51
|
Yoshida S, Funato H. Physical contact in parent-infant relationship and its effect on fostering a feeling of safety. iScience 2021; 24:102721. [PMID: 34235413 PMCID: PMC8250458 DOI: 10.1016/j.isci.2021.102721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The infant-caregiver relationship involves physical contact for feeding, moving, and other cares, and such contact also encourages the infant to form an attachment, an emotional bond with the caregivers. Physical contact always accompanies somatosensory perception, which is detected by mechanosensory neurons and processed in the brain. Physical contact triggers sensorimotor reflexes such as Transport Response in rodent infants, and calm human infants while being carried. Tactile sensation and deep pressure in physical interactions, such as hugging, can function as emotional communication between infant and caregiver, which can alter the behavior and mood of both the infant and caregiver. This review summarizes the findings related to physical contact between the infant and the caregiver in terms of pleasant, noxious, and neutral somatosensation and discusses how somatosensory perceptions foster a feeling of safety that is important for infant's psychosocial development.
Collapse
Affiliation(s)
- Sachine Yoshida
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
52
|
Rezaei M, Nagi SS, Xu C, McIntyre S, Olausson H, Gerling GJ. Thin Films on the Skin, but not Frictional Agents, Attenuate the Percept of Pleasantness to Brushed Stimuli. WORLD HAPTICS CONFERENCE. WORLD HAPTICS CONFERENCE 2021; 2021:49-54. [PMID: 35043106 PMCID: PMC8763324 DOI: 10.1109/whc49131.2021.9517259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brushed stimuli are perceived as pleasant when stroked lightly on the skin surface of a touch receiver at certain velocities. While the relationship between brush velocity and pleasantness has been widely replicated, we do not understand how resultant skin movements - e.g., lateral stretch, stick-slip, normal indentation - drive us to form such judgments. In a series of psychophysical experiments, this work modulates skin movements by varying stimulus stiffness and employing various treatments. The stimuli include brushes of three levels of stiffness and an ungloved human finger. The skin's friction is modulated via non-hazardous chemicals and washing protocols, and the skin's thickness and lateral movement are modulated by thin sheets of adhesive film. The stimuli are hand-brushed at controlled forces and velocities. Human participants report perceived pleasantness per trial using ratio scaling. The results indicate that a brush's stiffness influenced pleasantness more than any skin treatment. Surprisingly, varying the skin's friction did not affect pleasantness. However, the application of a thin elastic film modulated pleasantness. Such barriers, though elastic and only 40 microns thick, inhibit the skin's tangential movement and disperse normal force. The finding that thin films modulate affective interactions has implications for wearable sensors and actuation devices.
Collapse
Affiliation(s)
- Merat Rezaei
- School of Engineering and Applied Science, at the University of Virginia, USA
| | - Saad S Nagi
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Sweden
| | - Chang Xu
- School of Engineering and Applied Science, at the University of Virginia, USA
| | - Sarah McIntyre
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Sweden
| | - Håkan Olausson
- Center for Social and Affective Neuroscience (CSAN), Linköping University, Sweden
| | - Gregory J Gerling
- School of Engineering and Applied Science, at the University of Virginia, USA
| |
Collapse
|
53
|
Leandri M, Di Stefano G, Truini A, Marinelli L. Early nociceptive evoked potentials (NEPs) recorded from the scalp. Clin Neurophysiol 2021; 132:2896-2906. [PMID: 34226125 DOI: 10.1016/j.clinph.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Neurophysiological investigation of nociceptive pathway has so far been limited to late cortical responses. We sought to detect early components of the cortical evoked potentials possibly reflecting primary sensory activity. METHODS The 150 IDE micropatterned electrode was used to selectively activate Aδ intraepidermic fibres of the right hand dorsum in 25 healthy subjects and 3 patients suffering from trigeminal neuralgia. Neurographic recordings were performed to assess type of stimulated fibres and check selectivity. Cortical evoked potentials were recorded from C3'-Fz and Cz-Au1. RESULTS Neurographic recordings confirmed selective activation of Aδ fibres. Early components were detected after repetitive stimulation (0.83/s rate and 250-500 averages); the first negative component occured at 40 ms (N40) on the contralateral scalp. CONCLUSIONS The provided data support the hypothesis that N40 could be the cortical primary response conducted by fast Aδ fibres. SIGNIFICANCE This is the first report of early, possibly primary, cortical responses in humans by nociceptive peripheral stimulation. Although not perfected yet to allow widespread diagnostic use, this is probably the only method to allow fully objective evaluation of the nociceptive system, with important future implications in experimental and clinical neurophysiology.
Collapse
Affiliation(s)
- Massimo Leandri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, L.go Daneo 3, 16132 Genova, Italy.
| | - Giulia Di Stefano
- Department of Human Neuroscience, Sapienza University, Viale dell'Università 30, 00185 Roma, Italy.
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Viale dell'Università 30, 00185 Roma, Italy.
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, L.go Daneo 3, 16132 Genova, Italy; Department of Neuroscience, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
54
|
Middleton SJ, Barry AM, Comini M, Li Y, Ray PR, Shiers S, Themistocleous AC, Uhelski ML, Yang X, Dougherty PM, Price TJ, Bennett DL. Studying human nociceptors: from fundamentals to clinic. Brain 2021; 144:1312-1335. [PMID: 34128530 PMCID: PMC8219361 DOI: 10.1093/brain/awab048] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain affects one in five of the general population and is the third most important cause of disability-adjusted life-years globally. Unfortunately, treatment remains inadequate due to poor efficacy and tolerability. There has been a failure in translating promising preclinical drug targets into clinic use. This reflects challenges across the whole drug development pathway, from preclinical models to trial design. Nociceptors remain an attractive therapeutic target: their sensitization makes an important contribution to many chronic pain states, they are located outside the blood-brain barrier, and they are relatively specific. The past decade has seen significant advances in the techniques available to study human nociceptors, including: the use of corneal confocal microscopy and biopsy samples to observe nociceptor morphology, the culture of human nociceptors (either from surgical or post-mortem tissue or using human induced pluripotent stem cell derived nociceptors), the application of high throughput technologies such as transcriptomics, the in vitro and in vivo electrophysiological characterization through microneurography, and the correlation with pain percepts provided by quantitative sensory testing. Genome editing in human induced pluripotent stem cell-derived nociceptors enables the interrogation of the causal role of genes in the regulation of nociceptor function. Both human and rodent nociceptors are more heterogeneous at a molecular level than previously appreciated, and while we find that there are broad similarities between human and rodent nociceptors there are also important differences involving ion channel function, expression, and cellular excitability. These technological advances have emphasized the maladaptive plastic changes occurring in human nociceptors following injury that contribute to chronic pain. Studying human nociceptors has revealed new therapeutic targets for the suppression of chronic pain and enhanced repair. Cellular models of human nociceptors have enabled the screening of small molecule and gene therapy approaches on nociceptor function, and in some cases have enabled correlation with clinical outcomes. Undoubtedly, challenges remain. Many of these techniques are difficult to implement at scale, current induced pluripotent stem cell differentiation protocols do not generate the full diversity of nociceptor populations, and we still have a relatively poor understanding of inter-individual variation in nociceptors due to factors such as age, sex, or ethnicity. We hope our ability to directly investigate human nociceptors will not only aid our understanding of the fundamental neurobiology underlying acute and chronic pain but also help bridge the translational gap.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Allison M Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Maddalena Comini
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Yan Li
- Department of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pradipta R Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas C Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.,Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Megan L Uhelski
- Department of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xun Yang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Patrick M Dougherty
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
55
|
Human low-threshold mechanoafferent responses to pure changes in friction controlled using an ultrasonic haptic device. Sci Rep 2021; 11:11227. [PMID: 34045550 PMCID: PMC8160007 DOI: 10.1038/s41598-021-90533-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Abstract
The forces that are developed when manipulating objects generate sensory cues that inform the central nervous system about the qualities of the object’s surface and the status of the hand/object interaction. Afferent responses to frictional transients or slips have been studied in the context of lifting/holding tasks. Here, we used microneurography and an innovative tactile stimulator, the Stimtac, to modulate both the friction level of a surface, without changing the surface or adding a lubricant, and, to generate the frictional transients in a pure and net fashion. In three protocols, we manipulated: the frictional transients, the friction levels, the rise times, the alternation of phases of decrease or increase in friction to emulate grating-like stimuli. Afferent responses were recorded in 2 FAIs, 1 FAII, 2 SAIs and 3 SAIIs from the median nerve of human participants. Independently of the unit type, we observed that: single spikes were generated time-locked to the frictional transients, and that reducing the friction level reduced the number of spikes during the stable phase of the stimulation. Our results suggest that those frictional cues are encoded in all the unit types and emphasize the possibility to use the Stimtac device to control mechanoreceptor firing with high temporal precision.
Collapse
|
56
|
Goodwin G, McMahon SB. The physiological function of different voltage-gated sodium channels in pain. Nat Rev Neurosci 2021; 22:263-274. [PMID: 33782571 DOI: 10.1038/s41583-021-00444-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/01/2023]
Abstract
Evidence from human genetic pain disorders shows that voltage-gated sodium channel α-subtypes Nav1.7, Nav1.8 and Nav1.9 are important in the peripheral signalling of pain. Nav1.7 is of particular interest because individuals with Nav1.7 loss-of-function mutations are congenitally insensitive to acute and chronic pain, and there is considerable hope that phenocopying these effects with a pharmacological antagonist will produce a new class of analgesic drug. However, studies in these rare individuals do not reveal how and where voltage-gated sodium channels contribute to pain signalling, which is of critical importance for drug development. More than a decade of research utilizing rodent genetic models and pharmacological tools to study voltage-gated sodium channels in pain has begun to unravel the role of different subtypes. Here, we review the contribution of individual channel subtypes in three key physiological processes necessary for transmission of sensory information to the CNS: transduction of stimuli at peripheral nerve terminals, axonal transmission of action potentials and neurotransmitter release from central terminals. These data suggest that drugs seeking to recapitulate the analgesic effects of loss of function of Nav1.7 will need to be brain-penetrant - which most of those developed to date are not.
Collapse
Affiliation(s)
- George Goodwin
- Pain and Neurorestoration Group, King's College London, London, UK.
| | | |
Collapse
|
57
|
Mo J, Priefer R. Medical Devices for Tremor Suppression: Current Status and Future Directions. BIOSENSORS-BASEL 2021; 11:bios11040099. [PMID: 33808056 PMCID: PMC8065649 DOI: 10.3390/bios11040099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/14/2023]
Abstract
Tremors are the most prevalent movement disorder that interferes with the patient’s daily living, and physical activities, ultimately leading to a reduced quality of life. Due to the pathophysiology of tremor, developing effective pharmacotherapies, which are only suboptimal in the management of tremor, has many challenges. Thus, a range of therapies are necessary in managing this progressive, aging-associated disorder. Surgical interventions such as deep brain stimulation are able to provide durable tremor control. However, due to high costs, patient and practitioner preference, and perceived high risks, their utilization is minimized. Medical devices are placed in a unique position to bridge this gap between lifestyle interventions, pharmacotherapies, and surgical treatments to provide safe and effective tremor suppression. Herein, we review the mechanisms of action, safety and efficacy profiles, and clinical applications of different medical devices that are currently available or have been previously investigated for tremor suppression. These devices are primarily noninvasive, which can be a beneficial addition to the patient’s existing pharmacotherapy and/or lifestyle intervention.
Collapse
|
58
|
McIntyre S, Nagi SS, McGlone F, Olausson H. The Effects of Ageing on Tactile Function in Humans. Neuroscience 2021; 464:53-58. [PMID: 33607227 DOI: 10.1016/j.neuroscience.2021.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/21/2022]
Abstract
Ageing is accompanied by a steady decline in touch sensitivity and acuity. Conversely, pleasant touch, such as experienced during a caress, is even more pleasant in old age. There are many physiological changes that might explain these perceptual changes, but researchers have not yet identified any specific mechanisms. Here, we review both the perceptual and structural changes to the touch system that are associated with ageing. The structural changes include reduced elasticity of the skin in older people, as well as reduced numbers and altered morphology of skin tactile receptors. Effects of ageing on the peripheral and central nervous systems include demyelination, which affects the timing of neural signals, as well as reduced numbers of peripheral nerve fibres. The ageing brain also undergoes complex changes in blood flow, metabolism, plasticity, neurotransmitter function, and, for touch, the body map in primary somatosensory cortex. Although several studies have attempted to find a direct link between perceptual and structural changes, this has proved surprisingly elusive. We also highlight the need for more evidence regarding age-related changes in peripheral nerve function in the hairy skin, as well as the social and emotional aspects of touch.
Collapse
Affiliation(s)
- Sarah McIntyre
- Center for Social and Affective Neuroscience, Linköping University, Sweden.
| | - Saad S Nagi
- Center for Social and Affective Neuroscience, Linköping University, Sweden
| | - Francis McGlone
- Research Centre in Brain & Behaviour, Liverpool John Moores University, Liverpool, United Kingdom
| | - Håkan Olausson
- Center for Social and Affective Neuroscience, Linköping University, Sweden
| |
Collapse
|
59
|
Innocuous pressure sensation requires A-type afferents but not functional ΡΙΕΖΟ2 channels in humans. Nat Commun 2021; 12:657. [PMID: 33510158 PMCID: PMC7844252 DOI: 10.1038/s41467-021-20939-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/04/2021] [Indexed: 01/17/2023] Open
Abstract
The sensation of pressure allows us to feel sustained compression and body strain. While our understanding of cutaneous touch has grown significantly in recent years, how deep tissue sensations are detected remains less clear. Here, we use quantitative sensory evaluations of patients with rare sensory disorders, as well as nerve blocks in typical individuals, to probe the neural and genetic mechanisms for detecting non-painful pressure. We show that the ability to perceive innocuous pressures is lost when myelinated fiber function is experimentally blocked in healthy volunteers and that two patients lacking Aβ fibers are strikingly unable to feel innocuous pressures at all. We find that seven individuals with inherited mutations in the mechanoreceptor PIEZO2 gene, who have major deficits in touch and proprioception, are nearly as good at sensing pressure as healthy control subjects. Together, these data support a role for Aβ afferents in pressure sensation and suggest the existence of an unknown molecular pathway for its detection. The mechanisms underlying deep pressure sensing are not fully understood. Here the authors demonstrate that while two individuals lacking Aβ fibers demonstrate impaired deep pressure sensing, seven individuals with PIEZO2 loss of function mutations display normal deep pressure responses.
Collapse
|
60
|
Cataldo A, Hagura N, Hyder Y, Haggard P. Touch inhibits touch: sanshool-induced paradoxical tingling reveals perceptual interaction between somatosensory submodalities. Proc Biol Sci 2021; 288:20202914. [PMID: 33499781 PMCID: PMC7893281 DOI: 10.1098/rspb.2020.2914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human perception of touch is mediated by inputs from multiple channels. Classical theories postulate independent contributions of each channel to each tactile feature, with little or no interaction between channels. In contrast to this view, we show that inputs from two sub-modalities of mechanical input channels interact to determine tactile perception. The flutter-range vibration channel was activated anomalously using hydroxy-α-sanshool, a bioactive compound of Szechuan pepper, which chemically induces vibration-like tingling sensations. We tested whether this tingling sensation on the lips was modulated by sustained mechanical pressure. Across four experiments, we show that sustained touch inhibits sanshool tingling sensations in a location-specific, pressure-level and time-dependent manner. Additional experiments ruled out the mediation of this interaction by nociceptive or affective (C-tactile) channels. These results reveal novel inhibitory influence from steady pressure onto flutter-range tactile perceptual channels, consistent with early-stage interactions between mechanoreceptor inputs within the somatosensory pathway.
Collapse
Affiliation(s)
- Antonio Cataldo
- Institute of Cognitive Neuroscience, University College London, Alexandra House 17 Queen Square, London WC1N 3AZ, UK.,Institute of Philosophy, School of Advanced Study - University of London, Senate House, Malet Street, London WC1E 7HU, UK.,Cognition, Values and Behaviour, Ludwig Maximilian University, Gabelsbergerstraße 62, 80333 München, Germany
| | - Nobuhiro Hagura
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yousef Hyder
- Institute of Cognitive Neuroscience, University College London, Alexandra House 17 Queen Square, London WC1N 3AZ, UK.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, Alexandra House 17 Queen Square, London WC1N 3AZ, UK.,Institute of Philosophy, School of Advanced Study - University of London, Senate House, Malet Street, London WC1E 7HU, UK
| |
Collapse
|
61
|
Raabe W, Walk D. Slowly conducting potentials in human sensory nerves. J Neurosci Methods 2020; 351:109045. [PMID: 33358850 DOI: 10.1016/j.jneumeth.2020.109045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND In clinical practice, small myelinated sensory fibers, Aδ-fibers, conveying mainly pain and temperature sensations, cannot be examined with available nerve conduction study techniques. Currently, these fibers can only be examined with experimental or very specialized and not commonly available nerve conduction techniques, or only indirectly with cerebral evoked potentials. NEW METHOD This study uses equipment and methods available in clinical neurophysiology laboratories to record from human sensory nerves ≥1000 averaged responses to focal, non-painful stimuli applied by a special electrode to epidermal nerves. The averaged responses to odd numbered stimuli are compared to the averaged responses to even numbered stimuli. An algorithm identifies potentials common in both averages. The 99th and 99.9th percentiles for this algorithm are obtained from control records without stimulation and applied to records with stimulation to identify potentials resulting from stimulation of intraepidermal nerves. RESULTS The algorithm identifies numerous negative and positive potentials as being different from controls at the 99th and 99.9th percentile levels. The conduction velocities of the potentials range from of 1.3-29.9 m/s and are compatible with conduction velocities of Aδ-fibers. COMPARISON WITH EXISTING METHOD(S) No existing methods. CONCLUSIONS The stimulation, recording and data analysis methods used in this study can be applied in the clinical EMG laboratory to identify Aδ-fibers in human sensory nerves.
Collapse
Affiliation(s)
- W Raabe
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States.
| | - D Walk
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
62
|
Liberati G, Mulders D, Algoet M, van den Broeke EN, Santos SF, Ribeiro Vaz JG, Raftopoulos C, Mouraux A. Insular responses to transient painful and non-painful thermal and mechanical spinothalamic stimuli recorded using intracerebral EEG. Sci Rep 2020; 10:22319. [PMID: 33339884 PMCID: PMC7749115 DOI: 10.1038/s41598-020-79371-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022] Open
Abstract
Brief thermo-nociceptive stimuli elicit low-frequency phase-locked local field potentials (LFPs) and high-frequency gamma-band oscillations (GBOs) in the human insula. Although neither of these responses constitute a direct correlate of pain perception, previous findings suggest that insular GBOs may be strongly related to the activation of the spinothalamic system and/or to the processing of thermal information. To disentangle these different features of the stimulation, we compared the insular responses to brief painful thermonociceptive stimuli, non-painful cool stimuli, mechano-nociceptive stimuli, and innocuous vibrotactile stimuli, recorded using intracerebral electroencephalograpic activity in 7 epileptic patients (9 depth electrodes, 58 insular contacts). All four types of stimuli elicited consistent low-frequency phase-locked LFPs throughout the insula, possibly reflecting supramodal activity. The latencies of thermo-nociceptive and cool low-frequency phase-locked LFPs were shorter in the posterior insula compared to the anterior insula, suggesting a similar processing of thermal input initiating in the posterior insula, regardless of whether the input produces pain and regardless of thermal modality. In contrast, only thermo-nociceptive stimuli elicited an enhancement of insular GBOs, suggesting that these activities are not simply related to the activation of the spinothalamic system or to the conveyance of thermal information.
Collapse
Affiliation(s)
- Giulia Liberati
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Dounia Mulders
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Algoet
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
63
|
Roh J, Go EJ, Park JW, Kim YH, Park CK. Resolvins: Potent Pain Inhibiting Lipid Mediators via Transient Receptor Potential Regulation. Front Cell Dev Biol 2020; 8:584206. [PMID: 33363143 PMCID: PMC7758237 DOI: 10.3389/fcell.2020.584206] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic pain is a serious condition that occurs in the peripheral nervous system (PNS) and the central nervous system (CNS). It is caused by inflammation or nerve damage that induces the release of inflammatory mediators from immune cells and/or protein kinase activation in neuronal cells. Both nervous systems are closely linked; therefore, inflammation or nerve damage in the PNS can affect the CNS (central sensitization). In this process, nociceptive transient receptor potential (TRP) channel activation and expression are increased. As a result, nociceptive neurons are activated, and pain signals to the brain are amplified and prolonged. In other words, suppressing the onset of pain signals in the PNS can suppress pain signals to the CNS. Resolvins, endogenous lipid mediators generated during the resolution phase of acute inflammation, inhibit nociceptive TRP ion channels and alleviate chronic pain. This paper summarizes the effect of resolvins in chronic pain control and discusses future scientific perspectives. Further study on the effect of resolvins on neuropathic pain will expand the scope of pain research.
Collapse
Affiliation(s)
- Jueun Roh
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
64
|
Leon-Ariza DS, Leon-Ariza JS, Gualdron MA, Bayona-Prieto J, Leon-Sarmiento FE. Territorial and Extraterritorial Trigeminocardiac Reflex: A Review for the Neurosurgeon and a Type IV Reflex Vignette. Cureus 2020; 12:e11646. [PMID: 33376657 PMCID: PMC7755611 DOI: 10.7759/cureus.11646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The trigeminocardiac reflex (TCR) is a complex and, sometimes, fatal event triggered by overstimulation of the trigeminal nerve (TN) and its territorial and spinal cord branches. We reviewed and compiled for the neurosurgeon key aspects of the TCR that include a novel and straightforward classification, as well as morphophysiology, pathophysiology, neuromonitoring and neuromodulation features. Further, we present intraoperative data from a patient who developed extraterritorial, or type IV, TCR while undergoing a cervical surgery. TCR complexity, severity and unwanted outcomes indicate that this event should not be underestimated or overlooked in the surgical room. Timely TCR recognition in surgical settings is valuable for applying effective intraoperative management to prevent catastrophic outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Fidias E Leon-Sarmiento
- Environmental Health, Florida International University, Miami, USA.,Neurology, Baptist Health South Florida, Miami Neuroscience Institute, Miami, USA.,Internal Medicine, National University, Bogota, COL
| |
Collapse
|
65
|
Lopez ER, Carbajal AG, Tian JB, Bavencoffe A, Zhu MX, Dessauer CW, Walters ET. Serotonin enhances depolarizing spontaneous fluctuations, excitability, and ongoing activity in isolated rat DRG neurons via 5-HT 4 receptors and cAMP-dependent mechanisms. Neuropharmacology 2020; 184:108408. [PMID: 33220305 DOI: 10.1016/j.neuropharm.2020.108408] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Ongoing activity in nociceptors, a driver of spontaneous pain, can be generated in dorsal root ganglion neurons in the absence of sensory generator potentials if one or more of three neurophysiological alterations occur - prolonged depolarization of resting membrane potential (RMP), hyperpolarization of action potential (AP) threshold, and/or increased amplitude of depolarizing spontaneous fluctuations of membrane potential (DSFs) to bridge the gap between RMP and AP threshold. Previous work showed that acute, sustained exposure to serotonin (5-HT) hyperpolarized AP threshold and potentiated DSFs, leading to ongoing activity if a separate source of maintained depolarization was present. Cellular signaling pathways that increase DSF amplitude and promote ongoing activity acutely in nociceptors are not known for any neuromodulator. Here, isolated DRG neurons from male rats were used to define the pathway by which low concentrations of 5-HT enhance DSFs, hyperpolarize AP threshold, and promote ongoing activity. A selective 5-HT4 receptor antagonist blocked these 5-HT-induced hyperexcitable effects, while a selective 5-HT4 agonist mimicked the effects of 5-HT. Inhibition of cAMP effectors, protein kinase A (PKA) and exchange protein activated by cAMP (EPAC), attenuated 5-HT's hyperexcitable effects, but a blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels had no significant effect. 5-HT4-dependent PKA activation was specific to DRG neurons that bind isolectin B4 (a nonpeptidergic nociceptor marker). 5-HT's effects on AP threshold, DSFs, and ongoing activity were mimicked by a cAMP analog. Sustained exposure to 5-HT promotes ongoing activity in nonpeptidergic nociceptors through the Gs-coupled 5-HT4 receptor and downstream cAMP signaling involving both PKA and EPAC.
Collapse
Affiliation(s)
- Elia R Lopez
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Anibal Garza Carbajal
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Jin Bin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| |
Collapse
|
66
|
Chiou JY, Abd-Elrehim T, Lin CC, Chen GS. Feasibility study of greater occipital nerve blocks by focused ultrasound - an animal study. J Neural Eng 2020; 17:056030. [PMID: 33146147 DOI: 10.1088/1741-2552/abb14d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Greater occipital nerve (GON) block may provide substantial relief for headache in the occipital location. This study tested the feasibility of focused ultrasound (FUS) to induce the conduction block of GONs in rats. APPROACH For in vitro experiments, the nerve was dissected and cut from C2 to the site near the ear of the rats and preserved in Ringer's solution. Pulsed FUS was used for the block, and sensory action potentials were recorded in the GON. For in vivo experiments, the GONs of the rats were surgically exposed for precise ultrasonic treatment. All data are expressed as the mean ± the standard deviation. MAIN RESULTS A single ultrasonic treatment temporarily suppressed the amplitude of action potentials of the in vitro nerves to 42 ± 14% of the baseline values, and the time to recovery was 55 min. The in vivo results showed that FUS acutely inhibited the amplitude of action potentials to 41 ± 8% of the baseline value in rat GONs, and the time to recovery was 67 min. Histological examination revealed no appreciable changes in the nerve morphology caused by FUS. Therefore, FUS reversibly blocked the conduction of the rat GON when the sonication parameters were appropriate. SIGNIFICANCE Noninvasive FUS may be a novel treatment paradigm for occipital headache by blocking the occipital nerve, and the procedure is repeatable if indicated.
Collapse
Affiliation(s)
- Jiun-Yi Chiou
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | |
Collapse
|
67
|
Kryklywy JH, Ehlers MR, Anderson AK, Todd RM. From Architecture to Evolution: Multisensory Evidence of Decentralized Emotion. Trends Cogn Sci 2020; 24:916-929. [DOI: 10.1016/j.tics.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
|
68
|
Valentini E, Schulz E. Automatised application of pinprick-evoked potentials improves investigation of central sensitisation in humans. Clin Neurophysiol 2020; 131:2482-2483. [DOI: 10.1016/j.clinph.2020.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/25/2022]
|
69
|
Corniani G, Saal HP. Tactile innervation densities across the whole body. J Neurophysiol 2020; 124:1229-1240. [DOI: 10.1152/jn.00313.2020] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The skin is our largest sensory organ and innervated by afferent fibers carrying tactile information to the spinal cord and onto the brain. The density with which different classes of tactile afferents innervate the skin is not constant but varies considerably across different body regions. However, precise estimates of innervation density are only available for some body parts, such as the hands, and estimates of the total number of tactile afferent fibers are inconsistent and incomplete. Here we reconcile different estimates and provide plausible ranges and best estimates for the number of different tactile fiber types innervating different regions of the skin, using evidence from dorsal root fiber counts, microneurography, histology, and psychophysics. We estimate that the skin across the whole body of young adults is innervated by ∼230,000 tactile afferent fibers (plausible range: 200,000–270,000), with a subsequent decrement of 5–8% every decade due to aging. Fifteen percent of fibers innervate the palmar skin of both hands and 19% the region surrounding the face and lips. Slowly and fast-adapting fibers are split roughly evenly, but this breakdown varies with skin region. Innervation density correlates well with psychophysical spatial acuity across different body regions, and, additionally, on hairy skin, with hair follicle density. Innervation density is also weakly correlated with the size of the cortical somatotopic representation but cannot fully account for the magnification of the hands and the face.
Collapse
Affiliation(s)
- Giulia Corniani
- Active Touch Laboratory, Department of Psychology, University of Sheffield, Sheffield, United Kingdom
- Sheffield Robotics, University of Sheffield, Sheffield, United Kingdom
| | - Hannes P. Saal
- Active Touch Laboratory, Department of Psychology, University of Sheffield, Sheffield, United Kingdom
- Sheffield Robotics, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
70
|
Ridderström M, Svantesson M, Thorell O, Magounakis T, Minde J, Olausson H, Nagi SS. High prevalence of carpal tunnel syndrome in individuals with rare nerve growth factor-beta mutation. Brain Commun 2020; 2:fcaa085. [PMID: 32954334 PMCID: PMC7472894 DOI: 10.1093/braincomms/fcaa085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 11/12/2022] Open
Abstract
In Sweden, a large family with a point mutation in the nerve growth factor-beta gene has previously been identified. The carriers of this mutation have reduced small-fibre density and selective deficits in deep pain and temperature modalities. The clinical findings in this population are described as hereditary sensory and autonomic neuropathy type V. The purpose of the current study was to investigate the prevalence of carpal tunnel syndrome in hereditary sensory and autonomic neuropathy type V based on clinical examinations and electrophysiological measurements. Furthermore, the cross-sectional area of the median nerve at the carpal tunnel inlet was measured with ultrasonography. Out of 52 known individuals heterozygous for the nerve growth factor-beta mutation in Sweden, 23 participated in the current study (12 males, 11 females; mean age 55 years; range 25–86 years). All participants answered a health questionnaire and underwent clinical examination followed by median nerve conduction study in a case–control design, and measurement of the nerve cross-sectional area with ultrasonography. The diagnosis of carpal tunnel syndrome was made based on consensus criteria using patient history and nerve conduction study. The prevalence of carpal tunnel syndrome in the hereditary sensory and autonomic neuropathy group was 35% or 52% depending on whether those individuals who had classic symptoms of carpal tunnel syndrome but negative nerve conduction studies were included or not. Those who had a high likelihood of carpal tunnel syndrome based on classic/probable patient history with positive nerve conduction study had a significantly larger median nerve cross-sectional area than those who had an unlikely patient history with negative nerve conduction study. The prevalence of carpal tunnel syndrome was 10–25 times higher in individuals heterozygous for the nerve growth factor-beta mutation than the general Swedish population. Further studies are needed to better understand the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
| | - Mats Svantesson
- Department of Clinical Neurophysiology, Linköping University, Linköping, Sweden
| | - Oumie Thorell
- Department of Clinical Neurophysiology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.,Department of Integrative Physiology, School of Medicine, Western Sydney University, Sydney, Australia
| | | | - Jan Minde
- Department of Orthopaedics, Gällivare Hospital, Gällivare, Sweden.,Division of Orthopaedics, Department of Surgery and Perioperative Science, Umeå University Hospital, Umeå, Sweden
| | - Håkan Olausson
- Department of Clinical Neurophysiology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Saad S Nagi
- Department of Clinical Neurophysiology, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.,Department of Integrative Physiology, School of Medicine, Western Sydney University, Sydney, Australia
| |
Collapse
|
71
|
van den Broeke EN, de Hemptinne P, Mercken M, Torta DM, Lambert J, Mouraux A. Central sensitization of nociceptive pathways demonstrated by robot-controlled pinprick-evoked brain potentials. Clin Neurophysiol 2020; 131:2491-2498. [PMID: 32709556 DOI: 10.1016/j.clinph.2020.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/27/2020] [Accepted: 06/06/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The aim of this study was to assess the effect of central sensitization, induced by high frequency electrical stimulation of the skin (HFS), on pinprick-evoked brain potentials (PEPs) using robot-controlled mechanical pinprick stimulation and a stimulus evaluation task. METHODS In 16 healthy volunteers HFS was applied to the right volar forearm. Robot- controlled pinprick stimuli (64 mN) were applied before and 20 minutes after HFS to the skin surrounding the area onto which HFS was applied. During pinprick stimulation, the EEG was recorded and the quality of perception and perceived intensity of the pinprick stimuli was collected. RESULTS After HFS, the skin surrounding the site at which HFS was delivered showed increased mechanical pinprick sensitivity. Both the early-latency negative peak of PEPs and the later-latency peak were significantly increased after HFS. CONCLUSIONS This study shows increased PEPs after HFS when they are elicited by a robot-controlled mechanical pinprick stimulator and participants are engaged in a stimulus evaluation task during pinprick stimulation. SIGNIFICANCE This is the first study that shows a significant increase of both PEP peaks, and therefore, it provides a preferred setup for assessing the function of mechanical nociceptive pathways in the context of central sensitization.
Collapse
Affiliation(s)
- E N van den Broeke
- Institute of Neuroscience, Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium.
| | - P de Hemptinne
- Institute of Neuroscience, Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - M Mercken
- Institute of Neuroscience, Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - D M Torta
- Faculty of Psychology and Educational Sciences, Health Psychology Group, University of Leuven, 3000 Leuven, Belgium
| | - J Lambert
- Institute of Neuroscience, Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| | - A Mouraux
- Institute of Neuroscience, Université Catholique de Louvain (UCL), B-1200 Brussels, Belgium
| |
Collapse
|
72
|
Automated Nociceptive Withdrawal Reflex Measurements Reveal Normal Reflex Thresholds and Augmented Pain Ratings in Patients with Fibromyalgia. J Clin Med 2020; 9:jcm9061992. [PMID: 32630430 PMCID: PMC7356211 DOI: 10.3390/jcm9061992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
The nociceptive withdrawal reflex (NWR) is used to probe spinal cord excitability in chronic pain states. Here, we used an automated and unbiased procedure for determining the NWR threshold and compared the reflex thresholds and corresponding pain ratings in a well-characterized cohort of fibromyalgia (n = 29) and matched healthy controls (n = 21). Surface electrical stimuli were delivered to the foot in a stepwise incremental and decremental manner. The surface electromyographic activity was recorded from the ipsilateral tibialis anterior muscle. Fibromyalgia patients reported significantly higher scores for psychological distress and pain-related disability and a significantly lower score for perceived state of health compared to the matched controls. The subjective pain ratings were significantly higher in patients. The NWR thresholds were similar to the controls. In the patients, but not in controls, the NWR thresholds and subjective pain ratings were significantly correlated. Our results showed an increased subjective pain sensitivity in fibromyalgia, but we found no evidence for spinal sensitization based on the reflex measures.
Collapse
|
73
|
Forster LA, Jansen LAR, Rubaharan M, Murphy AZ, Baro DJ. Alterations in SUMOylation of the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 during persistent inflammation. Eur J Pain 2020; 24:1517-1536. [PMID: 32446289 PMCID: PMC7496191 DOI: 10.1002/ejp.1606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
Background Unilateral injection of Complete Freund's Adjuvant (CFA) into the intra‐plantar surface of the rodent hindpaw elicits chronic inflammation and hyperalgesia in the ipsilateral hindlimb. Mechanisms contributing to this hyperalgesia may act over multiple time courses and can include changes in ion channel expression and post‐translational SUMOylation. Hyperpolarization‐activated, cyclic nucleotide‐gated (HCN) channels mediate the hyperpolarization‐activated current, Ih. An HCN2‐mediated increase in C‐nociceptor Ih contributes to mechanical hyperalgesia in the CFA model of inflammatory pain. Changes in HCN2 post‐translational SUMOylation and protein expression have not been systematically documented for a given dorsal root ganglia (DRG) throughout the time course of inflammation. Methods This study examined HCN2 protein expression and post‐translational SUMOylation in a rat model of CFA‐induced hindpaw inflammation. L5 DRG cryosections were used in immunohistochemistry experiments and proximity ligation assays to investigate HCN2 expression and SUMOylation, respectively, on days 1 and 3 post‐CFA. Results Unilateral CFA injection elicited a significant bilateral increase in HCN2 staining intensity in small diameter DRG neurons on day 1 post‐CFA, and a significant bilateral increase in the number of small neurons expressing HCN2 but not staining intensity on day 3 post‐CFA. HCN2 channels were hyper‐SUMOylated in small diameter neurons of ipsilateral relative to contralateral DRG on days 1 and 3 post‐CFA. Conclusions Unilateral CFA injection elicits unilateral mechanical hyperalgesia, a bilateral increase in HCN2 expression and a unilateral increase in post‐translational SUMOylation. This suggests that enhanced HCN2 expression in L5 DRG is not sufficient for mechanical hyperalgesia in the early stages of inflammation and that hyper‐SUMOylation of HCN2 channels may also be necessary. Significance Nociceptor HCN2 channels mediate an increase in Ih that is necessary for mechanical hyperalgesia in a CFA model of chronic pain, but the mechanisms producing the increase in nociceptor Ih have not been resolved. The data presented here suggest that the increase in Ih during the early stages of inflammation may be mediated by an increase in HCN2 protein expression and post‐translational SUMOylation.
Collapse
Affiliation(s)
- Lori A Forster
- Department of Biology, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Deborah J Baro
- Department of Biology, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
74
|
Cayrol T, Lebleu J, Mouraux A, Roussel N, Pitance L, van den Broeke EN. Within- and between-session reliability of secondary hyperalgesia induced by electrical high-frequency stimulation. Eur J Pain 2020; 24:1585-1597. [PMID: 32501583 DOI: 10.1002/ejp.1613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/27/2020] [Accepted: 05/31/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND An increasing number of studies are focusing on secondary hyperalgesia to better understand central sensitization, as this phenomenon may play an important role in persistent pain. Recent studies have shown that, compared to the classical high-frequency stimulation protocol (HFS) at 100 Hz, a protocol using 42 Hz stimulation induces a more intense and a larger area of secondary hyperalgesia (SH). OBJECTIVES The aim of this study was to investigate the within- and between-session reliability of SH induced by this optimized HFS protocol. METHODS Thirty-two healthy subjects received HFS to their volar forearm in two sessions, separated by at least 2 weeks. SH was assessed by measuring the area size of increased sensitivity to pinprick stimuli after applying HFS, the sensitivity to pinprick stimuli after applying HFS and the change in pinprick sensitivity after versus before HFS. Assessments were made before HFS, and 30, 35 and 40 min after HFS. Relative and absolute reliability were analysed using intraclass correlation coefficients (ICCs), coefficients of variation (CVs), standard error of means (SEMs) and the minimum detectable changes (MDCs). RESULTS The area of SH showed good to excellent within-session and between-session relative reliability (ICCs > 0.80), except for the change in pinprick sensitivity, which showed close to poor between-session relative reliability (ICC = 0.53). Furthermore, measures of absolute reliability generally demonstrated large between-subject variability and significant fluctuations across repeated measurements. CONCLUSIONS HFS-induced hyperalgesia is suitable to discriminate or compare individuals but it may not be sensitive to changes due to an intervention. SIGNIFICANCE It is crucial to evaluate central sensitization adequately in humans. This study formally establishes the reliability of secondary hyperalgesia induced by electrical high-frequency stimulation. The results of this study will improve future studies investigating secondary hyperalgesia in humans.
Collapse
Affiliation(s)
- Timothée Cayrol
- Institute of Experimental and Clinical Research, Health Sciences Division, Université Catholique de Louvain, Neuro-Musculo-Skeletal-Lab (NMSK), Brussels, Belgium
| | - Julien Lebleu
- Institute of Experimental and Clinical Research, Health Sciences Division, Université Catholique de Louvain, Neuro-Musculo-Skeletal-Lab (NMSK), Brussels, Belgium
| | - André Mouraux
- Institute of Neuroscience, System and Cognition Division, Université Catholique de Louvain, Brussels, Belgium
| | - Nathalie Roussel
- Department of Rehabilitation Sciences and Physiotherapy (MOVANT), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Laurent Pitance
- Institute of Experimental and Clinical Research, Health Sciences Division, Université Catholique de Louvain, Neuro-Musculo-Skeletal-Lab (NMSK), Brussels, Belgium
| | - Emanuel N van den Broeke
- Institute of Neuroscience, System and Cognition Division, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
75
|
Vickery RM, Ng KKW, Potas JR, Shivdasani MN, McIntyre S, Nagi SS, Birznieks I. Tapping Into the Language of Touch: Using Non-invasive Stimulation to Specify Tactile Afferent Firing Patterns. Front Neurosci 2020; 14:500. [PMID: 32508581 PMCID: PMC7248323 DOI: 10.3389/fnins.2020.00500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
The temporal pattern of action potentials can convey rich information in a variety of sensory systems. We describe a new non-invasive technique that enables precise, reliable generation of action potential patterns in tactile peripheral afferent neurons by brief taps on the skin. Using this technique, we demonstrate sophisticated coding of temporal information in the somatosensory system, that shows that perceived vibration frequency is not encoded in peripheral afferents as was expected by either their firing rate or the underlying periodicity of the stimulus. Instead, a burst gap or silent gap between trains of action potentials conveys frequency information. This opens the possibility of new encoding strategies that could be deployed to convey sensory information using mechanical or electrical stimulation in neural prostheses and brain-machine interfaces, and may extend to senses beyond artificial encoding of aspects of touch. We argue that a focus on appropriate use of effective temporal coding offers more prospects for rapid improvement in the function of these interfaces than attempts to scale-up existing devices.
Collapse
Affiliation(s)
- Richard M. Vickery
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Kevin K. W. Ng
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Jason R. Potas
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Mohit N. Shivdasani
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Sarah McIntyre
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Saad S. Nagi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ingvars Birznieks
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|
76
|
Slow depolarizing stimuli differentially activate mechanosensitive and silent C nociceptors in human and pig skin. Pain 2020; 161:2119-2128. [DOI: 10.1097/j.pain.0000000000001912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/08/2020] [Indexed: 01/10/2023]
|
77
|
Hill RZ, Bautista DM. Getting in Touch with Mechanical Pain Mechanisms. Trends Neurosci 2020; 43:311-325. [DOI: 10.1016/j.tins.2020.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 01/10/2023]
|
78
|
Tang Y, Illes P, Verkhratsky A. Glial-neuronal Sensory Organs: Evolutionary Journey from Caenorhabditis elegans to Mammals. Neurosci Bull 2020; 36:561-564. [PMID: 31960268 DOI: 10.1007/s12264-020-00464-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/08/2019] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yong Tang
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, 610075, China.
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China.
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
79
|
Lawson SN, Fang X, Djouhri L. Nociceptor subtypes and their incidence in rat lumbar dorsal root ganglia (DRGs): focussing on C-polymodal nociceptors, Aβ-nociceptors, moderate pressure receptors and their receptive field depths. CURRENT OPINION IN PHYSIOLOGY 2019; 11:125-146. [PMID: 31956744 PMCID: PMC6959836 DOI: 10.1016/j.cophys.2019.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A recent study with Ca++-sensitive-dyes in neurons in whole DRGs (Table 5) found that much lower percentages of nociceptors were polymodal-nociceptors (PMNs) (Emery et al., 2016), than the 50-80% values in many electrophysiological fiber studies. This conflict highlighted the lack of knowledge about percentages of nociceptor-subtypes in the DRG. This was analysed from intracellularly-recorded neurons in rat lumbar DRGs stimulated from outside the skin. Polymodal nociceptors (PMNs) were 11% of all neurons and 19% of all nociceptors. Most PMNs had C-fibers (CPMNs). Percentages of C-nociceptors that were CPMNs varied with receptive field (RF) depths, whether superficial (∼80%), dermal (25%), deep (0%) or cutaneous (superficial + dermal) (40%). This explains CPMN percentages 40-90%, being highest, in electrophysiological studies using cutaneous nerves, and lowest in studies that also include deep RFs, including ours, and the recent Ca++-imaging studies in whole DRGs. Despite having been originally described in 1967 (Burgess and Perl), both Aβ-nociceptors and Aβ-moderate pressure receptors (MPRs) remain overlooked. Most A-fiber nociceptors in rodents have Aβ-fibers. Of rat lumbar Aβ-nociceptors with superficial RFs, 50% were MPRs with variable medium-low trkA-expression. Despite having conduction velocities at the two extremes for nociceptors, both CPMNs and MPRs have relatively low thresholds, superficial/epidermal RFs and low trkA-expression. For abbreviations used see Table 5.
Collapse
Affiliation(s)
- Sally N Lawson
- The Physiology Department, University of Bristol, Bristol BS8 1TD, UK
| | - Xin Fang
- Qihan BioTech Co. Ltd, Hangzhou, China
| | - Laiche Djouhri
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|