variant (c.857 A>G; p.Tyr286Cys) in exon 6 of the KCNQ4 gene. The present study has added to the number of pathogenic variants observed in the KCNQ4 gene, and the findings may prove to be useful for both the diagnosis of DFNA2A and in the design of early interventional therapies.
Collapse
Affiliation(s)
- Qiong Li
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Pengfei Liang
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shujuan Wang
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Li
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Wang
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Yang
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaogang An
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Chen
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dingjun Zha
- Department of Otolaryngology‑Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
68
|
Identification and Characterization of a Cryptic Genomic Deletion-Insertion in EYA1 Associated with Branchio-Otic Syndrome. Neural Plast 2021; 2021:5524381. [PMID: 33880118 PMCID: PMC8046558 DOI: 10.1155/2021/5524381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Branchio-oto-renal spectrum disorder (BORSD) is characterized by hearing loss accompanied by ear malformations, branchial cysts, and fistulae, with (branchio-oto-renal syndrome (BORS)) or without renal abnormalities (BOS (branchio-otic syndrome)). As the most common causative gene for BORSD, dominant mutations in EYA1 are responsible for approximately 40% of the cases. In a sporadic deaf patient diagnosed as BOS, we identified an apparent heterozygous genomic deletion spanning the first four coding exons and one 5′ noncoding exon of EYA1 by targeted next-generation sequencing of 406 known deafness genes. Real-time PCR at multiple regions of EYA1 confirmed the existence of this genomic deletion and extended its 5′ boundary beyond the 5′-UTR. Whole genome sequencing subsequently located the 5′ and 3′ breakpoints to 19268 bp upstream to the ATG initiation codon and 3180 bp downstream to exon 5. PCR amplification across the breakpoints in both the patient and his parents showed that the genomic alteration occurred de novo. Sanger sequencing of this PCR product revealed that it is in fact a GRCh38/hg38:chr8:g.71318554_71374171delinsTGCC genomic deletion-insertion. Our results showed that the genomic variant is responsible for the hearing loss associated with BOS and provided an example for deciphering such cryptic genomic alterations following pipelines of comprehensive exome/genome sequencing and designed verification.
Collapse
|
69
|
Low-Intensity Ultrasound Causes Direct Excitation of Auditory Cortical Neurons. Neural Plast 2021; 2021:8855055. [PMID: 33883994 PMCID: PMC8041518 DOI: 10.1155/2021/8855055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cochlear implantation is the first-line treatment for severe and profound hearing loss in children and adults. However, deaf patients with cochlear malformations or with cochlear nerve deficiencies are ineligible for cochlear implants. Meanwhile, the limited spatial selectivity and high risk of invasive craniotomy restrict the wide application of auditory brainstem implants. A noninvasive alternative strategy for safe and effective neuronal stimulation is urgently needed to address this issue. Because of its advantage in neural modulation over electrical stimulation, low-intensity ultrasound (US) is considered a safe modality for eliciting neural activity in the central auditory system. Although the neural modulation ability of low-intensity US has been demonstrated in the human primary somatosensory cortex and primary visual cortex, whether low-intensity US can directly activate auditory cortical neurons is still a topic of debate. To clarify the direct effects on auditory neurons, in the present study, we employed low-intensity US to stimulate auditory cortical neurons in vitro. Our data show that both low-frequency (0.8 MHz) and high-frequency (>27 MHz) US stimulation can elicit the inward current and action potentials in cultured neurons. c-Fos staining results indicate that low-intensity US is efficient for stimulating most neurons. Our study suggests that low-intensity US can excite auditory cortical neurons directly, implying that US-induced neural modulation can be a potential approach for activating the auditory cortex of deaf patients.
Collapse
|
70
|
Bai X, Chen S, Xu K, Jin Y, Niu X, Xie L, Qiu Y, Liu XZ, Sun Y. N-Acetylcysteine Combined With Dexamethasone Treatment Improves Sudden Sensorineural Hearing Loss and Attenuates Hair Cell Death Caused by ROS Stress. Front Cell Dev Biol 2021; 9:659486. [PMID: 33816510 PMCID: PMC8014036 DOI: 10.3389/fcell.2021.659486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Sudden sensorineural hearing loss (SSNHL) is a common emergency in the world. Increasing evidence of imbalance of oxidant–antioxidant were found in SSNHL patients. Steroids combined with antioxidants may be a potential strategy for the treatment of SSNHL. In cochlear explant experiment, we found that N-acetylcysteine (NAC) combined with dexamethasone can effectively protect hair cells from oxidative stress when they were both at ineffective concentrations alone. A clinic trial was designed to explore whether oral NAC combined with intratympanic dexamethasone (ITD) as a salvage treatment has a better therapeutic effect. 41 patients with SSNHL were randomized to two groups. 23 patients in control group received ITD therapy alone, while 18 patient s in NAC group were treated with oral NAC and ITD. The patients were followed-up on day 1st (initiation of treatment) and day 14th. Overall, there was no statistical difference in final pure-tone threshold average (PTA) improvement between those two groups. However, a significant hearing gain at 8,000 Hz was observed in NAC group. Moreover, the hearing recovery rates of NAC group is much higher than that in control group. These results demonstrated that oral NAC in combination with ITD therapy is a more effective therapy for SSNHL than ITD alone.
Collapse
Affiliation(s)
- Xue Bai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Jin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Niu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Qiu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
71
|
Abstract
Mitochondrial dysfunction has been suggested to be a risk factor for sensorineural hearing loss (SNHL) induced by aging, noise, ototoxic drugs, and gene. Reactive oxygen species (ROS) are mainly derived from mitochondria, and oxidative stress induced by ROS contributes to cochlear damage as well as mitochondrial DNA mutations, which may enhance the sensitivity and severity of hearing loss and disrupt ion homeostasis (e.g., Ca2+ homeostasis). The formation and accumulation of ROS further undermine mitochondrial components and ultimately lead to apoptosis and necrosis. SIRT3–5, located in mitochondria, belong to the family of sirtuins, which are highly conserved deacetylases dependent on nicotinamide adenine dinucleotide (NAD+). These deacetylases regulate diverse cellular biochemical activities. Recent studies have revealed that mitochondrial sirtuins, especially SIRT3, modulate ROS levels in hearing loss pathologies. Although the precise functions of SIRT4 and SIRT5 in the cochlea remain unclear, the molecular mechanisms in other tissues indicate a potential protective effect against hearing loss. In this review, we summarize the current knowledge regarding the role of mitochondrial dysfunction in hearing loss, discuss possible functional links between mitochondrial sirtuins and SNHL, and propose a perspective that SIRT3–5 have a positive effect on SNHL.
Collapse
|
72
|
Wang H, Gao Y, Guan J, Lan L, Yang J, Xiong W, Zhao C, Xie L, Yu L, Wang D, Wang Q. Phenotypic Heterogeneity of Post-lingual and/or Milder Hearing Loss for the Patients With the GJB2 c.235delC Homozygous Mutation. Front Cell Dev Biol 2021; 9:647240. [PMID: 33718389 PMCID: PMC7953049 DOI: 10.3389/fcell.2021.647240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 01/01/2023] Open
Abstract
Objective To report the phenotypic heterogeneity of GJB2 c.235delC homozygotes associated with post-lingual and/or milder hearing loss, and explore the possible mechanism of these unconditional phenotypes. Methods Mutation screening of GJB2 was performed on all ascertained members from Family 1006983 and three sporadic patients by polymerase chain reaction (PCR) amplification and Sanger sequencing. Next generation sequencing (NGS) was successively performed on some of the affected members and normal controls from Family 1006983 to explore additional possible genetic codes. Reverse transcriptase–quantitative PCR was conducted to test the expression of Connexin30. Results We identified a Chinese autosomal recessive hearing loss family with the GJB2 c.235delC homozygous mutation, affected members from which had post-lingual moderate to profound hearing impairment, and three sporadic patients with post-lingual moderate hearing impairment, instead of congenital profound hearing loss. NGS showed no other particular variants. Overexpression of Connexin30 in some of these cases was verified. Conclusion Post-lingual and/or moderate hearing impairment phenotypes of GJB2 c.235delC homozygotes are not the most common phenotype, revealing the heterogeneity of GJB2 pathogenic mutations. To determine the possible mechanism that rescues part of the hearing or postpones onset age of these cases, more cases are required to confirm both Connexin30 overexpression and the existence of modifier genes.
Collapse
Affiliation(s)
- Hongyang Wang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Gao
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Jing Guan
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Lan Lan
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Ju Yang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Wenping Xiong
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Cui Zhao
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Linyi Xie
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Lan Yu
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Dayong Wang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| | - Qiuju Wang
- College of Otolaryngology, Head and Neck Surgery, Chinese People's Liberation Army (PLA) Institute of Otolaryngology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, Beijing, China.,Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China.,Key Lab of Hearing Impairment Prevention and Treatment of Beijing, Beijing, China
| |
Collapse
|
73
|
Xiao L, Sun Y, Liu C, Zheng Z, Shen Y, Xia L, Yang G, Feng Y. Molecular Behavior of HMGB1 in the Cochlea Following Noise Exposure and in vitro. Front Cell Dev Biol 2021; 9:642946. [PMID: 33732708 PMCID: PMC7959764 DOI: 10.3389/fcell.2021.642946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is characterized by cellular damage to the inner ear, which is exacerbated by inflammation. High-mobility group box 1 (HMGB1), a representative damage-associated molecular pattern (DAMP), acts as a mediator of inflammation or an intercellular messenger according to its cellular localization. Blocking or regulating HMGB1 offers an attractive approach in ameliorating NIHL. However, the precise therapeutic intervention must be based on a deeper understanding of its dynamic molecular distribution and function in cochlear pathogenesis after acoustic trauma. Here, we have presented the spatiotemporal dynamics of the expression of HMGB1, exhibiting distribution variability in specific cochlear regions and cells following noise exposure. After gene manipulation, we further investigated the characteristics of cellular HMGB1 in HEI-OC1 cells. The higher cell viability observed in the HMGB1 knocked-down group after stimulation with H2O2 indicated the possible negative effect of HMGB1 on cellular lifespan. In conclusion, this study demonstrated that HMGB1 is involved in NIHL pathogenesis and its molecular biology has essential and subtle influences, preserving a translational potential for pharmacological intervention.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yan Sun
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Chengqi Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhong Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ying Shen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Liang Xia
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Guang Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
74
|
Liu H, Peng H, Wang L, Xu P, Wang Z, Liu H, Wu H. Differences in Calcium Clearance at Inner Hair Cell Active Zones May Underlie the Difference in Susceptibility to Noise-Induced Cochlea Synaptopathy of C57BL/6J and CBA/CaJ Mice. Front Cell Dev Biol 2021; 8:635201. [PMID: 33634111 PMCID: PMC7902005 DOI: 10.3389/fcell.2020.635201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
Noise exposure of a short period at a moderate level can produce permanent cochlear synaptopathy without seeing lasting changes in audiometric threshold. However, due to the species differences in inner hair cell (IHC) calcium current that we have recently discovered, the susceptibility to noise exposure may vary, thereby impact outcomes of noise exposure. In this study, we investigate the consequences of noise exposure in the two commonly used animal models in hearing research, CBA/CaJ (CBA) and C57BL/6J (B6) mice, focusing on the functional changes of cochlear IHCs. In the CBA mice, moderate noise exposure resulted in a typical fully recovered audiometric threshold but a reduced wave I amplitude of auditory brainstem responses. In contrast, both auditory brainstem response threshold and wave I amplitude fully recovered in B6 mice at 2 weeks after noise exposure. Confocal microscopy observations found that ribbon synapses of IHCs recovered in B6 mice but not in CBA mice. To further characterize the molecular mechanism underlying these different phenotypes in synaptopathy, we compared the ratio of Bax/Bcl-2 with the expression of cytochrome-C and found increased activity in CBA mice after noise exposure. Under whole-cell patch clamped IHCs, we acquired two-photon calcium imaging around the active zone to evaluate the Ca2+ clearance rate and found that CBA mice have a slower calcium clearance rate. Our results indicated that excessive accumulation of calcium due to acoustic overexposure and slow clearance around the presynaptic ribbon might lead to disruption of calcium homeostasis, followed by mitochondrial dysfunction of IHCs that cause susceptibility of noise-induced cochlear synaptopathy in CBA mice.
Collapse
Affiliation(s)
- Hongchao Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hu Peng
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Longhao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Pengcheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhaoyan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
75
|
Minehart JA, Speer CM. A Picture Worth a Thousand Molecules-Integrative Technologies for Mapping Subcellular Molecular Organization and Plasticity in Developing Circuits. Front Synaptic Neurosci 2021; 12:615059. [PMID: 33469427 PMCID: PMC7813761 DOI: 10.3389/fnsyn.2020.615059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
A key challenge in developmental neuroscience is identifying the local regulatory mechanisms that control neurite and synaptic refinement over large brain volumes. Innovative molecular techniques and high-resolution imaging tools are beginning to reshape our view of how local protein translation in subcellular compartments drives axonal, dendritic, and synaptic development and plasticity. Here we review recent progress in three areas of neurite and synaptic study in situ-compartment-specific transcriptomics/translatomics, targeted proteomics, and super-resolution imaging analysis of synaptic organization and development. We discuss synergies between sequencing and imaging techniques for the discovery and validation of local molecular signaling mechanisms regulating synaptic development, plasticity, and maintenance in circuits.
Collapse
Affiliation(s)
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
76
|
Zhao T, Zheng T, Yu H, Hu BH, Hu B, Ma P, Yang Y, Yang N, Hu J, Cao T, Chen G, Yan B, Peshoff M, Hatzoglou M, Geng R, Li B, Zheng QY. Autophagy impairment as a key feature for acetaminophen-induced ototoxicity. Cell Death Dis 2021; 12:3. [PMID: 33414397 PMCID: PMC7791066 DOI: 10.1038/s41419-020-03328-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Macroautophagy/autophagy is a highly conserved self-digestion pathway that plays an important role in cytoprotection under stress conditions. Autophagy is involved in hepatotoxicity induced by acetaminophen (APAP) in experimental animals and in humans. APAP also causes ototoxicity. However, the role of autophagy in APAP-induced auditory hair cell damage is unclear. In the present study, we investigated autophagy mechanisms during APAP-induced cell death in a mouse auditory cell line (HEI-OC1) and mouse cochlear explant culture. We found that the expression of LC3-II protein and autophagic structures was increased in APAP-treated HEI-OC1 cells; however, the degradation of SQSTM1/p62 protein, the yellow puncta of mRFP-GFP-LC3 fluorescence, and the activity of lysosomal enzymes decreased in APAP-treated HEI-OC1 cells. The degradation of p62 protein and the expression of lysosomal enzymes also decreased in APAP-treated mouse cochlear explants. These data indicate that APAP treatment compromises autophagic degradation and causes lysosomal dysfunction. We suggest that lysosomal dysfunction may be directly responsible for APAP-induced autophagy impairment. Treatment with antioxidant N-acetylcysteine (NAC) partially alleviated APAP-induced autophagy impairment and apoptotic cell death, suggesting the involvement of oxidative stress in APAP-induced autophagy impairment. Inhibition of autophagy by knocking down of Atg5 and Atg7 aggravated APAP-induced ER and oxidative stress and increased apoptotic cell death. This study provides a better understanding of the mechanism responsible for APAP ototoxicity, which is important for future exploration of treatment strategies for the prevention of hearing loss caused by ototoxic medications.
Collapse
Affiliation(s)
- Tong Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Huining Yu
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Bing Hu
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Peng Ma
- Department of Genetics, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ying Yang
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Juan Hu
- Department of Otolaryngology-Head & Neck Surgery, Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Tongtao Cao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Gang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bin Yan
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Melina Peshoff
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, USA
| | - Maria Hatzoglou
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China.
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China.
| | - Qing Yin Zheng
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
77
|
Yan L, Wang W, Wu X, Fang Q, Yang J. Clinical characteristics of subjective idiopathic tinnitus and preliminarily analyses for the effect of tinnitus multielement integration sound therapy. Eur Arch Otorhinolaryngol 2021; 278:4199-4207. [PMID: 33388978 DOI: 10.1007/s00405-020-06501-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the psychoacoustic and audiological characteristics of patients with chronic subjective tinnitus and provide basis for the personalized diagnosis and treatment of tinnitus through a single tinnitus multielement integration sound therapy (T-MIST) and analysis of efficacy preliminarily. METHODS 145 patients with tinnitus were assessed by systematic medical history collection, professional examination of otolaryngology, audiology examination, full precision test (FPT), residual inhibition test (RIT), tinnitus handicap inventory (THI) and visual analog scale (VAS) annoyance. The correlation among factors was performed. RESULTS The frequency of tinnitus was correlated with the frequency of maximum hearing loss (P < 0.05). The loudness of tinnitus was correlated with the loudness of maximum hearing loss (P < 0.05). In this study, T-MIST was used to treat tinnitus. After treatment, tinnitus alleviated VAS annoyance (P < 0.05). The results of RIT were correlated with the effect of T-MIST (P < 0.05). CONCLUSION There was a correlation between tinnitus and hearing loss. The RIT may indicate the effectiveness of acoustic therapy in patients. The FPT can find the hidden hearing loss without display on routine pure tone audiometry, so as to provide a clinical reference for the detection of early hearing loss in tinnitus patients.
Collapse
Affiliation(s)
- Lin Yan
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230000, China
| | - Weiqing Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230000, China
| | - Xiaoman Wu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230000, China
| | - Qi Fang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230000, China
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230000, China.
| |
Collapse
|
78
|
Yang P, Yang Y, Sun P, Tian Y, Gao F, Wang C, Zong T, Li M, Zhang Y, Yu T, Jiang Z. βII spectrin (SPTBN1): biological function and clinical potential in cancer and other diseases. Int J Biol Sci 2021; 17:32-49. [PMID: 33390831 PMCID: PMC7757025 DOI: 10.7150/ijbs.52375] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
βII spectrin, the most common isoform of non-erythrocyte spectrin, is a cytoskeleton protein present in all nucleated cells. Interestingly, βII spectrin is essential for the development of various organs such as nerve, epithelium, inner ear, liver and heart. The functions of βII spectrin include not only establishing and maintaining the cell structure but also regulating a variety of cellular functions, such as cell apoptosis, cell adhesion, cell spreading and cell cycle regulation. Notably, βII spectrin dysfunction is associated with embryonic lethality and the DNA damage response. More recently, the detection of altered βII spectrin expression in tumors indicated that βII spectrin might be involved in the development and progression of cancer. Its mutations and disorders could result in developmental disabilities and various diseases. The versatile roles of βII spectrin in disease have been examined in an increasing number of studies; nonetheless, the exact mechanisms of βII spectrin are still poorly understood. Thus, we summarize the structural features and biological roles of βII spectrin and discuss its molecular mechanisms and functions in development, homeostasis, regeneration and differentiation. This review highlight the potential effects of βII spectrin dysfunction in cancer and other diseases, outstanding questions for the future investigation of therapeutic targets. The investigation of the regulatory mechanism of βII spectrin signal inactivation and recovery may bring hope for future therapy of related diseases.
Collapse
Affiliation(s)
- Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fang Gao
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chen Wang
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
79
|
Protection of Cochlear Ribbon Synapses and Prevention of Hidden Hearing Loss. Neural Plast 2020; 2020:8815990. [PMID: 33204247 PMCID: PMC7652619 DOI: 10.1155/2020/8815990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 01/21/2023] Open
Abstract
In the auditory system, ribbon synapses are vesicle-associated structures located between inner hair cells (IHCs) and spiral ganglion neurons that are implicated in the modulation of trafficking and fusion of synaptic vesicles at the presynaptic terminals. Synapse loss may result in hearing loss and difficulties with understanding speech in a noisy environment. This phenomenon happens without permanent hearing loss; that is, the cochlear synaptopathy is "hidden." Recent studies have reported that synapse loss might be critical in the pathogenesis of hidden hearing loss. A better understanding of the molecular mechanisms of the formation, structure, regeneration, and protection of ribbon synapses will assist in the design of potential therapeutic strategies. In this review, we describe and summarize the following aspects of ribbon synapses: (1) functional and structural features, (2) potential mechanisms of damage, (3) therapeutic research on protecting the synapses, and (4) the role of synaptic regeneration in auditory neuropathy and the current options for synapse rehabilitation.
Collapse
|
80
|
Li H, Yang J, Tian C, Diao M, Wang Q, Zhao S, Li S, Tan F, Hua T, Qin Y, Lin CP, Deska-Gauthier D, Thompson GJ, Zhang Y, Shui W, Liu ZJ, Wang T, Zhong G. Organized cannabinoid receptor distribution in neurons revealed by super-resolution fluorescence imaging. Nat Commun 2020; 11:5699. [PMID: 33177502 PMCID: PMC7659323 DOI: 10.1038/s41467-020-19510-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/15/2020] [Indexed: 11/22/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) play important roles in cellular functions. However, their intracellular organization is largely unknown. Through investigation of the cannabinoid receptor 1 (CB1), we discovered periodically repeating clusters of CB1 hotspots within the axons of neurons. We observed these CB1 hotspots interact with the membrane-associated periodic skeleton (MPS) forming a complex crucial in the regulation of CB1 signaling. Furthermore, we found that CB1 hotspot periodicity increased upon CB1 agonist application, and these activated CB1 displayed less dynamic movement compared to non-activated CB1. Our results suggest that CB1 forms periodic hotspots organized by the MPS as a mechanism to increase signaling efficacy upon activation. Despite the importance of G-protein-coupled receptors in many cellular functions, their intracellular organisation is largely unknown. The authors identified periodically repeating clusters of cannabinoid receptor 1 hotspots within neuronal axons that are dynamically regulated by CB1 agonists.
Collapse
Affiliation(s)
- Hui Li
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jie Yang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Cuiping Tian
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Min Diao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Quan Wang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,University of the Chinese Academy of Sciences, 100049, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Simeng Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Shanshan Li
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Ya Qin
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Dylan Deska-Gauthier
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Garth J Thompson
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Ying Zhang
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Tong Wang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
81
|
Altered Brain Activity and Functional Connectivity in Unilateral Sudden Sensorineural Hearing Loss. Neural Plast 2020; 2020:9460364. [PMID: 33029130 PMCID: PMC7527900 DOI: 10.1155/2020/9460364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022] Open
Abstract
Background Sudden sensorineural hearing loss (SSNHL) is an otologic emergency and could lead to social difficulties and mental disorders in some patients. Although many studies have analyzed altered brain function in populations with hearing loss, little information is available about patients with idiopathic SSNHL. This study is aimed at investigating brain functional changes in SSNHL via functional magnetic resonance imaging (fMRI). Methods Thirty-six patients with SSNHL and thirty well-matched normal hearing individuals underwent resting-state fMRI. Amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and functional connectivity (FC) values were calculated. Results In the SSNHL patients, ALFF and fALFF were significantly increased in the bilateral putamen but decreased in the right calcarine cortex, right middle temporal gyrus (MTG), and right precentral gyrus. Widespread increases in FC were observed between brain regions, mainly including the bilateral auditory cortex, bilateral visual cortex, left striatum, left angular gyrus (AG), bilateral precuneus, and bilateral limbic lobes in patients with SSNHL. No decreased FC was observed. Conclusion SSNHL causes functional alterations in brain regions, mainly in the striatum, auditory cortex, visual cortex, MTG, AG, precuneus, and limbic lobes within the acute period of hearing loss.
Collapse
|
82
|
Cisplatin-Induced Stria Vascularis Damage Is Associated with Inflammation and Fibrosis. Neural Plast 2020; 2020:8851525. [PMID: 33029120 PMCID: PMC7527906 DOI: 10.1155/2020/8851525] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
The stria vascularis (SV) generates the endocochlear potential (EP) in the inner ear and is necessary for proper hair cell (HC) mechanotransduction and hearing. Cell junctions are indispensable for the establishment of compositionally distinct fluid compartments in the inner ear. Ototoxic drug cisplatin can damage SV and cause sensorineural hearing loss; however, the underlying mechanisms behind such injury are unclear. In this study, after the intraperitoneal injection of cisplatin (3 mg/kg/day for 7 days) in mice, we determined the auditory function by EP recording and auditory brainstem response (ABR) analysis, observed the ultrastructure of SV by transmission electron microscopy (TEM), and examined the expression and distribution of cell junction proteins by western blot, PCR, and immunofluorescence staining. We discovered that the EP was significantly reduced while ABR thresholds were significantly elevated in cisplatin-treated mice; cisplatin induced ultrastructural changes in marginal cells (MCs), endothelial cells (ECs), pericytes, etc. We found that cisplatin insulted auditory function not only by reducing the expression of zonula occludens protein-1 (ZO-1) in MCs of the SV but also by decreasing the expression of connexin 26 (Cx26) and connexin 43 (Cx43) in MCs and basal cells (BCs). More importantly, cisplatin induced activations of perivascular-resident macrophage-like melanocytes (PVM/Ms) and interleukin-1beta (IL-1β) as well as increased expressions of profibrotic proteins such as laminin and collagen IV in SV. Thus, our results firstly showed that cisplatin induced fibrosis, inflammation, and the complex expression change of cell junctions in SV.
Collapse
|
83
|
Shen N, Zhou L, Lai B, Li S. The Influence of Cochlear Implant-Based Electric Stimulation on the Electrophysiological Characteristics of Cultured Spiral Ganglion Neurons. Neural Plast 2020; 2020:3108490. [PMID: 32963515 PMCID: PMC7490630 DOI: 10.1155/2020/3108490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/22/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background Cochlear implant-based electrical stimulation may be an important reason to induce the residual hearing loss after cochlear implantation. In our previous study, we found that charge-balanced biphasic electrical stimulation inhibited the neurite growth of spiral ganglion neurons (SGNs) and decreased Schwann cell density in vitro. In this study, we want to know whether cochlear implant-based electrical stimulation can induce the change of electrical activity in cultured SGNs. Methods Spiral ganglion neuron electrical stimulation in vitro model is established using the devices delivering cochlear implant-based electrical stimulation. After 48 h treatment by 50 μA or 100 μA electrical stimulation, the action potential (AP) and voltage depended calcium current (I Ca) of SGNs are recorded using whole-cell electrophysiological method. Results The results show that the I Ca of SGNs is decreased significantly in 50 μA and 100 μA electrical stimulation groups. The reversal potential of I Ca is nearly +80 mV in control SGN, but the reversal potential decreases to +50 mV in 50 μA and 100 μA electrical stimulation groups. Interestingly, the AP amplitude, the AP latency, and the AP duration of SGNs have no statistically significant differences in all three groups. Conclusion Our study suggests cochlear implant-based electrical stimulation only significantly inhibit the I Ca of cultured SGNs but has no effect on the firing of AP, and the relation of I Ca inhibition and SGN damage induced by electrical stimulation and its mechanism needs to be further studied.
Collapse
Affiliation(s)
- Na Shen
- Department of Otolaryngology, Zhongshan Hospital, Fudan University, Shanghai, China
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Otolaryngology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shufeng Li
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| |
Collapse
|
84
|
Cochlear Implantation in a Patient with a Novel POU3F4 Mutation and Incomplete Partition Type-III Malformation. Neural Plast 2020; 2020:8829587. [PMID: 32952548 PMCID: PMC7481964 DOI: 10.1155/2020/8829587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023] Open
Abstract
Aims This study is aimed at (1) analyzing the clinical manifestations and genetic features of a novel POU3F4 mutation in a nonsyndromic X-linked recessive hearing loss family and (2) reporting the outcomes of cochlear implantation in a patient with this mutation. Methods A patient who was diagnosed as the IP-III malformation underwent cochlear implantation in our hospital. The genetic analysis was conducted in his family, including the whole-exome sequencing combined with Sanger sequencing and bioinformatic analysis. Clinical features, preoperative auditory and speech performances, and postoperative outcomes of cochlear implant (CI) were assessed on the proband and his family. Results A novel variant c.400_401insACTC (p.Q136LfsX58) in the POU3F4 gene was detected in the family, which was cosegregated with the hearing loss. This variant was absent in 200 normal-hearing persons. The phylogenetic analysis and structure modeling of Pou3f4 protein further confirmed that the novel mutation was pathogenic. The proband underwent cochlear implantation on the right ear at four years old and gained greatly auditory and speech improvement. However, the benefits of the CI declined about three and a half years postoperation. Though the right ear had been reimplanted, the outcomes were still worse than before. Conclusion A novel frame shift variant c.400_401insACTC (p.Q136LfsX58) in the POU3F4 gene was identified in a Chinese family with X-linked inheritance hearing loss. A patient with this mutation and IP-III malformation could get good benefits from CI. However, the outcomes of the cochlear implantation might decline as the patient grows old.
Collapse
|
85
|
Targeted Next-Generation Sequencing Identifies Separate Causes of Hearing Loss in One Deaf Family and Variable Clinical Manifestations for the p.R161C Mutation in SOX10. Neural Plast 2020; 2020:8860837. [PMID: 32908489 PMCID: PMC7474784 DOI: 10.1155/2020/8860837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
Hearing loss is the most common sensory deficit in humans. Identifying the genetic cause and genotype-phenotype correlation of hearing loss is sometimes challenging due to extensive clinical and genetic heterogeneity. In this study, we applied targeted next-generation sequencing (NGS) to resolve the genetic etiology of hearing loss in a Chinese Han family with multiple affected family members. Targeted sequencing of 415 deafness-related genes identified the heterozygous c.481C>T (p.R161C) mutation in SOX10 and the homozygous c.235delC (p.L79Cfs∗3) mutation in GJB2 as separate pathogenic mutations in distinct affected family members. The SOX10 c.481C>T (p.R161C) mutation has been previously reported in a Caucasian patient with Kallmann syndrome that features congenital hypogonadotropic hypogonadism with anosmia. In contrast, family members carrying the same p.R161C mutation in this study had variable Waardenburg syndrome-associated phenotypes (hearing loss and/or hair hypopigmentation) without olfactory or reproductive anomalies. Our results highlight the importance of applying comprehensive diagnostic approaches such as NGS in molecular diagnosis of hearing loss and show that the p.R161C mutation in SOX10 may be associated with a wide range of variable clinical manifestations.
Collapse
|
86
|
Sun F, Zhou K, Tian KY, Wang J, Qiu JH, Zha DJ. Atrial Natriuretic Peptide Improves Neurite Outgrowth from Spiral Ganglion Neurons In Vitro through a cGMP-Dependent Manner. Neural Plast 2020; 2020:8831735. [PMID: 33193754 PMCID: PMC7643369 DOI: 10.1155/2020/8831735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
The spiral ganglion neurons (SGNs) are the primary afferent neurons in the spiral ganglion (SG), while their degeneration or loss would cause sensorineural hearing loss. As a cardiac-derived hormone, atrial natriuretic peptide (ANP) plays a critical role in cardiovascular homeostasis through binding to its functional receptors (NPR-A and NPR-C). ANP and its receptors are widely expressed in the mammalian nervous system where they could be implicated in the regulation of multiple neural functions. Although previous studies have provided direct evidence for the presence of ANP and its functional receptors in the inner ear, their presence within the cochlear SG and their regulatory roles during auditory neurotransmission and development remain largely unknown. Based on our previous findings, we investigated the expression patterns of ANP and its receptors in the cochlear SG and dissociated SGNs and determined the influence of ANP on neurite outgrowth in vitro by using organotypic SG explants and dissociated SGN cultures from postnatal rats. We have demonstrated that ANP and its receptors are expressed in neurons within the cochlear SG of postnatal rat, while ANP may promote neurite outgrowth of SGNs via the NPR-A/cGMP/PKG pathway in a dose-dependent manner. These results indicate that ANP would play a role in normal neuritogenesis of SGN during cochlear development and represents a potential therapeutic candidate to enhance regeneration and regrowth of SGN neurites.
Collapse
Affiliation(s)
- Fei Sun
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke Zhou
- Center of Clinical Laboratory Medicine of PLA, Department of Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke-yong Tian
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, China
| | - Jian-hua Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ding-jun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
87
|
A Novel Spontaneous Mutation of the SOX10 Gene Associated with Waardenburg Syndrome Type II. Neural Plast 2020; 2020:9260807. [PMID: 32908492 PMCID: PMC7474791 DOI: 10.1155/2020/9260807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
Waardenburg syndrome (WS), also known as auditory-pigmentary syndrome, is the most common cause of syndromic hearing loss. It is responsible for 2–5% of congenital deafness. WS is classified into four types depending on the clinical phenotypes. Currently, pathogenic mutation of PAX3, MITF, EDNRB, EDN3, SNAI2, or SOX10 can cause corresponding types of WS. Among them, SOX10 mutation is responsible for approximately 15% of type II WS or 50% of type IV WS. We report the case of a proband in a Chinese family who was diagnosed with WS type II. Whole exome sequencing (WES) of the proband detected a novel heterozygous spontaneous mutation: SOX10 c.246delC. According to analysis based on nucleic acid and amino acid sequences, this mutation may produce a truncated protein, with loss of the HMG structure domain. Therefore, this truncated protein may fail to activate the expression of the MITF gene, which regulates melanocytic development and plays a key role in WS. Our finding expands the database of SOX10 mutations associated with WS and provides more information regarding the molecular mechanism of WS.
Collapse
|
88
|
Mitochondrial Dysfunction and Therapeutic Targets in Auditory Neuropathy. Neural Plast 2020; 2020:8843485. [PMID: 32908487 PMCID: PMC7474759 DOI: 10.1155/2020/8843485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/27/2020] [Accepted: 07/11/2020] [Indexed: 11/30/2022] Open
Abstract
Sensorineural hearing loss (SNHL) becomes an inevitable worldwide public health issue, and deafness treatment is urgently imperative; yet their current curative therapy is limited. Auditory neuropathies (AN) were proved to play a substantial role in SNHL recently, and spiral ganglion neuron (SGN) dysfunction is a dominant pathogenesis of AN. Auditory pathway is a high energy consumption system, and SGNs required sufficient mitochondria. Mitochondria are known treatment target of SNHL, but mitochondrion mechanism and pathology in SGNs are not valued. Mitochondrial dysfunction and pharmacological therapy were studied in neurodegeneration, providing new insights in mitochondrion-targeted treatment of AN. In this review, we summarized mitochondrial biological functions related to SGNs and discussed interaction between mitochondrial dysfunction and AN, as well as existing mitochondrion treatment for SNHL. Pharmaceutical exploration to protect mitochondrion dysfunction is a feasible and effective therapeutics for AN.
Collapse
|
89
|
Alternative Splicing of Cdh23 Exon 68 Is Regulated by RBM24, RBM38, and PTBP1. Neural Plast 2020; 2020:8898811. [PMID: 32774357 PMCID: PMC7397384 DOI: 10.1155/2020/8898811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing plays a pivotal role in modulating the function of eukaryotic proteins. In the inner ear, many genes undergo alternative splicing, and errors in this process lead to hearing loss. Cadherin 23 (CDH23) forms part of the so-called tip links, which are indispensable for mechanoelectrical transduction (MET) in the hair cells. Cdh23 gene contains 69 exons, and exon 68 is subjected to alternative splicing. Exon 68 of the Cdh23 gene is spliced into its mRNA only in a few cell types including hair cells. The mechanism responsible for the alternative splicing of Cdh23 exon 68 remains elusive. In the present work, we performed a cell-based screening to look for splicing factors that regulate the splicing of Cdh23 exon 68. RBM24 and RBM38 were identified to enhance the inclusion of Cdh23 exon 68. The splicing of Cdh23 exon 68 is affected in Rbm24 knockdown or knockout cells. Moreover, we also found that PTBP1 inhibits the inclusion of Cdh23 exon 68. Taken together, we show here that alternative splicing of Cdh23 exon 68 is regulated by RBM24, RBM38, and PTBP1.
Collapse
|
90
|
Differences in Clinical Characteristics and Brain Activity between Patients with Low- and High-Frequency Tinnitus. Neural Plast 2020; 2020:5285362. [PMID: 32774356 PMCID: PMC7399790 DOI: 10.1155/2020/5285362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022] Open
Abstract
This study was aimed at delineating and comparing differences in clinical characteristics and brain activity between patients with low- and high-frequency tinnitus (LFT and HFT, respectively) using high-density electroencephalography (EEG). This study enrolled 3217 patients with subjective tinnitus who were divided into LFT (frequency < 4000 Hz) and HFT (≥4000 Hz) groups. Data regarding medical history, Tinnitus Handicap Inventory, tinnitus matching, and hearing threshold were collected from all patients. Twenty tinnitus patients and 20 volunteers were subjected to 256-channel EEG, and neurophysiological differences were evaluated using standardized low-resolution brain electromagnetic tomography (sLORETA) source-localized EEG recordings. Significant differences in sex (p < 0.001), age (p = 0.022), laterality (p < 0.001), intensity (p < 0.001), tinnitus type (p < 0.001), persistent tinnitus (p = 0.04), average threshold (p < 0.001), and hearing loss (p = 0.028) were observed between LFT and HFT groups. The tinnitus pitch only appeared to be correlated with the threshold of the worst hearing loss in the HFT group. Compared with the controls, the LFT group exhibited increased gamma power (p < 0.05), predominantly in the posterior cingulate cortex (PCC, BA31), whereas the HFT group had significantly decreased alpha1 power (p < 0.05) in the angular gyrus (BA39) and auditory association cortex (BA22). Higher gamma linear connectivity between right BA39 and right BA41 was observed in the HFT group relative to controls (t = 3.637, p = 0.027). Significant changes associated with increased gamma in the LFT group and decreased alpha1 in the HFT group indicate that tinnitus pitch is crucial for matching between the tinnitus and control groups. Differences of band frequency energy in brain activity levels may contribute to the clinical characteristics and internal tinnitus “spectrum” differences.
Collapse
|
91
|
Transcript Profiles of Stria Vascularis in Models of Waardenburg Syndrome. Neural Plast 2020; 2020:2908182. [PMID: 32802035 PMCID: PMC7416267 DOI: 10.1155/2020/2908182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Waardenburg syndrome is an uncommon genetic condition characterized by at least some degree of congenital hearing loss and pigmentation deficiencies. However, the genetic pathway affecting the development of stria vascularis is not fully illustrated. Methods The transcript profile of stria vascularis of Waardenburg syndrome was studied using Mitf-M mutant pig and mice models. Therefore, GO analysis was performed to identify the differential gene expression caused by Mitf-M mutation. Results There were 113 genes in tyrosine metabolism, melanin formation, and ion transportations showed significant changes in pig models and 191 genes in mice models. In addition, there were some spice's specific gene changes in the stria vascularis in the mouse and porcine models. The expression of tight junction-associated genes, including Cadm1, Cldn11, Pcdh1, Pcdh19, and Cdh24 genes, were significantly higher in porcine models compared to mouse models. Vascular-related and ion channel-related genes in the stria vascularis were also shown significantly difference between the two species. The expression of Col2a1, Col3a1, Col11a1, and Col11a2 genes were higher, and the expression of Col8a2, Cd34, and Ncam genes were lower in the porcine models compared to mouse models. Conclusions Our data suggests that there is a significant difference on the gene expression and function between these two models.
Collapse
|
92
|
Hearing Phenotypes of Patients with Hearing Loss Homozygous for the GJB2 c.235delc Mutation. Neural Plast 2020; 2020:8841522. [PMID: 32802038 PMCID: PMC7416285 DOI: 10.1155/2020/8841522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 01/17/2023] Open
Abstract
Hereditary hearing loss is characterized by remarkable phenotypic heterogeneity. Patients with the same pathogenic mutations may exhibit various hearing loss phenotypes. In the Chinese population, the c.235delC mutation is the most common pathogenic mutation of GJB2 and is closely related to hereditary recessive hearing loss. Here, we investigated the hearing phenotypes of patients with hearing loss associated with the homozygous c.235delC mutation, paying special attention to asymmetric interaural hearing loss. A total of 244 patients with the GJB2 c.235delC homozygous mutation encountered from 2007 to 2015 were enrolled. The severity of hearing loss was scaled with the American Speech-Language-Hearing Association (ASHA). Auditory phenotypes were analyzed, and three types of interaural asymmetry were defined based on audiograms: Type A (asymmetry of hearing loss severity), Type B (asymmetry of audiogram shape), and Type C (Type A plus Type B). Of the 488 ears (244 cases) examined, 71.93% (351) presented with profound hearing loss, 14.34% (70) with severe hearing loss, and 9.43% (46) with moderate to severe hearing loss. The most common audiogram shapes were descending (31.15%) and flat (24.18%). A total of 156 (63.93%) of the 244 patients exhibited asymmetric interaural hearing loss in terms of severity and/or audiogram shape. Type A was evident in 14 of these cases, Type B in 106, and Type C in 36. In addition, 211 of 312 ears (67.63%) in the interaural hearing asymmetry group showed profound hearing loss, and 59 (18.91%) exhibited severe hearing loss, with the most common audiogram shapes being flat (27.88%) and descending (22.12%). By contrast, in the interaural hearing symmetry group, profound hearing loss was observed in 140 ears (79.55%), and the most common audiograms were descending (46.59%) and residual (21.59%). Hearing loss associated with the GJB2 c.235delC homozygous mutation shows diverse phenotypes, and a considerable proportion of patients show bilateral hearing loss asymmetry.
Collapse
|
93
|
Waqas M, Us-Salam I, Bibi Z, Wang Y, Li H, Zhu Z, He S. Stem Cell-Based Therapeutic Approaches to Restore Sensorineural Hearing Loss in Mammals. Neural Plast 2020; 2020:8829660. [PMID: 32802037 PMCID: PMC7416290 DOI: 10.1155/2020/8829660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/01/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The hair cells that reside in the cochlear sensory epithelium are the fundamental sensory structures responsible for understanding the mechanical sound waves evoked in the environment. The intense damage to these sensory structures may result in permanent hearing loss. The present strategies to rehabilitate the hearing function include either hearing aids or cochlear implants that may recover the hearing capability of deaf patients to a limited extent. Therefore, much attention has been paid on developing regenerative therapies to regenerate/replace the lost hair cells to treat the damaged cochlear sensory epithelium. The stem cell therapy is a promising approach to develop the functional hair cells and neuronal cells from endogenous and exogenous stem cell pool to recover hearing loss. In this review, we specifically discuss the potential of different kinds of stem cells that hold the potential to restore sensorineural hearing loss in mammals and comprehensively explain the current therapeutic applications of stem cells in both the human and mouse inner ear to regenerate/replace the lost hair cells and spiral ganglion neurons.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing 211102, China
| | - Iram Us-Salam
- Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
| | - Zainab Bibi
- Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
| | - Yunfeng Wang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - He Li
- Department of Otolaryngology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, 325000 Zhejiang Province, China
| | - Zhongshou Zhu
- Department of Otolaryngology, Ningde Municipal Hospital Affiliated of Fujian Medical University (Ningde Institute of Otolaryngology), Ningde, Fujian 352100, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing 211102, China
| |
Collapse
|
94
|
Compound Heterozygous Mutations in TMC1 and MYO15A Are Associated with Autosomal Recessive Nonsyndromic Hearing Loss in Two Chinese Han Families. Neural Plast 2020; 2020:8872185. [PMID: 32802042 PMCID: PMC7416276 DOI: 10.1155/2020/8872185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Genetic hearing loss is a common sensory disorder, and its cause is highly heterogeneous. In this study, by targeted next-generation sequencing of 414 known deafness genes, we identified compound heterozygous mutations p.R34X/p.M413T in TMC1 and p.S3417del/p.R1407T in MYO15A in two recessive Chinese Han deaf families. Intrafamilial cosegregation of the mutations with the hearing phenotype was confirmed in both families by the Sanger sequencing. Auditory features of the affected individuals are consistent with that previously reported for recessive mutations in TMC1 and MYO15A. The two novel mutations identified in this study, p.M413T in TMC1 and p.R1407T in MYO15A, are classified as likely pathogenic according to the guidelines of ACMG. Our study expanded the mutation spectrums of TMC1 and MYO15A and illustrated that genotype-phenotype correlation in combination with next-generation sequencing may improve the accuracy for genetic diagnosis of deafness.
Collapse
|
95
|
Loss of Cochlear Ribbon Synapse Is a Critical Contributor to Chronic Salicylate Sodium Treatment-Induced Tinnitus without Change Hearing Threshold. Neural Plast 2020; 2020:3949161. [PMID: 32774354 PMCID: PMC7397434 DOI: 10.1155/2020/3949161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/23/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Tinnitus is a common auditory disease worldwide; it is estimated that more than 10% of all individuals experience this hearing disorder during their lifetime. Tinnitus is sometimes accompanied by hearing loss. However, hearing loss is not acquired in some other tinnitus generations. In this study, we injected adult rats with salicylate sodium (SS) (200 mg/kg/day for 10 days) and found no significant hearing threshold changes at 2, 4, 8, 12, 14, 16, 20, or 24 kHz (all p > 0.05). Tinnitus was confirmed in the treated rats via Behaviour Testing of Acoustic Startle Response (ASR) and Gap Prepulse Inhibition Test of Acoustic Startle Reflex (GPIAS). A immunostaining study showed that there is significant loss of anti-CtBP2 puncta (a marker of cochlear inner hair cell (HC) ribbon synapses) in treated animals in apical, middle, and basal turns (all p < 0.05). The ABR wave I amplitudes were significantly reduced at 4, 8, 12, 14, 16, and 20 kHz (all p < 0.05). No significant losses of outer HCs, inner HCs, or HC cilia were observed (all p > 0.05). Thus, our study suggests that loss of cochlear inner HC ribbon synapse after SS exposure is a contributor to the development of tinnitus without changing hearing threshold.
Collapse
|
96
|
A Neurophysiological Study of Musical Pitch Identification in Mandarin-Speaking Cochlear Implant Users. Neural Plast 2020; 2020:4576729. [PMID: 32774355 PMCID: PMC7396015 DOI: 10.1155/2020/4576729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/26/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Music perception in cochlear implant (CI) users is far from satisfactory, not only because of the technological limitations of current CI devices but also due to the neurophysiological alterations that generally accompany deafness. Early behavioral studies revealed that similar mechanisms underlie musical and lexical pitch perception in CI-based electric hearing. Although neurophysiological studies of the musical pitch perception of English-speaking CI users are actively ongoing, little such research has been conducted with Mandarin-speaking CI users; as Mandarin is a tonal language, these individuals require pitch information to understand speech. The aim of this work was to study the neurophysiological mechanisms accounting for the musical pitch identification abilities of Mandarin-speaking CI users and normal-hearing (NH) listeners. Behavioral and mismatch negativity (MMN) data were analyzed to examine musical pitch processing performance. Moreover, neurophysiological results from CI users with good and bad pitch discrimination performance (according to the just-noticeable differences (JND) and pitch-direction discrimination (PDD) tasks) were compared to identify cortical responses associated with musical pitch perception differences. The MMN experiment was conducted using a passive oddball paradigm, with musical tone C4 (262 Hz) presented as the standard and tones D4 (294 Hz), E4 (330 Hz), G#4 (415 Hz), and C5 (523 Hz) presented as deviants. CI users demonstrated worse musical pitch discrimination ability than did NH listeners, as reflected by larger JND and PDD thresholds for pitch identification, and significantly increased latencies and reduced amplitudes in MMN responses. Good CI performers had better MMN results than did bad performers. Consistent with findings for English-speaking CI users, the results of this work suggest that MMN is a viable marker of cortical pitch perception in Mandarin-speaking CI users.
Collapse
|
97
|
An In Vitro Study on Prestin Analog Gene in the Bullfrog Hearing Organs. Neural Plast 2020; 2020:3570732. [PMID: 32714383 PMCID: PMC7352134 DOI: 10.1155/2020/3570732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/22/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
The prestin-based active process in the mammalian outer hair cells (OHCs) is believed to play a crucial role in auditory signal amplification in the cochlea. Prestin belongs to an anion transporter family (SLC26A). It is densely expressed in the OHC lateral plasma membrane and functions as a voltage-dependent motor protein. Analog genes can be found in the genome of nonmammalian species, but their functions in hearing are poorly understood. In the present study, we used the gerbil prestin sequence as a template and identified an analog gene in the bullfrog genome. We expressed the gene in a stable cell line (HEK293T) and performed patch-clamp recording. We found that these cells exhibited prominent nonlinear capacitance (NLC), a widely accepted assay for prestin functioning as a motor protein. Upon close examination, the key parameters of this NLC are comparable to that conferred by the gerbil prestin, and nontransfected cells failed to display NLC. Lastly, we performed patch-clamp recording in HCs of all three hearing organs in bullfrog. HCs in both the sacculus and the amphibian papilla exhibited a capacitance profile that is similar to NLC while HCs in the basilar papilla showed no sign of NLC. Whether or not this NLC-like capacitance change is involved in auditory signal amplification certainly requires further examination; our results represent the first and necessary step in revealing possible roles of prestin in the active hearing processes found in many nonmammalian species.
Collapse
|
98
|
High Frequency of AIFM1 Variants and Phenotype Progression of Auditory Neuropathy in a Chinese Population. Neural Plast 2020; 2020:5625768. [PMID: 32684920 PMCID: PMC7350177 DOI: 10.1155/2020/5625768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
To decipher the genotype-phenotype correlation of auditory neuropathy (AN) caused by AIFM1 variations, as well as the phenotype progression of these patients, exploring the potential molecular pathogenic mechanism of AN. A total of 36 families of individuals with AN (50 cases) with AIFM1 variations were recruited and identified by Sanger sequencing or next-generation sequencing; the participants included 30 patients from 16 reported families and 20 new cases. We found that AIFM1-positive cases accounted for 18.6% of late-onset AN cases. Of the 50 AN patients with AIFM1 variants, 45 were male and 5 were female. The hotspot variation of this gene was p.Leu344Phe, accounting for 36.1%. A total of 19 AIFM1 variants were reported in this study, including 7 novel ones. A follow-up study was performed on 30 previously reported AIFM1-positive subjects, 16 follow-up cases (53.3%) were included in this study, and follow-up periods were recorded from 1 to 23 years with average 9.75 ± 9.89 years. There was no hearing threshold increase during the short-term follow-up period (1-10 years), but the low-frequency and high-frequency hearing thresholds showed a significant increase with the prolongation of follow-up time. The speech discrimination score progressed gradually and significantly along with the course of the disease and showed a more serious decline, which was disproportionately worse than the pure tone threshold. In addition to the X-linked recessive inheritance pattern, the X-linked dominant inheritance pattern is also observed in AIFM1-related AN and affects females. In conclusion, we confirmed that AIFM1 is the primary related gene among late-onset AN cases, and the most common recurrent variant is p.Leu344Phe. Except for the X-linked recessive inheritance pattern, the X-linked dominant inheritance pattern is another probability of AIFM1-related AN, with females affected. Phenotypical features of AIFM1-related AN suggested that auditory dyssynchrony progressively worsened over time.
Collapse
|
99
|
Targeted Next-Generation Sequencing Identified Compound Heterozygous Mutations in MYO15A as the Probable Cause of Nonsyndromic Deafness in a Chinese Han Family. Neural Plast 2020; 2020:6350479. [PMID: 32617096 PMCID: PMC7313121 DOI: 10.1155/2020/6350479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/10/2020] [Accepted: 05/29/2020] [Indexed: 12/02/2022] Open
Abstract
Hearing loss is a highly heterogeneous disorder, with more than 60% of congenital cases caused by genetic factors. This study is aimed at identifying the genetic cause of congenital hearing loss in a Chinese Han family. Auditory evaluation before and after cochlear implantation and targeted next-generation sequencing of 140 deafness-related genes were performed for the deaf proband. Compound heterozygous mutations c.3658_3662del (p. E1221Wfs∗23) and c.6177+1G>T were identified in MYO15A as the only candidate pathogenic mutations cosegregated with the hearing loss in this family. These two variants were absent in 200 normal-hearing Chinese Hans and were classified as likely pathogenic and pathogenic, respectively, based on the ACMG guideline. Our study further expanded the mutation spectrum of MYO15A as the c.3658_3662del mutation is novel and confirmed that deaf patients with recessive MYO15A mutations have a good outcome for cochlear implantation.
Collapse
|
100
|
Sai N, Shi X, Zhang Y, Jiang QQ, Ji F, Yuan SL, Sun W, Guo WW, Yang SM, Han WJ. Involvement of Cholesterol Metabolic Pathways in Recovery from Noise-Induced Hearing Loss. Neural Plast 2020; 2020:6235948. [PMID: 32617095 PMCID: PMC7306080 DOI: 10.1155/2020/6235948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to explore the molecular mechanisms of acute noise-induced hearing loss and recovery of steady-state noise-induced hearing loss using miniature pigs. We used miniature pigs exposed to white noise at 120 dB (A) as a model. Auditory brainstem response (ABR) measurements were made before noise exposure, 1 day and 7 days after noise exposure. Proteomic Isobaric Tags for Relative and Absolute Quantification (iTRAQ) was used to observe changes in proteins of the miniature pig inner ear following noise exposure. Western blot and immunofluorescence were performed for further quantitative and qualitative analysis of proteomic changes. The average ABR-click threshold of miniature pigs before noise exposure, 1 day and 7 days after noise exposure, were 39.4 dB SPL, 67.1 dB SPL, and 50.8 dB SPL, respectively. In total, 2,158 proteins were identified using iTRAQ. Both gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analyses showed that immune and metabolic pathways were prominently involved during the impairment stage of acute hearing loss. During the recovery stage of acute hearing loss, most differentially expressed proteins were related to cholesterol metabolism. Western blot and immunofluorescence showed accumulation of reactive oxygen species and nuclear translocation of NF-κB (p65) in the hair cells of miniature pig inner ears during the acute hearing loss stage after noise exposure. Nuclear translocation of NF-κB (p65) may be associated with overexpression of downstream inflammatory factors. Apolipoprotein (Apo) A1 and Apo E were significantly upregulated during the recovery stage of hearing loss and may be related to activation of cholesterol metabolic pathways. This is the first study to use proteomics analysis to analyze the molecular mechanisms of acute noise-induced hearing loss and its recovery in a large animal model (miniature pigs). Our results showed that activation of metabolic, inflammatory, and innate immunity pathways may be involved in acute noise-induced hearing loss, while cholesterol metabolic pathways may play an important role in recovery of hearing ability following noise-induced hearing loss.
Collapse
Affiliation(s)
- Na Sai
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Xi Shi
- Clinical Hearing Center of Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qing-qing Jiang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Fei Ji
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Shuo-long Yuan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Wei-Wei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Shi-Ming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| | - Wei-Ju Han
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
| |
Collapse
|